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The Proca-type system of partial differential equations [-curl curl A + kA ... 'I" grad '1'; 
\j2'1' - K", ... 'I" div A, with k, K, and.,. constants] is transformed into a new system such that the 
vector potential A and the scalar potential", satisfy separate differential equations. It is also shown 
that, for the solution of the system, there are only two different modes, div A ... 0 with", ... 0, and 
curl A ... 0 with", ;06 0, respectively. 

INTRODUCTION 

A SPECIFIC form of the differential equation 
to be discussed in this work arises for the vector 

meson field. 1
•
2 The general system of equations can 

be of interest also for other domains of research. 
The system to be treated has equations 

- V x (V x A) + kA == T grad q>, 

\12
q> - Kq> == div A, 

where k, K, 7 are constants, and 

1I il all as 
\1 =ax2+ay2+az2' 

V == ~ i + ~ j + 2.. k. ax ay az 

(la) 

(lb) 

The aim of this paper is to transform the system of 
Eqs. (la, b) into another system for which the func­
tion q> and the vector A will satisfy separate differ­
ential equations. In order to get separate equations 
for different functions, the same technique employed 

1 P. M. Morse and H. Feshbach, Methods of Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 
1953), Part I, p. 1891. 

J G. Wentzel, Quantum Theory of Fields (Interscience Pub­
lishers, Inc., London, 1949), p. 75. 

by AbrahamS in transforming Brown's linear system 
of partial differential equations' for micromagnetics 
will be used. 

DERIVATION OF THE TRANSFORMATION 

Taking the divergence of (la) and using (lb), one 
obtains 

k div A == T\1 I1
q>. (2) 

Using (lb) and (2), 

q> == {(k - T)jTK} div A. (3) 

Rewriting Eq. (la) and using Eq. (3), 

\12A + K-1(T - k - K)V(V·A) + kA == O. (4) 

The divergence of Eq. (4) gives 

\12(V ·A) == -kK(T - k)-t(V ·A). (5) 

Acting with the operator \16 on Eq. (4), 

\1BA + K-\T - k - K)\16 

X V(V ·A) + k\16A == O. (6) 

3 C. Abraham, Phys. Rev. 140, Al44 (1965). 
4 W. F. Brown, Jr., Micromagnetics (John Wiley & Sons, 

Inc., New York, 1963), p. 48. 
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Using Eq. (4) and acting with the operators V and 
V 2 on (5), one can write Eq. (6) as 

V 8A + kV 6A + eK
8 

s V 2A 
(T - k) 

k4K 8 

+ (T _ k)3 A = O. (7) 

i, are obtained by inserting the expressions (3) 
and (11) into the original system of Eqs. (1). 

The relations are 

(1) i = 1: 

'PI = 0, V·A i = O. (12a, b) 

(2) i = 2: 
The solution of Eq. (6) can be represented as 

4 

II (V 2 
- vi)A = 0, 

'P2 = -(TK)-l(T - k)V ·A2• curl A2 = O. (13a, b) 

(8) (3) i = 3: 
-1:-1 

where the Vi are roots of the fourth-degree poly­
nomial in V, 

v4 + kv3 + k3K3(T - k)-av 

+ k4K 3
(T - k)-a = o. (9) 

I t is not difficult to show that these roots are given 
by 

VI = -k; V2 = -kK(T - k)-l; 

Va = !kK(T - k)-I(1 + iv3); 

V, = !kK(T - k)-l(l - iv3). 

It follows that, the general solution of Eq. (7) is 

where Ai (i == 1, 2, 3, 4) are solutions of 

V2Ai = ViAi. 

(10) 

(11) 

The solution of the system of Eq. (1) contains at 
most eight constants of integration, while the solu­
tions represented by the Eqs. (3), (10), and (12) 
contain 24 constants of integration. Hence, there 
must exist some relationship among the components 
of the vectors Ai' These relations, for each value of 

As = 'Pa = O. (14) 

(4) i = 4: 

(15) 

However, the solution of the system of Eqs. (1) 
can be represented by two different modes <p = 0, 
with div A = 0, and 'P r5- 0, with curl A = 0, as can 
be seen from Eqs. (12) and Eqs. (13). 

The transformed system equivalent to Eqs. (la, b) 
IS 

'PI = 0, V ·A I = 0 (16a, b) 

and 

V 2A2 = -kK(T - k)-lA2 , 

'P2 = -(TK)-I(T - k)V·A2 ; curlA2 = O. 

(16c) 

(16d) 

The advantage Eqs. (16) have over the system of 
Eqs. (1) is that the former can easily be transformed 
into an appropriate system of coordinates, according 
to the given boundary conditions. 
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Operators are obtained which can be evaluated with respect to nonrelativistic wavefunctions to 
produce the same result as obtained by evaluating the Breit equation with respect to relativistic wave­
functions. This greatly simplifies calculations involving the Breit equation by allowing the calcul­
ations to be made within the more familiar framework of nonrelativistic theory. The operators are 
classified according to their angular dependence; a comparison with the angular dependence of each 
fine-structure operator leads to the relativistic equivalents of the fine-structure interactions. The 
operators are expanded in a power series in (V/C)2, and the lowest nonvanishing terms are shown to be 
the fine-structure interactions. 

I. INTRODUCTION 

RECENT advances in computing techniques and 
machinery have made possible greatly im­

proved Hartree-Fock calculations, I with correspond­
ing improvement in calculated fine-structure con­
stants such as aso, the spin-orbit coupling constant.2 

The recent appearance of relativistic Hartree-Fock 
calculations3 raises the possibility of further im­
provement in calculated fine-structure energies. 

Calculation of relativistic fine-structure energies 
implies, of course, the knowledge of a Hamiltonian 
describing two-body interactions between relativistic 
particles. The Breit equation4 is most often used 
for this purpose; although only an approximation, 
it is a good approximation if the Breit operator 

[_~ aloa2 _ ~ (alorI2)(a2orI2)] 
2 r12 2 r~2 

is treated by use of perturbation theory. 5 

One complication that restricts the usefulness of 
the Breit equation, however, is the difficulty of 
extracting from it the explicit form of a particular 
fine-structure interaction (spin-other-orbit, for ex­
ample). Sandars and Beck 6 have recently suggested 
a method of calculating relativistic effects in atoms 

* This work was supported by the United States Atomic 
Energy Commission. 

I R. E. Watson and A. J. Freeman, Phys. Rev. 124, 1117 
(1961); 127,2058 (1962); F. Herman and S. Skillman, Atomic 
Structure Calculations (Prentice-Hall, Inc., Englewood Cliffs, 
New Jersey, 1963). 

2 M. Blume and R. E. Watson, Proc. Roy. Soc. (London) 
A270, 127 (1962); A271, 565 (1963); M. Blume, A. J. Freeman, 
and R. E. Watson, Phys. Rev. 134, A320 (1964). 

3 D. Liberman, J. T. Waber, and D. T. Cromer, Phys. 
Rev. 137, A27 (1965). 

• G. Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39, 
616 (1932). 

6 H. A. Bethe and E. E. Salpeter, Quantum M echanic8 of 
One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957). 

8 P. G. H. Sandars and J. Beck, Proc. Roy. Soc. (London) 
A289, 97 (1965). 

which can be used to overcome this problem. The 
method involves obtaining an "equivalent operator" 
which, when evaluated between nonrelativistic wave­
functions, produces the same results as obtained 
by evaluating the relativistic operator between rel­
ativistic states. This has the great advantage that 
relativistic effects can be studied within the non­
relativistic scheme-an immense simplification for 
heavy atoms. 

We have obtained equivalent operators for the 
terms in the Breit equation (Sec. III); these op­
erators are then broken up into groups which cor­
respond to fine-structure interactions (Sec. IV). 
Finally, these groups are reduced to the nonrel­
ativistic limit in order to obtain the fine-structure 
interactions. This last step is important because 
it reveals new operators of the same magnitude as 
the fine-structure interactions. 

II. THE HAMILTONIAN 

The analysis is based on the solution by first­
order perturbation theory of the Breit equation 
for two electrons (charge _e),4.6 

30Ir = {L [aio(CPi + eAi) + fJ,mc2 
_ ze

2

] 
,-1.2 T, 

=EW. 

We assume that the potential terms in Eq. (1) can 
be approximately replaced by a central field term 
Li U(r,). The approximate Hamiltonian is then 

Xo = L [a,o(cp, + eA,) + fJ,mc2 + U(r,)] , (2) 
,-1.2 

and the difference, Xl = X - X o, can be treated 

1891 
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as a perturbation. For the special case in which 
Ai = 0, the wavefunction satisfying 

Xo'lio = Eo'lio = (E~ + E~'lio, (3) 

where E' is the energy of electron i, can be written 
as a product of wavefunctions of the form 

Iljm) = [ Fir '~m)l ' 
iGlr lljm) 

where Z = l ± 1 as j = l ± t, and 

t ljm) = :E (-) l-i-"'[11' 

x [i l 
m. ml 

i lllml)X~ •. 
-m 

(4) 

(5) 

The term Xi is the usual two-component spinor. 
Here and in what follows, relativistic wavefunctions 
are written in the general form Iljm) and nonrel~ 
ativistic functions as Ilim). Terms written [a, b, "-1 
stand for (2a + 1)(2b + 1) '" . We restrict our 
discussion to the configuration l2, 

The radial functions F and G, which can be 
taken to be real, Can be related through Eqs. (2)-(4): 

C~, - ~)F. = ~ (mc
2 + E~ - U(r.)]G" 

(6) 

C~, + ~)Gi = ~ [mc
2 

- E~ + U(r.)]F" 

with K, = (_);,H-i![ji]. 
The energy, to the first order in the perturbation, 

is then given by 

('li 0 I 3Co + Xl 1'Ii 0) 

= (Eo + El)('liO l'lio) = E('lio 1 'lio) 

= ('liol a·p + fJmc2 + X .. + Xp + X.,. + X, l'lio) , 

(7) 

where 

XCI = :E X!, X! = -Ze2h, , 

and 

"" 1. 2 (al,rI2)(a2,r12) """ = -lI"e 3 • r 12 

The first two terms on the extreme right-hand side 
of Eq. (7) are the kinetic energy and mass-eff'ect 
terms, respectively. In the following sections, we 
are not directly concerned with these two terms, 
but rather with the remaining terms in X. 

m. EQUIVALENT OPERATORS 

We wish to obtain the operator 0., defined by 
the equation 

('liol X .. + Xp + X')' + Xa l'lio) = ('iiI o. l'li), (8) 

where 1'Ii) is the nonrelativistic wavefunction which 
l'lio) approaches in the nonrelativistic limit. The 
operator OQ is the "equivalent operator" for the 
interactions Xa through X" and will be obtained 
below by considering the interactions X.. through 
X, separately. 

A. Equivalent Operator for 3C II 

Evaluation of :re; between relativistic wavefun~ 
tions is straightforward, and yields 

(ljmIX! Iljm) = -Ze2 J (F~ + (f;), dr" (9) 
r, 

The equivalent operator for :re;, namely 0;, can 
be "\\Titten in the general form 

0• - " '( kK)wCcklK 
.. -£../aK i, (10) 

IkK 

where the a are constants to be determined, and 
the WCck)K are defined by the relation 

W
CcklK = {t'Vi}K, (811 t' 118) = [K]', 

(11) 
and (lll Vi IW) = 151l .[k]', 

Because X", is a scalar, K = 0 in Eq. (10) above, 
and therefore K = k. Taking matrix elements, we 
obtain 

(ljml O! Iljm) 

= :E ai(kk)(-Y:+!+i+i[k],{t 
k l 

.!. k} 2 • 

l i 
(12) 

Equating the right-hand sides of Eqs. (9) and (12), 
and multiplying both sides by 

4: {! l j}U]<_)i, 
I z t k 

we obtain 

ai(kk) = [k]t( _ )l:+I-iZe2 

X :E W( - )i{! l i} 1"' (F~ + <f;)l dr,. (13) 
j l ! k 0 r. 

We postpone a discussion of this and subsequent 
results until Sec. IV. 

B. Equivalent Operator for 3Co 

Because :rep is a two-body operator, we must 
consider matrix elements between relativistic states 
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composed of two electrons. The final form obtained 
for Oe does not depend on the type of coupling used 
for the wavefunction. However, in order to dem­
onstrate more fully the method to be used, we use 
below wavefunctions of the form W SLJ M). 

As is apparent from Eq. (4), in relativistic theory, 
;, and not l, is a good quantum number. The state 
WSLJM) must then be decomposed into states 
IM2JM). which in turn are decomposed in the 
usual way into a sum of products of Ililml) and 
Ili2m2). Then 

(liSIL1JMI3CII WS2L2JM) 

= L [Sl' L1, S2' L2, 11, i2, ia, ;4]t 
i.i. 

The term 3CII can be expanded as 

where the sum is over 11, i2, 1a, 14, and K, and FI 
has been written for F I " etc. Particle assignments 
are subscripted to the parentheses. 

The equivalent operator is written in this case as 

0/1 = L fJ(k1Klk2K2k)w~k'K'>k .wik
•
K

•
lk

, (17) 

where the sum is over kl' K I , k2' K 2, and k. This 

X f; 
L1 

The symbol CK is defined by 

C! = (47r/2K + l)iy!, 

where Y! is the usual spherical harmonic. In evalua.­
ting the matrix element on the right side of Eq. 
(14), one obtains reduced matrix elements such as 

(illl CKrK Ilia) = (lilll cK IIlia) I F;,F;.rK dr 

+ (lilll cK I Ilia) I G;,G;.rK dr. (15) 

This simplifies to 

_ ( )f.-t[j ·]f [ il - - 1,3a 
-t 

Kia] 
o ! 

X I (FI,Fio + G"GI.)rK d,. 

for K even, or zero for K odd. We finally obtain, 
for Eq. (14), 

(16) 

is the most general form for a scalar two-body 
interaction. Proceeding as in Sec. IlIA, we evaluate 

(l2SILlJMI01I Il2S2L2JM) 

and equate the results with Eq. (16). The constant 
fJ is obtained by utilizing the orthogonality condi­
tions for 6-i and 9-i symbols. One obtains 

l. 
k1 Vi i k21 2 

l K2 [~l k i3 ][i2 k i4j Klftl 
i3 k 12 14 k J 2 0 -! i 0 -i 

II r~ X (F1Fa + GlGaMF2F4 + G2GJ2 r;+1 drl dr2 , (18) 

where k is even. By interchanging il and ia, i2 and i4, we see that fJ will be zero for either (or both) 
kl + K1 or k2 + K2 odd. 
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C. Equivalent Operator for 3C T 

The derivation of the equivalent operator for X'Y is carried out in essentially the same manner as for 
the equivalent operator for X~, We first, however, rewrite X'Y: 

X')' = _!e2 at·
a

2 = -!i :E (al·a2)(C~.C~) ::1 
T12 ~ r> 

(19) 

Then 

(l2SIL)JMI X'Y WS2L2JM) = _!e2 :E UI' i2, ia, i4, LlJ L2, SI, S2J,(-);·+i·+J+k 

The sum is over it, i21 is, i41 {3, and k; the reduced matrix elements are given by 

(jIll (aC~)k Ilia) = irk, ii, iaJ1{v2 (- )!+l [1 (3 k] r il ia k
1
j(FIGa + GaFI) 

-1 0 1 -! -t 

+ (-);'+1 [~ ~ :J [~t ~3 :1 (FIGa - GIFa)} (21) 

for {3 odd, zero for (3 even. The equivalent operator is defined as 

0')' = :E 'Y(klKlk2K2k)wik.K.)k .W~k.K.)\ 

where the sum is over klJ K 1, k2' K21 and k. Solving for 'Y, we find 

(rI2rl2)2 
-a-

ru 

(22) 

By interchanging il and ia, i2 and i4, we see that 
'Y is zero if either (or both) kl + KI or k2 + K2 
is even. 

D. Equivalent Operator for 3Ca 
= :E (-t r~ {(C~C~)2[ (8fJ)(f3 + 1)(2fJ + 1) Ji 

{J r~+l I 2 (15)(2fJ - l)(2fJ + 3) 

The term Xa can be re"written in the form 

Xa = -te2[! ~ + (5)1 «ala2)2~12r12y)oJ. (24) 
3 rn rl2 

The first term on the right above has the same form 
as Xy; the second term can be evaluated by using 
the relationship7 

7 B. R. Judd, private communication (1965). 

_ (C{J-2C~)2[(fJ)(fJ - 1)(2fJ - 3)(2fJ + I)JI 
1 2 5(2fJ - 1) 

+ (C~C{J+2)2[(fJ + 1)(fJ + 2)(2fJ + 1)(2fJ + 5)Ji}. 
1 2 5(2fJ + 3) 

(25) 

The terms in this expansion can be rewritten 



                                                                                                                                    

R E L A T I V 1ST ICE F FEe T SIN AT 0 M I C FIN EST Rue T U R E 1895 

F(fJy) ( -)p {(ala2)2(C~C1)21 ° 

= L (-)\5)!{1 1 2 }«alC~)K. (a2C"t)F({J-y) , 
K 'Y {3 K 

(26) 

where'Y = {3, {3 ± 2, and F({3'Y) is the term multiply­
ing the angular factor (C'IlC'Y)2 in Eq. (25). Upon 
inserting Eq. (26) into Eq. (24), one sees that Xs 
has the same form as X'Y . We write the equivalent 
operator for Xs as 

The sum is over ii, i2, i3, i4' {3, and 'Y. Both 0° and 
a2 are zero if {3 is even, and if either (or both) kl + KI 
or k2 + K2 is even. 

Further simplification can be obtained for par­
ticular cases: let 02 = 021 + 022 + 023

, where 021 

stands for the case in which 'Y = {3, 022 for 'Y = 
{3 + 2, and 023 for 'Y = {3 - 2. For k odd, 021 = 
h, 022 and 023 are zero. In this case 0° + 02 = 'Y. 
For k even and k = {3 + 1, 

0° + 021 + 'Y = [2(k + 1)/2k + 1h; 

for k even and k = {3 - 1, 

0° + 021 + 'Y = [2k/(2k + l)h. 

No analogous simplifications are possible for 022 

or 023
• 

IV. INTERPRETATION OF THE OPERATORS 

The terms in O. having the same angular de­
pendence as the fine-structure interactions can be 
identified as relativistic fine-structure interactions. 
These relativistic interactions can be expanded in a 
power series in orders of (v/e)2; the lowest non­
vanishing terms will, in most instances, be just 
the usual fine-structure interactions. We consider 
now the terms according to their angular dependence. 

A. Terms with No Angular Dependence 

The only term of interest here is a (00) ; /3(00000), 
the only other nonzero term having no angular 

Os = L {aO(klKlk2K2k) + 02(klKlk2K2k) I 
X (W~k'K,)k'W~k.K.)"), (27) 

where the sum is over kl' K 1, k2' K 2 , and k. The 
expression 0° corresponds to the first term on the 
right of Eq. (24), 02 to the second. These two ex­
pressions are easily evaluated by comparison with 
Eqs. (19) and (23). One obtains 

00(k1K 1k2K 2k) = h(k1K 1k2K 2k) (28) 

and 

dependence, will be seen to be the first term in the 
expansion of the operator e2/r12: 

a'(OO)WCOO)O = -;[~ ([l + !] J (F! ~ G;). dr, 

+ [l - !] J (F: ~ G~),) dr" (30) 

where F~ stands for Fj_l~!' etc. 
The expansion of Eq. (30) in orders of (v/e) 2 

is based on Eq. (6). We define E~ = W' + me2
, 

and write Eq. (6) as 

G. = ~ {I + Wi - V(r;)}-l (.!L - !!"')F.. (31) 
2mc 2mc dr, r, 

The expansion of the expression in braces in powers 
of (W - U)/2mc2 is roughly equivalent to an 
expansion in orders (v/c/. We need to consider only 
the first term in the expansion 

Gi = fJ.o (.!L - !!...)F" (32) 
e dr, r, 

where 1-'0 = en/2mc. To this order, F satisfies the 
equation 

[ _ !L (~ _ l(l + 1») + U(r)]F. = W'F. (33) 
2m dr2 r2 •• 

for both i = l + ! and i = l - ! states; Eq. (33) 
is just the radial Schrodinger wave equation for a 
particle in a central field. The normalization used 
in this limit is f F2 dr = 1. 
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In this order of approximation, the term con­
taining FI in Eq. (30) becomes 

:I J F~ -Ze -fdr,. r, (34) 

The term in G2 can be obtained by use of a general 
relationship obtained from Eq. (32), 

f GVG dr = p~ J F{- dV dF 
e2 dr dr 

+ [~dV _ V(d
2

2 
_ l(l t 1»)JF} dr, 

rdr dr r (35) 

where V is any function of r. The term containing 
G2 then becomes 

(41) 

where 

To obtain Eq. (41), we have made the approxima­
tion that 

Z ' :I pI 
W' + E' + ~ - ~ = .......L. 

r. rit 2m 

The first term in Eq. (41) is the Darwin termS for 
two electrons; the second, the mass correction term. 

C. Spin-orbit Terms 

The spin-orbit Hamiltonian can be written as 

:re •. o • = -a •. o.[!l(l + 1)(2l + 1)]tw(11l0, (42) 

(36) where 

This term is discussed further in the next section. 

B. Coulomb-Repulsion Terms 

The Coulomb-repulsion Hamiltonian, e'J /rI2 , 

be written as 

OA2 "" [l K lJ:I [W r~ (W(OK)K 'W(OK)K) 
~ L..J [K] K+l 1 2 • 

K 0 0 0 r> 

can 

(37) 

Only O~ has terms with this angular dependence; 
the equivalent operator for this interaction, OO.r., 
can therefore be written 

Oc .•. == L fJ(OKOKK)(w~OK)K'W~OK1K). (38) 
K 

The first nonvanishing term in the expansion of 
0 0 .,. is exactly Eq. (37). The second nonvanishing 
term is 

~~ Jf {~~!~2UI - U' 

X L F~Fi(dd22 - lCl t 1»)F;} dr1 dr" 
'''i-1,2 rf r, 

(39) 

where U' = ell/rl2 and ~2 = ~~ + ~:. 
When evaluated in this limit, the matrix element 

of the term L. (E' - fJimc2) contains, in addition 
to the nonrelativistic energy, a component of the 
order p~/ e2

• This component is given by 

~ (p~N)(W' + ED(~:~ - l(1 ~ 1»). (40) 
• 

Combining this expression with Eqs. (36) (summed 
over ~) and (39), one obtains 

Because 

"/ill 1 dU(r) 
a •. o• = 2m2c2 ;:-a;;:-' 

(wil1) 0 .wiOO)~ = (2[lJf'wi11lO , 

both 0" and O{J contain terms having the angular 
dependence W(lllO. The relativistic spin-orbit con­
stant is then given by 

rol (~ [ 2 J1 
a ..... 1,J = - l(l + 1)(21 + 1) 

X [a i CII0) + (2[lJ}-lfJ(11000)] 

= ~] [J F+ Vrel F+ + G+ VrelG+), dr, 

- J (F - VrelF - + G_ VrolG_), dr.} (43) 

V r• l is a "relativistic potential energy" given by 

z,2 2 ('''' 

V,ol(r l ) = - r: + 2e[l] J
o 

[(2l + 2)(F! + G!)I 

+ 2l(~ + G~h] 1. dr" (44) 
r> 

where r> is the larger of rl l r 2• In the limit discussed 
above, the second term on the right of (44) becomes 
the integral over r2 of the potential energy of a 
charge at rl due to a spherically averaged charged 
shell at r2 - The relativistic spin-orbit term reduces 
to a •. o . in the nonrelativistic limit . 

SA. Messiah Quantum Mechanics, translated by J. Potter 
(North~Holland' Publishing Company, Amsterdam, 1963), 
Vol. II. 
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D. Orbit-orbit Terms 

The orbit-orbit interaction can be written as9 

fff) = -16 2 '" (2K + 1) (lll eK 111)2 
"'-0.0. J.l.o Lx' (K + 2) 

X (l)(Z + 1)(2l + l){K K + 1 1}11 
1 1 l 

X R2R2 ~ d d (,W(OK+lJK+l'W(OK+OK+l) 1 .. J." K 
1 2 K+3 rl r2' 1 2 • 

o '. r 1 

(45) 

The equivalent operator for this interaction, 0 0 ••• , 

is given by the terms in 0'1 and O~ with the same 
angular dependence as :reo.o.: 
0 0 • 0 • = L h(O K+1 0 K+1 K+1) 

K 

+ 0(0 K+1 0 K+1 K+l)} 

X (W~OK+1)K+l'W~OK+llK+l). (46) 

Only the terms in this sum with K even will be 

nonzero. In expanding 0 0 ."., one finds that the 
first nonvanishing term is just :reo. 

E. Spin-othet-Orbit Terms 

The spin-other-orbit interaction can be writtenlO 

:re •.•. o. = 2 :E [(K + 1)(2l + K + 2)(2l - K)]t 
K 

X (- )K+1[K + 1rJ(w(OK+!)K+!.wuKlK+l) 

X {MK- 1(lll eK+l 111)2 + 2MK(111 eK Ill)2} 

+ (_ )K[K]-t(W(OKlK'W{lK+1}K) 

X {MK(lll eK Ill? + 2MK-l(lll eK
+! II l)2}] , (47) 

where the MK are the angular integrals of Marvin.ll 
The sum over K fails into two parts, the sum over 
K even and the sum over K odd. For K even, terms 
in the equivalent operator, 0 •. 0 • 0 ., with the angular 
dependence (W(OK+l)K+l'W(1K)K+\ will arise from 0'1 
and 0 8; with (W(OK)K'W(1K+l)K), from Oil' For K 
odd the situation is reversed. The equivalent op­
erator is given by 

0 •.•••• = l: 11ft(0 K 1 K+1 K) + "Y(O K 1 K+1 K) + 0(0 K 1 K+l K)](WiOKlK 'W;lK+llK) 
K 

+ [8(0 K+l1 K K+1) + "Y(O K+l1 K K+l) + 0(0 K+l1 K K+1)](W~OK+IlK+l.wilK)K+l)}. (48) 

The first nonvanishing term in the expansion of Eq. (48) is 5<: •• 0.0 •• 

F. Spin-Spin Terms 

The spin-spin Hamiltonian is given bylo 

:re •.•. = 2(5)IJ.l.~ :E [(2K + 4)(2K + 3)(2K + 2)]1{ 1 1 2} 
K K+2 K K+1 

X (111 eK 
Ill)(lll eK

+2 Ill) i'" 1'· R~R~ :~a drl dr2 (WiIK+2
) ·W~lKlK+!). (49) 

o 0 r2 

The equivalent operator for this Hamiltonian, 0 •.•. , comes from 0"/ and 0 8, and is given by 

0 •.•. = L h(l K+2 1 K K+l) + 0(1 K+2 1 K K+l)J(W~lK+2lK+l'W~lK)K+l). (50) 
K 

The only nonzero terms in this sum will occur for Keven. 
Upon expanding the expression for 0 •.•. , we find that the first nonvanishing term is given by Eq. 

(49) plus the additional term 

4J.1.~ [(K tz2<': 3t 2)]1 (lll eK Ill)(lIl eK
+2 Ill) i" ~i dri (WilK+2)K+l,wiIKlK+1). (51) 

The radial part of this additional expression is of the form of a delta-function between fl and f 2; 

this term is discussed further in the next section. 

• C. W. UtTord and H. B. Callen, Phys. Rev. 110, 1352 (1958). 
10 B. R. Judd, Physica (to be published). 
11 H. H. Marvin, Phys. Rev. 71, 102 (1947). 



                                                                                                                                    

1898 LLOYD ARMSTRONG, JR. 

G. Spin-Spin Contact Terms 

The spin-spin contact Hamiltonian12 is given by 

X...... = - !321r~(Sl • S2) o(rl - r2) 

= 4Jl~ oCrl - r2) E c-t+f.I(lll CK Ill? 
3r KfJ 

X (W(IKllI.w(lK)/.I), (52) 

where we have used!3 

oCrl - r2) = o(rl - r2) ~2 E [K](C~·C~). 
K , 

Again, the equivalent operator for this interaction 
O • •.•. comes from 0"( and 0., 

o ..•. c. = E h(l K 1 K (3) 
KfJ 

+ 0(1 K 1 K .B) I (W(lK)IJ'W {IK)/l). 

The only nonzero terms in this expansion occur 
for Keven. 

Upon expanding O •.•. c., we find that the first 
nonvanishing term is given by X...... plus some 
additional terms whose values depend on .B. The 
additional terms are for.B = K + 1, 

3(22ff~ 3) (11/ C
K Ill? 

This operator has not been obtained in previous 
treatments5

•
14 of the spin-spin interaction because 

earlier results have depended on the assumed shape 
of the infinitesimal region in which the electrons 
overlap. The situation is highly analogous to that 
which exists with respect to the Fermi contact 
term15 in hyperfine structure. Judd7 has found that 
X~ .•.•. can be obtained by use of classical electro­
magnetic theory if the electron spin moments are 
replaced by currents, as suggested by Casimir.16 If 
one uses this method, the result does not depend 
on the shape of the infinitesimal volume surround­
ing one of the electrons. Judd7 has also obtained 
X! .•.•. by the method of Bethe and Salpeter/' as­
suming that electron 1 is excluded from, and electron 
2 confined between, two concentric spheres which 
collapse, in the limit, to a common radius. 

Unfortunately, X~ .•.•. , which can be written as 

X~ .•. c. = 4(5tlL! E (- )K+3[K, 0] 
r K. 

X [1 1 2][K 0 2]«SlS2)2(C~C:?)O, (55) 
000000 

can be shmvn to always give zero total contribution 
to the energy. That is, when the matrix element 
of X! .•. c. is taken between the states ISL) and 

X J Pi d (W(tK)K+l W(tK)K+l). r2 r 1 1 • 2 , 
1 

(53a) IS'L'), the sum over K and 0 can be performed, 
producing a result which depends on the product 

for.B = K - 1, 

2(K + 1)1L~ (lll CK 111)2 
3(2K - 1) 

X f ~: dr
l 
(WilK)K-l'W~lK)K-l); (53b) 

and for .B = K, 

ilL~(l11 CK 111)2 J ~ drl (W~lK)K 'WilK)K). (53 c) 
r 1 

The additional contributions to the spin-spin 
Hamiltonian found by expanding the equivalent 
operators in powers of (V/C)2 [Eqs. (51) and (53)J 
can be included in the Hamiltonian by adding the 
term 

(54) 

12 J. C. Slater, Quantum Theory of Atomic Structure (Mc­
Graw-Hill Book Company, Inc., New York, 1960), Vol. II. 

13 D. M. Brink and G. R. Satchler, Angular Momentum 
(Clarendon Press of Oxford University Press, Inc., New York, 
1962). 

l
ts; : : l [L' 1 l] [L 1 l] 

;, 2f 0 0 0 0 0 0 . 

For this product not to be trivially zero, S = S' = I, 
and L, L' must be even; such a state, however, 
would violate the Pauli principle. It can also be 
shown that X~ .•. o. makes zero contribution when 
evaluated between wavefunctions arising from mixed 
configurations. 7 

H. Other Terms 

There are three more distinct operators in O. 
which have not been discussed. These are 

0 1 = E .8(1 K+ll K+l K) 
K 

14 A. M. Sessler and H. M. Foley, Phys. Rev. 92, 1321 
(1953). 

15 E. Fermi, Z. Physik 60,370 (1930). 
16 H. B. G. Casimir, On the Interaction Between Atomic 

Nuclei and Electrons (W. H. Freeman and Company, San 
Francisco, 1963). 
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TABLE I. Terms in O. classified according to corresponding fine-structure interaction. Numbers in first column are 
KK as defined in Sec. III A. Numbers in second and third columns are kl, K 1, k2, K 2, k as defined in Sees. III B-D. 

0" Op 0'1 and 0 8 Interaction 

00 -Ze2/r 
11 11000 spin-orbit 

o K 0 K 0 (K even) e2/r12 

1 K 1 K+2 K+l (K even) spin-spin 
o K+l 0 K+l K+l (K even) orbit-orbit 
o K+ll K K+l (K even) 
OK 1 KH K (K odd) 

spin-other-orbit 
spin-other-orbit 

OK 1 K+l K (K even) spin-other-orbit 
o K+l1 K K+l (K odd) spin-other-orbit 

1 K 1 K K+l (K even) spin-spin contact 
1 K 1 K K (K even) 
lKIKK-l(Keven) 

spin-spin contact 

1 K+l1 K+l K (K even) 
1 K+ll K-l K (K even) 
1 K-ll K-l K (K even) 

O2 = :E 13(1 K+11 K-l K) 
K 

and 

03 = 2: P(l K-l1 K-l K) 
K 

X (W~lK-l)K 'W~lK-l)K). 

Upon expanding these expression, we find that none 
has any nonvanishing terms to order JJ.~/ e4

• 

V. DISCUSSION 

Table I reviews some of the results of the preced­
ing section. In it, the terms in Oe are classified ac­
cording to the type of fine-structure interaction 
produced. In the parts of the spin-spin, spin--other­
orbit, and orbit--orbit interactions arising from 0"( 
and 0., the angular dependence of each electron 
is given by w(a l1)K, where K is odd. As was shown 
in Sees. IIIC and D, in this case 0"( = 0 •. In the 
nonrelativistic limit, the contributions from 0'1 and 
O. to the spin-spin contact terms are also equal; 
this is not the case in the relativistic limit, however. 

As mentioned in Sec. IIIC, the values of Oe do 

spin-spin contact 

not depend on the particular type of coupling as­
sumed; this implies that the equations for Oe are 
valid for any two electrons in a configuration l". 
This in turn implies that the equivalent operator 
for the configuration l" can be obtained by replacing 
the indices 1, 2 in O. by i, j and performing the 
sums 2:~-1 0; and 2:.>; (Op + 0'1 + 0 8). 

Using the operators obtained above and the 
relativistic Hartree-Fock wavefunctions, then, one 
can calculate in a straightforward manner the value 
of a particular fine-structure interaction in the con­
figuration l". The evaluation of the angular terms 
is carried out in the nonrelativistic scheme, where 
the powerful tensor techniques of Racah 17 can be 
easily utilized. The methods used to obtain these 
operators can also be used to obtain operators valid 
for application to mixed configurations. 
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17 G. Racah, Phys. Rev. 76, 1352 (1949); B. R. Judd, 
Operator Techniques in Atomic Spectroscopy (McGraw-Hill 
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Although the perturbation expansion for the S-matrix of the Peres-model field theory has zero radius 
of co.nvergence, it uniquely defines the S-matrix and is easily summable by the method of Pade ap­
prOXlmants. 

1. INTRODUCTION 

RECENTLY, the use of Pade approximants for 
analytically continuing power series has been 

applied extensively and has become better under­
stood theoretically.l.2 In particular, the technique 
has been shown to be applicable in potential theory 
for certain classes of potentials.s It would be of 
immense value if the Pade method could be applied 
in strong-coupling field theory. The technique seems 
particularly well-suited to the calculation of res­
onances and perhaps form factors; one cannot hope 
to calculate scattering-matrix elements directly from 
the perturbation series, because these need to be 
evaluated just where Pade approximants will sim­
ulate branch cuts, but it might be possible to cal­
culate the discontinuities across these cuts. 

The likelihood of the non convergence of field­
theory perturbation series was established by Hurst.4 

Dysonli pointed out that a zero radius of convergence 
of the electrodynamic perturbation series was con­
sistent with physical instability obtained by allow­
ing the electric charge to be analytically continued 
to a purely imaginary value. The same phenomenon 
was noticed by one of us for the many-fermion 
problem, where it corresponds physically to col­
lapse.6 Peres7 has invented a simple soluble "model 
field theory" which resembles realistic field theories 
both in the form of interaction and in allowing the 
analog of pair creation; these characteristics are not 
present in potential theory, so that the model ex-

• This research was sponsored in part by the European 
Office of Aerospace Research, United States Air Force, Grant 
No. AF EOAR 64-61, and in part by the U. S. Atomic Energy 
Commission. 

1 G. A. Baker, Jr., Progre8s in Theoretical Physics (Aca­
demic Press Inc., New York, 1965), Vol. I, p. 1. 

I J. C. R. Chisholm, J. Math. Phys. 7, 39 (1966). 
a J. S. R. Chisholm, J. Math. Phys. 4, 1506 (1963), Ref.l, 

Sec. IV B. 
4 C. A. Hurst, Phys. Rev. 85, 920L (1952). 
& F. J. Dyson, Phys. Rev. 85, 631 (19.52). 
8 G. A. Baker, Jr., Phys. Rev. 131, 1869 (1963). 
7 A. Peres, J. Math. Phys. 4, 332 (1963). 

hibits some properties of realistic field theories which 
have not yet been treated by the Pade method. 

Peres has shown that one matrix element in the 
model theory is a Bessel function whose expansion 
in powers of the coupling constant g has zero radius 
of convergence. His deduction from this fact, that 
the perturbation series is useless, is however wrong; 
we show that this series is in fact a series of Stieltjes 
and is therefore summable by the Pade method; the 
Pade approximants have poles in the g-plane only 
along the imaginary a.,"Xis, where the Bessel func­
tion is singular. We show further that every matrix 
element in the model theory is the sum of terms 
whose perturbation expansions have the same prop­
erties. Thus, any matrix element can be calculated 
by the Pade method, and it is established that the 
only singularities in the g-plane lie on the imaginary 
axis, and correspond physically to the UDyson dis­
aster". 

2. MATRIX ELEMENTS FOR PERES' MODEL 

The two ufields" in the model are harmonic 
oscillators of the same frequency, described by op­
erators x and y. The interaction is taken as 

(2.1) 

analogous to an instantaneous interaction of form 
l[;if;cp between a fermion field if; and a boson field cpo 
The operators x and y can cause single quantum 
jumps (creations or annihilations) between the oscil­
lator states, which are of the form 

'Vm(x) = Cme-iz'Hm(x), (2.2) 

where H", is a Hermite polynomial and Cm are 
constants. The general S-matrix element is given 
by Eq. (6) of Ref. 7 and is a real multiple of 

I = i: dx i: dy H,(x)H.(y)Hmex)HnCy) 

X ( 2 2 .2) exp -x - y - 'tgx Y • (2.3) 

1900 
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This integral is zero unless r and m are either both 
even or both odd; in this case 

[= .E aJJIf" 

where a". are real numbers, and 

[". = l: ax l: dy ,l"y· 

(2.4) 

X exp (_x2 
- y2 - igx'y), (2.5) 

with p and q nonnegative integers. A particular 
integral [ depends on integrals 1". which all have q 
even or all have q odd. Performing the integration 
over x in (2.5), we have 

1". = 1rt2-"(2p - I)!! 

X l: dy exp (_y2)y·(1 + igy)-..-J· 

Integrating by parts p times, 

1r' 

I". = (ig)" 

X i: dy :;.. (exp (_y2)y·)(1 + igy)-t. (2.6) 

The integral in (2.6) is a sum of terms, with real 
coefficients, of the form 

hr;.e l: dy exp (_y2)yl(1 + igy)-i 

= 10'" dy exp (_y2)yZ[(1+igy)-i+(_I)Z(1_igy)-t]. 

(2.7) 

The values of l arising in a particular integral (2.6) 
are either all even or all odd, depending on the 
parity of q. 

The integrand in (2.7) can be expanded by the 
binomial theorem and integrated term by term. 
The result is always a series with zero radius of 
convergence; for example, the ground-state--to­
ground-state matrix element, discussed by Peres, 
has l = 0 in (2.7). The series expansion is then 

'" 
J o = 1rt .E (-lY (4r1j26rrl2r!). (2.8) 

r-O 

With l = 1, (2.7) gives 

J . i ~ ( lI)r (41' + 2) t (29) 
1 = -~{l1r ~ -g 26"1'!(21' + 1)( . 

When l is odd, J l always contains an odd imaginary 
factor ig. 

We note that the series in (2.8) is very similar 
to the series derived from the Euler function: 

1'" e-' dt - '" .E (-lrrl. 
o 1 + g2t - 1'-0 

(2.lO) 

The latter series is a series of Stieltjes, so that the 
diagonal Pade approximants converge monotonically 
from above to the Euler function on the positive 
real axis and converge for all complex values of l 
except on the line - <:0 < g2 ~ 0, where the func­
tion is singular. Monotonically increasing lower 
bounds on the positive real axis are given by the 
[N, N - 1] approximants. We now show that these 
properties are shared by the series expansions of 
the functions J,. The rate of divergence is only nI, 
and so the function defined is unique (Theorem 7, 
Ref. 1). 

3. IDENTIFICATION AS STIELTjES SERIES 

Following Wall, 8 one can show by using Cauchy'S 
theorem that sufficient conditions for a series ex­
pansion of a function f(l) in powers of l to be a 
series of Stieltjes are: 

(i) f(l) is regular except for the real range of 
values - <:0 < g2 ~ 0, on which line 1m f(l) may 
be discontinuous, but finite, 

(ii) 1m f(g2) ~ 0 if 1m g2 ~ 0, 
(iii) If(g2) I ~ 0 uniformly as g2 ~ co in the cut 

plane. 

The functions (2.7) are clearly regular unless g is 
purely imaginary, where a rotation of the integra.­
tion contour sufficies to prove finiteness, and so 
satisfy (i). It is not difficult to check that condition 
(iii) is also satisfied. 

Remembering that J l contains an unpaired factor 
ig when l is odd, as in (2.9), condition (ii) must be 
checked for 

f(g~ =J l = f" dy exp( _y2)yl[(1 +igy)-i+(l-igy)-'] 

(l even), (3.1) 

tCl) = iJl/g 

= 10'" dy exp (_y2)y1i[(1 + igy)-I - (1 - igy)-iJ/g 

(lodd). (3.2) 

Taking 0 < arg g < t1l', so that 111' < arg (igy) < 1r, 

we have 

8 H. S. Wall, Analytic 'l'heory of Continued FractiQ'IUI 
(D. Van Nostrand Company, Inc., Princeton, New Jersey, 
1948), Sec. 66. 
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and 

o < arg (1 - igy)-t < -arg (1 + igy)-t < i1r. 
Thus the imaginary parts of the integrands of (3.1) 
and (3.2) are each negative, and condition (ii) is 
satisfied. 

For (3.2) we may simply verify this condition 
for the boundary of the cut plane, and note that 
because of (i) and (iii) Im(f) reaches its maximum 
(and minimum) values on the boundary and so is 
of definite sign throughout each half-plane (in l). 
Thus the series in l derived by expanding (2.7) 
are series of StieItjes, for all integers l ~ O. It is to 
be noted that the sum of two series of Stieltjes is 
again a series of StieItjes. 

In fact, one need only consider the integral (2.7) 
for l = 0 and l = 1, since Jz for l ~ 2 can be ex­
pressed in terms of J o and J 1 through the recurrence 
relation 

1'+2 = ig-
1
[lz+1 - ilIz-d + !(2l + 1)lz. 
4. CONCLUSIONS 

For Peres model field theory, we have shown that: 

(a) each matrix element is a linear combination 
of integrals of the form (2.7), with l a nonnegative 
integer; 

(b) each matrix element is singular for pure 
imaginary values of the coupling constant g, and 
for no other values; 

(c) the expansion of every integral (2.7) in powers 
of g has zero radius of convergence, but is a multiple 
of a series of StieItjes in g2; and thus 

(d) the diagonal Pade approximants formed from 
the series expansion of (2.7) in powers of g2 will 

converge to the function (2.7), and will have sin­
gularities only for l real and negative. 

The singularity structure of a realistic field theory 
is vastly more complex than that of this model. 
Nevertheless, this simple example shows that use 
of a perturbation series can be reconciled with the 
occurrence of the "Dyson disaster" and the re­
sultant zero radius of convergence of the series. 

APPENDIX 

In order to illustrate the smooth and relatively 
rapid convergence of the Pade approximants, we 
give in Table I the first few which can be formed 
from the coefficients through l2 for So ,0' For com­
parison we have included the partial sums for g2 = 1. 
The [N, N] Pade approximants from monotonically­
decreasing upper bounds and the [N, N - 1] form 
monotonically-increasing lower bounds over the 
range 0 ::; g2 < + CD. Both bounds converge to the 
limiting function in the cut ( - CD, 0) complex plane. 
It will be observed that even with only 6 terms 
we can obtain an accuracy at l = 1 of better than 
one percent, even though the Taylor series is diverg­
ing drastically. 

TABLE I. Pade analysis of 8 0•0• 

g2 = 1 3 10 

[0,0] 1.0 1.0 1.0 
[1,0] 0.842105 0.64 0.347826 
[1, 1] 0.910448 0.868613 0.842932 
[2, 1] 0.883198 0.740263 0.477577 
[2,2] 0.897712 0.831876 0.781703 
[3,2] 0.890418 0.772340 0.543369 
[3,3] 0.894720 0.817125 0.748844 

Partial sum 
(g2 = 1) 

1.0 
0.8125 
1.01758 
0.594604 
1.88335 

-3.31997 
22.85923 
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The unitary and antiunitary ray representations of the group of n commuting operators r., 
i = 1,2, "', n, satisfying r,2 = 1, r.rj = rir., have been determined explicitly. The ray representa~ 
tions are shown to be homomorphic to the representations of a class of generalized Clifford algebras 
defined in the text. The enumeration of different algebras gives a complete classification of inequiv~ 
lent ray representations. Whereas the irreducible vector representations of the group are all one­
dimensional, the irreducible ray representations lead to various multiplet structure of states ranging 
in dimensions from 1 to 2l .. (n even), or 2H .. -l) (n odd), in powers of two. The arbitrary antiunitary 
case can be reduced to the case with only one antiunitary r. 

I. INTRODUCTION 

By a general parity operator we mean an operator 
whose square is the identity operator. The 

full inhomogeneous Lorentz group has two abstractly 
defined parity operators: a unitary parity operator 
corresponding to space reflections and an antiunitary 
parity operator corresponding to time reflections. 
The physical interpretation of these operators may 
depend on the physical situation. For example, the 
space reflection operator may be interpreted as P 
or as PC. l In addition, we have other parities, like 
charge conjugation a, G parity (isospin parity). The 
P, a, and T operators may even be different in 
strong, weak, and electromagnetio interactions.2 

Thus, we have the problem of a general quantum­
mechanical treatment of the representations of a 
number of parity operators. The product of two 
commuting unitary parities have been considered 
in the literature.a •4 We discuss in this paper the ray 
representations, both unitary and antiunitary, of n 
parity operators. 

It is remarkable that the ray representations of 
this simple finite group lead to such a richness of 
different classes and each class to different types of 
representations. It is also remarkable that one gets 
higher-dimensional irreducible representations, that 

* Supported in part by the United States Air Force Office 
of Aerospace Research under AFOSR Grant AF-AFOSR-
30-65. 

t On leave from Edinburgh University, Edinburgh, 
Scotland. 

1 E. P. Wigner, Group Theoretical Concepts and Methods in 
Elementa1'1/ Particle Physics, F. Giirsey, Ed. (Gordon and 
Breach SCIence Publishers, Inc., New York, 1964). 

2 T. D. Lee, Proceeding8 of the Oxford International Con­
ference on Elementary Particles (Rutherford High-Energy 
Laboratory Cambridge, England, 1966). 

3 V. I. Ogievetskii and C. Kuang-Chao, Zh. Eksperim. i 
Teor. Fiz. 36, 264 (1959) [English transl.: Soviet Phys.­
JETP 9, 179 (1959)]. N. Tarimer, Phys. Rev. 140, B977 
(1965). 

, The general theory of projective representations of finite 
groups goes back to 1. Schur, J. Reine u. Angew. Math. 132, 
85 (1907); 139, 155 (1911). 

is, multiplet structure of states, much the same way 
that one is used to obtain from the representations 
of compact symmetry groups. The present paper 
deals with the mathematical theory of the subject; 
the physical applications will be treated separately.s 

II. UNITARY RAY REPRESENTATIONS 

Let the group G be generated by n elements 
r 1, r 2, ••• , r .. such that 

r~ = 1, 

r.ri = rir j • 

(1) 

(2) 

The group consists of I, r., and all the possible 
distinct products of r/s, and is Abelian. Its ele­
ments are denoted collectively by gj. We have 

g~ = 1, (I') 

(2') 

Let U(g.) denote the unitary ray representations. 
They satisfy 

U(g,)U(g;) = wei, 1)U(g,g;), 

U(I) = I. (3) 

Two representations U(g) and aU(g) lead to equiva­
lent factor systems. Hence, because of (1') the diag­
onal phases wei, i) can be chosen to be the identity 
so that 

[U(g,)]' = 1. (4) 

In order to determine the remaining phases, we pass 
from the group law (3) to the commutation relations 

U(g,)U(gi) 

= wei, J)U(g,g;) = wei, j)U(g;o,) 

= wei, j)w(j, if1U(g;)U(g,) == a'iU(gi)U(g.), 

Cij = wei, j)/w(j, i). (5) 

6 For an application to leptons see A. O. Barut, Phys. 
Rev. 147,978 (1966). 
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1904 A. O. BARUT AND S. KOMY 

We refer to the phase factors C i ; as the "com­
mutation factors." These factors Cil cannot be 
absorbed into the U's because the multiplication of 
U by any factor a occurs on both sides of Eq. (5) 
and hence the factor a cancels. But the commuta­
tion factors C ij must be restricted to ± 1. This fol­
lows from Eq. (5), for, if we multiply Eq. (5) from 
the left by U(g;) U(gi), we obtain 

I = Ci;U(g;)U(gi)U(g;)U(gi) 

= Ci ;Ci ;[U(g;)]2[U(gi)t = C!;, 
or, 

Ci; = ±1. (6) 

How many independent commutation factors C ij 
are there? Because the group is generated by the 
n elements r 17 '" , r '" the commutation factors 
of these generating elements, i.e., 

U(ri)U(r;) = Ci;U(r;)U(r i), 

(7) 

determine all other factors Cli • In fact, Eqs. (7) 
generate a generalized Clifford algebra with the 2n 
basis elements: 

I; U(ri)U(r;); ... ; U(r1)U(r2) '" U(r .. ) , 

i < j, etc., (8) 

which is just the basis of the representation of the 
group (Frobenius) algebra of the group G, Eq. (1). 
The ordinary Clifford algebra corresponds to all 
Cil = -1. Indeed, for any two group elements g. 
and g;, we have, if we express g. and gl in terms of 
the products of r i, 

U(g.)U(g;) 

= U(ri,ri •... riN)U(r;,r; • ... riM) 

= (ir fr C'.;I)U(g;)U(gi) = Ci;U(g;)U(g.), (9) 
1-1 k-l 

which is exactly the same as the commutation rela­
tions of the two elements U(r • .) ... U(r.N) and 
U(r;,) ... U(r;M) of the algebra (8). We have thus 
proved the following theorem: 

Theorem: The unitary ray representations of the 
group (I') and (2') satisfy the generalized Clifford 
algebra generated by (7) with the basis (8). 

We can therefore determine first the representa­
tions of the algebra and then pass to the representa­
tions of the group. The representations of the 
commutation relations (7) differ from the ray rep­
resentations of the group as follows: To a given 

representation of the Clifford algebra there corre­
sponds as many ray representations of the group 
as there are phase factors Wij satisfying 

This freedom in the choice of the Wij is, however, 
drastically restricted by the associative law of the 
group which we have not yet used. Indeed, if one 
multiplies Eq. (3) from the left by U(gigj)~and uses 
Eq. (4) and Eq. (2'), one gets 

or 

or 

U(g.)U(gj)U(g.g;) = WiI, 

U(g.)U(g;)U(gjg.) = W.;, 

Consequently, 

Wi; = ±1, ±i. 

(10) 

(11) 

It is now a relatively simple matter to pass from 
the representations of the commutation relations 
(i.e., Clifford algebra) to the ray representations of 
the group: Take a representation of the algebra with 
Cil fixed. From (ll) the corresponding Wij take only 
two possible values ±(Cij)t. Now, quite generally, 
if U(g) is a representation of the commutation rela­
tions, so is {a. U(gi)}; and if {U(gi)} corresponds to 
the phase system Wit of the ray representations of 
the group, {a, U (g ,)} corresponds to the equivalent 
phase system 

In our case, because of (4), we have a, = ±l. Note 
the difference between the equivalence of phase sys­
tems and the equivalence of representations. Two 
representations U and aU belong to equivalent 
phase systems, but they are in general not equivalent 
representations, that is, there exists no matrix S 
such that 

SU(g)S-l = aU(g) , for all g. (12) 

The concept of equivalent phase systems tells us 
simply that if we have found one representation the 
other is trivially obtained by multiplication with 
a phase factor, like U(r) and - U(r). But the eigen­
values of the operator r in the two representations 
are of course opposite of each other. 

We now discuss all the representations of the 
commutation relations (7), or the representations of 
the algebra with the basis (8). Some special cases 
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of this algebra are well known: If all Ci ; = +1 we 
have the trivial case of an Albelian group and all 
irreducible representations are one-dimensional. If 
all CH = -1, the representation U(g) forms a 
bona fide Clifford algebra whose representations are 
known. All other mixed cases take an intermediary 
position between these two extreme cases. 

Because of Eq. (10), there are 

!n(n - 1) = K 

distinct factors Ci;' hence a priori there are 2K dif­
ferent types of ray representations, depending on 
which of the C ii are equal to + 1 and which are 
equal to -1. If k of these factors are -1, they can 

be distributed in (f) different ways among the K 

factors, and 

(~) + (~) + '" + (f) + ... + ~) = 2K. 

Consider now the class with k of the Ci ; being 
equal to -1. We distinguish two cases: (i) The k 
minus signs are so distributed that we have a sub­
Clifford algebra with r generating elements, k = 
!r(r - 1); (ii) there is no subalgebra which is a 
bona fide Clifford algebra. ¥or ex~mple, aif k = 3, 
the case (i) corresponds to Cu = CIa = C23 = -1, 
then r 1, r 2, r 3 form" a ClitIord al.gebra; case (ii) 
corresponds, say, to Cl2 = Cl3 = Cu = -1, that 
is, r 1 and r 2 anticommuting, but r 2 and r a com­
muting. It is clear that we have the case (i) only if 
k is of the form k = tr(r - 1), r = 1, 2, 3, 4, ... n. 

Case (i) 

The representations are determined by those of 
the Clifford subalgebra with r generating elements. 
The remaining elements of the algebra commute with 
each other and commute with this subalgebra and 
therefore do not increase the dimensionality of the 
representation. 

The representations of the Clifford algebra with 
r generating elements (r = 1, 2, ... , n) have been 
first determined by Jordan and Wigner6 for even r. 
For even r there is a single irreducible representation 
(up to a unitary equivalence) of the Clifford sub­
algebra of degree 2!r. Every other representation 
is completely reducible, faithful and of degree which 
is a mUltiple of 2'r. For odd r a similar analysis 
exists.7 In this case there are two inequivalent, but 
nonfaithful, representations of degree 2,(r-1); the 

8 P. Jnrdon and E. P. Wigner, Z. Physik 47, 631 (1928). 
7 H. Boerner, Representations of Groups (North-Holland 

Publishing Company, Amsterdam, 1963), p. 269. 

faithful representation is the direct sum of these 
two and, therefore, of degree 2,(r+1). Again every 
other representation is completely reducible and its· 
degree is a multiple of 2,(r-1). 

Case (ii) 

Except the cases where, by relabeling the ele­
ments, we may obtain a Clifford subalgebra as in 
case (i), the generalized algebra with mixed signs 
C if = ± 1 leads, in general, to new types of repre­
sentations different from those of Clifford algebra. 
As a matter of fact, all of these algebras (including 
the Clifford algebra) are special instances of a much 
larger algebra with arbitrary Ci ; (forming a group) 
whose irreducible representations have been deter­
mined in the succeeding paper.s In our case, the 
prescription of determining the irreducible repre­
sentations is as follows: Consider the group 8 con­
sisting of the 2" elements given in Eq. (8) and their 
negatives. Thus the order of 8 is 2"+1. The represen­
tations of the commutation relations (7) are also 
the representations of 8. The factor group 8jC2 , 

where C2 is the group of two elements (+1, -1), is 
Abelian and has 2" one-dimensional representations. 
If the K additional representations are of dimensions 
ll' l2' ... , lK' we have 

l~ + l~ + ... + li = 2"+1 - 2" = 2". (13) 

The number K is equal simply to the number of basis 
elements in the set (8) which commute with all the 2" 
elements. Thus, if all Cif = + 1, K = 2", II = ... = 
lK = 1; and if all Ci ; = -1, K = 1 or 2 depending 
on whether T = even or odd, and 1 = 2,n (n even) or 
II = l2 = 2,(,,-1) (n odd). Finally, to find the number 
of commuting elements in the set (8) we look at the 
table of Cii and determine how many Ci;' Ci;C"" 
ciiciiil , ... ,are +1, forfixedi, allj, all (j, k), .... 
I t follows from this that the dimensions of irreducible 
representations are determined by those of the sub­
algebra containing - signs for Cii ; the additional 
Cii = +1 terms do not increase the dimensionality 
as in case (i). Thus, all irreducible representations 
of dimensions 1, 2, 4, 8, ... , 2,n occur. This com­
pletes the enumeration of all irreducible representa­
tions. Explicit forms of the matrices are given in 
the Appendix. 

m. ANTIUNITARY AND MIXED UNITARY­
ANTIUNITARY RAY REPRESENTATIONS 

We wish now to represent n 1 generating elements 
by unitary operators U(r i ), i = 1, 2, '" nl, and 

8 See A. O. Barut, J. Math. Phys. 7, 1908 (1966). 
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n2 generating elements by antiunitary operators 
A(r j ), i = 1, 2, ... n2. n = n l + n2. Because the 
product of two unitary operators is unitary and the 
product of two antinunitary operators is again uni­
tary, the whole algebra with 2" basis elements splits 
into, say, m antiunitary and 2" - m unitary opera­
tors. In particular, the case where all generating 
elements are represented by antiunitary operators 
corresponds to n l = 0, in which case, because 

the number of unitary and antiunitary operators is 
the same as those of the unitary representations of 
(n - 1) r's and the antiunitary representation of 
one r. Thus we have the following theorem. 

Theorem: The ray representations of G generated 
by n elements r, in which any number of the r's are 
represented by antiunitary operators can, by rela­
beling the elements and the proper adjustment of 
phases, be made to coincide with the ray representa­
tions in which only one r is represented by an anti­
unitary operator. The representation algebra is thus 
always generated by a direct product of the form 

[I, U(rl)' ... , U(r,,-l)] X [I, A(r,,)]. 

Among all the discrete commuting symmetry trans­
formations there can only be one antiunitary gen­
erating operator (the others are the products). 

We now discuss, in general, the phases between 
antiunitary and unitary operators. 

As in Sec. II we first normalize the unitary opera­
tors in such a way that the product of two unitary 
operators satisfy 

[U(g,)]2 = I, 

U(g,)U(gj) = C,jU(gj)U(gi); 

w" = 1. 

Cu = ±1. (14) 

Next we look at the products of two antiunitary 
operators. The determination of the phase factors 
here is slightly more complicated. For in the relation9 

A(g,)A *(g,) = B" U(g~) = B", (15) 

the diagonal phases B" now cannot be normalized 
to unity by multiplying A with a phase factor. From 
the associativity law, however, it follows that these 
phases are equal to ±1, for the multiplication of 
the above equation by A(g,) from the left gives 

A(Yi)A(gi)* A(gi) = s,~A(g,), (16) 

g (*) means complex conjugation. The rules of right and 
left multiplications with anti unitary operators follow from 
the fact that every antiunitary operator is a product of a 
unitary operator times the operation of complex conjugation. 

hence 

B" = Bf,. (17) 

To determine the off-diagonal phase factors in 

A (g,) A * (g,.) = B.,. U(g,g,.) (18) 

and 

A(gj)A *(g.) = BjiU(gjg,) = Bj,U(g,gj), (19) 

we multiply these two equations to obtain 

or 

(20) 

Because Bkk are real and equal to ± 1, the product 
BijSj, is also equal to ±1. Let us pass again to the 
commutation relations. From (18) and (19), we 
obtain 

A(gi)A*(gj) = d,jA(Yj)A*(g,), (21) 

where 

(22) 

In contrast to the unitary case, the associativity 
law does not allow us to determine the Bil • To see 
this, let us multiply Eq. (18) by A(g,) from the left, 

A(g,)A(g,)* A(gj) = Sj~A(g,) U*(g.gj) , 

and replace the last factor U(gig;)* from Eq. (19) 
and use (21), (16), and (17): 

s"A(gj) = S,~A(gi)Sr,-l A(Yj)* A(g,) 

or 

(22') 

i.e., the associativity law gives nothing new. 
We can, however, pass to equivalent phase sys­

tems by mUltiplying in (18) A(gi) and A(gj) by 
phase factors so that Sij = + 1. But then 8ji cannot 
always be equal to + 1, but from (20) it is equal to 
± 1. Thus, in an equivalent phase system, 

8ji = ±1. (23) 

It follows from (22) and (23) that the commutation 
factors d;; are real and equal to ± 1. Consequently, 
the representations are determined up to these arbi­
trary phase factors in the antiunitary operators. 

Finally, we consider the product of one unitary and 
one antiunitary operator. Here we have only the 
off-diagonal phase factors 
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U(g,)A(gj) = p,jA(g,gj), 

A(gj)U*(g,) = pj,A(gjg,) = pjiA(g,gj)' 

The commutation relations are given by 

(24) 

U(g,)A*(gj) = /ijA(gj)U*(gi) (25) 

with 

(26) 

Again, we make use of the associativity law as before 
and obtain 

or 

U(gi)2 A(gj) = p;;U(g,)A(g,gj), 

A(gj) = p,jU(gi)pi!A(gj)U*(g,) 

= p;;pi!/.jA(gj)U*(g.)2, 

/~; = 1, i'j = ±1. (27) 

To determine Pi j we again pass, as in the previous 
case, to an equivalent phase system by multiplying 
the first equation of (24) by phase factors such that 

but then 
P.; = +1, 

PH = ±1 
(23') 

gives us two distinct types, as in Eq. (23). Both in 
(23) and (23') we can choose e' j = + 1 (or PH = + 1) 
for i < i, then eij (or Pi;) = ±1 holds for i > i. 

Now we discuss the explicit representations of the 
group. We bring first G, by relabeling the group 
elements, to the form given in the theorem at the 
beginning of this section, i.e., (n - 1) unitary gen­
erators U(r.), i = 1, '" ,n - 1 and one antiunitary 
generator A (r .. ). Because every antiunitary opera­
tor is of the form A (r .. ) = U(r .. )K, where K is the 
complex conjugation, we have from (15) 

U(r .. )u(r,,)* = S .... = ±1, 

in addition to the unitarity condition 

U(r,,)U(r .. )t = U(r .. )tU(r .. ) = I. 

(28) 

(29) 

Thus the unitary matrix is symmetric or antisym­
metric depending on whether e .. " = + 1 or -1, 
respectively. We have then from (25) and (27) 

U(r.)U(r .. )* = i ... U(r .. )U(r,). (30) 

Suppose we have a representation of G(n - 1), 
U(r.), as discussed in Sec. II, then Eqs. (28) and 
(30) can be satisfied by real or pure imaginary mat­
rices (for example, O"IO"~ = +0"20"1 but O"IO"~ = -0"30"1)' 

Wemaythentakefore .... = =Fl, U(r .. )* = =FU(r .. ), 
=Fi ... = G ... , then the representation of (30) is re-

duced again to the cases of Sec. I, but with the addi­
tional restriction U(r,,)* = =FU(r .. ). 

APPENDIX: EXPLICIT FORM OF THE 
REPRESENTATION MATRICES 

In all cases the representation matrices can be 
written as a direct product of Pauli matrices and the 
2-by-2 identity matrix 1. Because the dimensions 
of the irreducible representations are determined by 
the noncommutative subalgebra, consider first a 
subalgebra with r generating elements. The rep­
resentation with the highest dimension for all Cij = 
-1 can be chosen in some standard form, for 
example, 

(a) r = even: 

U(r l ) = 0"1 X I X I ... X I (!rfactors) 

U(r2) = 0"2 X I X I ... X I 

U(ra) = O"a X 0"1 X I ... X I 

U(r4) = 0"3 X 0"2 X I ... X I 

U(r5) = O"a X O"a X 0"1 ••• X I 

U(r6) = O"a X 0"3 X 0"2 ••• X I 

U(rr_l) = 0"3 X O"a X ... X O"a X 0"1 

U(rr) = O"a X O"a X ... X 0"3 X 0"2' (AI) 

(b) r = odd: There are two inequivalent repre­
sentations: 

(i) U(r2 i-l) 1 
= U(r2j- 1

) of case (a) ']' = 1 ... l(r-l) 
U(r2j) 

= U(r2j) of case (a), 

and (A2) 

U(r .. ) = 0"3 X O"a X ... X 0"3 

X [!(r - 1) factors]. 

(ii) The negative of the matrices in (i). 

It is sufficient to consider then all other represen­
tations with the same dimension of 21r (case a) or 
21(r-l) (case b)-then of course we vary r. These 
are obtained simply by replacing one Pauli matrice 
in (AI) by another as the case may be. For example, 
if 

G,; = -1, i = 2,3, ... r; Gk ; = +1, k ¢ 1, 

-a case which also gives an irreducible representa­
tion of the same dimension as above-we replace 
in (AI) all O"a's by 0"2 and all 0"2'S by I. 
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The number and the dimensions of irreducible representations of a general class of algebras occurring 
in the projective representations of finite groups have been determined. The Lie subalgebras have been 
found, and the isomorphism between the quantum-mechanical ray representations of finite groups 
and the fundamental representations of Lie algebras is shown. 

I. THE ALGEBRA 

WE consider an algebra ('t generated by n 
elements a" i = 1, 2 ... n, satisfying the 

condition 

a,a; = Gija;a,. (1) 

Clearly, G;i = 1, Cil = C~}. In general, no other 
conditions on a; are required. We refer in particular 
to a special case as the finite case, where we suppose 
that ai, in addition, satisfy a number of polynomial 
restrictions of the form 

P.(a;) = a" p = 1 ... N, (2) 

where a, are arbitrary numbers and p. are poly­
nomials in a; of order n •. We may assume for sim­
plicity that there are no other numerical coefficients 
in P, except the a •. 

The problem of quantum-mechanical ray rep­
resentations of some finite groups lead to very special 
cases of this algebra,' in particular, the Clifford 
algebra corresponds to all C. i = -1 and Eq. (2) is 
replaced by a! = 1, i = 1, 2 ... n. Furthermore, 
the subalgebras of this algebra are isomorphic to 
Lie algebras (see Sec. IV) so that the problem is also 
of interest in the study of enveloping algebras of 
Lie algebras. 

Because of Eq. (1) the algebra a has the basis 
elements consisting of the ordered products 

1; a;; a,aj(i S i); a,a;ak(i S j s k); .. , ; 

a,a; .•. ala ... .•. 

(i s j s '" s l sm· .. ); .... (3) 

Note that the equality signs in i S j, etc., give us 
also all the terms of the form a7'a;' .... 

In the case of conditions (2) the series (3) breaks 
after some power, otherwise it is infinite. In the 

* Supported in part by the U. S. Air Force Office of 
Scientific Research. 

'See A. O. Barut and S. Komy, J. Math. Phys. 7, 1903 
(1966). 

former case the commutation factors Cu in (1) 
cannot be completely arbitrary; they satisfy poly­
nomial restrictions similar to (2). For example, if 
a~' = a" we find, mUltiplying (1) from left by a:'-t, 
that (Ck ;),,' = 1, all j, and (C;;),,' = 1, all i. In other 
words, we assume that Cij in (1) and any possible 
restrictions (2) are consistently chosen. 

The representations of (1) are determined up to 
numerical multiples of a;, for, together with a;, the 
multiples A;a; also satisfy Eq. (1). The complex 
numbers A; are, in the finite case, restricted by the 
conditions in (2), otherwise not. We may adjust 
them so that the coefficients a, in (2) are equal to 
unity. 

II. mREDUcmLE REPRESENTATIONS 

To find the irreducible representations, we inter­
pret Eq. (1) as the group composition law of a finite 
or denumerable infinite group G consisting of the 
direct product of the set (3), the basis elements of 
a, and the Abelian group ffi generated by the coef­
ficients C;; [and possible by the numerical coeffi­
cients in Eq. (2)]. In the finite case, both G and 
ffi are finite groups, and the order of G, h, is equal 
to ab, where a is the dimension of the algebra 
and b the order of the Abelian group ffi. Example: 
For the Clifford algebra generated by n elements 
a = 2n

, b = 2, h = 2n+l. 

The factor group g: = G / ffi is the group generated 
by n commuting a/s and consists of the set (3) which 
form a group if a/s commute, otherwise not. In the 
finite case the order of g: is also a. For example, if 
a~' = 1, g: is the direct product of n cyclic groups. 

The representations of g: are also representations 
of G, although they do not satisfy the required 
relations (1). Our problem then is to find the ad­
ditional representations of G which do satisfy (1). 

Let K be the number of the desired additional 
irreducible inequivalent representations of G, in the 
finite case, and l" l2' ... , lK their dimensions. Be-

1908 
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cause the order of the group is equal to the sum of 
squares of the dimensions of inequivalent irreducible 
representations, we have 

h=a+l~+l=+ ... +l~=ab 

or 

l~ + l: + ... + l~ = (b - l)a. (4) 

It -remains to determine the integer K; then the 
solution of (4) is unique. The total number of ir­
reducible representations of G is equal to the num­
ber f of conjugate classes, f = a + K. Let us look 
:at two limiting cases: (i) If all Co; = +1, then each 
.element forms a separate class, and 

fma:r:. = ab, K = (b - l)a, (5) 

hence, only one-dimensional representations occur. 
(ii) The minimum number of classes is obtained if 
every element Xo of the set (3) is in the same class 
with ffixo. That is, if we form xxox- l and using (1), we 
,obtain 

(6) 

where C(x1xo) ffi. Thus case (ii) corresponds to 
the situation where Eq. (6) generates all elements 
C of ffi when x varies over the set (3). The elements 
.of ffi always form separate classes because they com­
mute with all other elements of G (numbers), hence 

fmln = a + (b - 1), K m1n = b - 1. (7) 

The dimensions of the irreducible representations 
.satisfy 

l~ + l~ + ... + 1:-1 = a(b - 1). (8) 

This case gives the smallest number of irreducible 
representations of highest dimensions. In the gen­
.eral case, the number of irreducible representations, 
K, lies between these two limits 

(b - 1) ::; K ::; a(b - 1). (9) 

In fact, K is determined by the number of commut­
ing elements of the set (3). Thus, for a given C. i , we 
first determine the number of elements among the 
basis set (3) of the algebra which commute with 
all other basis elements. Let this number be k 
(k ;::: 1, because the identity commutes with all 

·other elements), then 

K = k(b - 1). (10) 

In the infinite case, Eq. (1) without the restrictions 
in Eq. (2), the number of irreducible representations 
is in general infinite. But if the given C if are such 

that ffi is a finite group, it follows from (8) that there 
may be cases where we have a finite number ir­
reducible representations, some of them infinite di­
mensional. 

m. PROJECTIVE REPRESENTATIONS 

The discussion given in the previous section allows 
one to determine in a simple way all the additional 
ray representations of some finite groups. Any finite 
group can be generated by a (small) number of 
generating elements a" i.e., from all possible prod­
ucts of a, with polynomial conditions of the form 
of Eq. (2). The symmetric group S" is generated by 
two elements al = (12) and aa = (12 .. , n). How­
ever, these do not commute. S" is also generated 
by (n - 1) partly commuting elements, namely, the 
(n - 1) transpositions al = (12), a2 = (23), ... , 
a,,_l = (n - 1, n). If the generating elements com­
mute, then the ray representations defined by 

D(a;) D(a;) = Wi; D(a;a;) (11) 

satisfy 

(12) 

This is our Eq. (1). Thus the problem of determining 
ray representations is reduced to the one treated in 
the previous section. If the generating elements of 
the finite group do not commute, then the method 
of Sec. II can, in principle, still be generalized, but 
the counting of conjugate classes is more com­
plicated. 

IV. LIE SUBALGEBRAS 

We determine the Lie algebras generated by the 
subalgebras of a with the basis (3). It is well known 
that2 in the case of Clifford algebra with n generating 
elements (2" basis elements), a subalgebra of dimen­
sion n(n + 1)/2 satisfy, in addition to the multi­
plioation law of the algebra, commutation relations 
of a Lie algebra which is isomorphic to the Lie 
algebra of SO,,+1' The irreducible representations of 
the Clifford algebra are the irreducible fundamental 
representations of the Lie algebra of 80 .. +1 , But, of 
course, the Lie algebra has infinitely many higher di­
mensional irreducible representations. We now gen­
eralize these results. Let us take the special case that 
the restrictions in Eq. (2) are of the form 

a~i = 1, i = 1,2 ... n, (13) 

2 H. Boerner, Representations of Groups (North-Holland 
Publishing Company, Amsterdam, 1963), p. 269. 



                                                                                                                                    

1910 A. O. BARUT 

then 

1 (14) 

and forms 

(15) 

and 

[ "'1 ""] - (C·'·'C·'·'C·I·'C'I" 1) '''1 '.', aij ,atZ - il ile il ik - Olil at. , 

(16) 

Let us first choose v. = in •. It follows then from 
equations (13), (15), and (16) that the in(n + 1) 
quantities a~' and a7r'1 form a Lie algebra. In fact, 
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this is essentially the Lie algebra of SOn+l' If we 
choose the integers Vi less than in" the commutation 
relations (16) are not closed. We have to continue 
the process of taking the commutation relations p 
steps such that PVi = ni, or Vi = n./p, whenever 
admissible. Thus, we obtain a set of Lie subalgebras 
whose fundamental irreducible representations of 
higher dimensions are also the irreducible repre­
sentations of the algebras of Sec. 1. This is because 
the generating set ai also belongs to the Lie algebra. 

We thus have the general, and also physically 
interesting, conclusion that the irreducible ray rep­
resentations of finite groups are isomorphic to the 
fundamental irreducible representations of Lie 
algebras. 
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ant equations of motion are also presented, and it is shown that the invariance of an equation of 
motion derived from a Lagrangian does not imply the invariance of that Lagrangian to the trans­
formation. It is also shown that time-translation invariance of the equation of motion does not always 
require conservation of the Hamiltonian. 

1. INTRODUCTION 

IN a previous paper,l the following question was 
considered. If the invariance of a physical system 

(taken in paper I to be a classical particle moving 
in one dimension) to a transformation implies the 
invariance of an observable (assumed in I to be the 
equation of motion2

), what restrictions does the 
invariance place on the equation of motion and on 

the Lagrangian describing the system, and what, if 
any, conservation law is generated by this invar­
iance? 

1 H. H. Denman, J. Math. Phys. 6,1611 (1965), hereafter 
referred to as I. A misprint occurred in Ref. 10 of this paper: 
for r = (aG/at)/(aG/av), read r = -(aG/at)/(aGjav). 

2 The importance of the equation of motion as a classical 
observable, and the fact that the invariance of the equation 
of motion does not necessarily have the same implications as 
the invariance of the Lagrangian, has been stressed l:ly E. P. 
Wigner, Rev. Mod. Phys. 37, 595 (1965); Progr. Theoret. 
Phys. (Kyoto) 11, 437 (1954); and private communication. 
Also, see L. J. Tassie and H. A. Buchdahl, Australian J. Phys. 
17,431 (1964). 

The equation of motion (EM) for the particle is 
taken as the general second-order ordinary differen­
tial equation 

q = f(q, q, t). (1.1) 

In I, the linear coordinate transformations 

q' = aq + a, a ~ 0, (1.2) 

were considered. If a = 1, one has the coordinate 
translations; if a = 0, a > 0, the coordinate-scale 
transformations (or dilations); if a = -1, a = 0, 
coordinate inversion. Using techniques essentially 
equivalent to certain applications of one-parameter 
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The equation of motion (EM) for the particle is 
taken as the general second-order ordinary differen­
tial equation 

q = f(q, q, t). (1.1) 

In I, the linear coordinate transformations 

q' = aq + a, a ~ 0, (1.2) 

were considered. If a = 1, one has the coordinate 
translations; if a = 0, a > 0, the coordinate-scale 
transformations (or dilations); if a = -1, a = 0, 
coordinate inversion. Using techniques essentially 
equivalent to certain applications of one-parameter 
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Lie groups to ordinary differential equations,3 it was 
shown that: 

A. The EM (1.1) is coordinate-translation in­
variant' if and only if 

or 
al/aq == 0 

I = I(q, t). 

(1.3a) 

(1.3b) 

B. (1.1) is coordinate-scale invariant if and only if 

q(aljaq) + q(al/aq) == I, (l.4a) 

i.e., I is homogeneous of degree 1 in q and q. 
Alternately, 

I = qg(q/q, t). (l.4b) 

C. (1.1) is coordinate-inversion invariant if and 
only if 

I(-q, -q, t) == -/(q, q, t). (1.5) 

If (1.1) is coordinate-translation invariant, it can 
be written, letting v = q, 

iJ = I(v, t), 

which is first order. The solution of (1.6) is 

v = vet, Vo, to), 

(1.6) 

(1.7) 

where Vo is the velocity when t = to. Writing (1.6) 
in the form 

dv - I(v, t) dt = 0, (1.8) 

an integrating factor f..I(v, t) can normally be found5 

such that 

I'dv - 1'1 dt (1.9) 

is an exact differential. Thus there exists a conserved 
quantity F(v, t), where 

F(v, t) = F(vo, to), (1.10) 

and (1.10) may be regarded as a conservation law 
generated solely by the coordinate-translation in­
variance of the EM. From (1.7), 

dq = vet, Vo, to) dt, 

and the motion q(t) can be found by quadrature. 

3 A. Cohen, An Introduction to the Lie Theory of One­
Parameter Groups (G. Stechert and Co., New York, 1931). 
The author is indebted to Professor E. S. Northam for this 
reference. Also, E. L. Ince, Ordinary Differential Equation8 
(Dover Publications, Inc., New York, 1953), Chap. IV. 

4 By invariant, as in I, it is understood that the equation 
of motion is to be of the same form in both coordinate systems, 
i.e., if (1.1) holds in the (q, t) space-time, then ii' = f(g', q', t') 
in the (q', t') space-time. 

i E. L. Ince, Ref. 3, p. 27. 

If (1.1) is coordinate-scale invariant, it becomes, 
using (1.4b), 

q = qg(q/ q, t). (1.11) 

If z = q/q, (1.11) can be written in the first-order 
form 

z + Z2 = g(z, t) (1.12) 

or 

dz + [l - g(z, t)] dt = O. (1.13) 

There exists an integrating factor which makes the 
left side of (1.13) an exact differential. Thus co­
ordinate-scale invariance of the EM generates the 
conservation law 

G(z, t) = G(zo, to), (1.14) 

where Zo = vol qo and qo is the coordinate when t = to. 
If (1.13) or (1.14) is solved for z = z(t, Zo, to), then 
q(t) can be found by quadrature, i.e., 

In q = J z(t,zo, to) dt + C. (1.15) 

Coordinate-inversion invariance of the EM does 
not appear to generate any conservation law. 

In the following sections, the effects both on the 
EM and on the system Lagrangian of time transla­
tions, time-scale transformations, and time inversion, 
as well as Galilean transformations, are discussed. 

2. TIME TRANSFORMATIONS 

Consider the linear time transformations 

t f = {3t + b, {3 ~ O. (2.1) 

For ({3, b) = (1, b), ({3, 0), (-1,0), one has, respec­
tively, the time translations, time-scale transforma­
tions, and time inversion. Using the techniques of I, 
or those of group theory,3 one finds: 

D. The EM (1.1) is time-translation invariant' 
if and only if 

aI/at == 0 (2.28.) 

or 

I = I(q, q). (2.2b) 

E. (1.1) is time-scale invariant if and only if 

q(al/aq) - t(al/at) == 21 (2.3a) 

or 

I(q, q, t) = h(tq, q)/t2. (2.3b) 
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F. (1.1) is time-inversion invariant if and only if 

f(-q, q, -i) == f(q, q, i). (2.4) 

Conserved quantities generated by the first two 
of these time invariances can be developed in the 
following ways. For time-translation invariance, 
(1.1) becomes, using (2.2b), 

ij = f(q, q). 

Letting q = v, (2.5) can be written 

v dv/dq = f(v, q), 

(2.5) 

(2.6) 

which is first order. Integration of (2.6) gives the 
conservation law 

H(v, q) = H(vo, qo). 

Solution of (2.6) or (2.7) yields 

dq/dt = v(q, Vo, qo), 

which gives q(i) by the quadrature 

J dq/v(q, Vo, qo) = t + C. 

(2.7) 

(2.8) 

(2.9) 

For time-scale invariance, (1.1) must have the 
form 

eij = f(tq, q). 

Letting u = tq, (2.10) can be written 

du/dq = 1 + u-1f(u, q), 

(2.10) 

(2.11) 

which is first order. Further, (2.11) implies the 
existence of a conserved quantity 

J(tq, q) = J(toqo, qo). (2.12) 

From (2.11) or (2.12) 

t dq/di = f(q, ioqo, qo), (2.13) 

from which the motion may be determined by the 
quadrature 

J dq/f = In i + C. (2.14) 

Time-inversion invariance (like coordinate-inver­
sion invariance) does not seem to generate any 
conservation law. 

3. GALILEAN TRANSFORMATION 

Consider the Galilean transformation 

q' = q - Vi, i' = i. (3.1) 

If the EM (1.1) is to be invariant with respect to 
this transformation for all V, then 

f(q - V, q - Vt, i) = f(q, q, t) 

for all f such that (1.1) is satisfied. This condition 
is satisfied if and only if 

af/aq + i(af/aq) == 0 

or (see Appendix A) 

f(q, q, i) = f(tq - q, t). 

Letting w = tq - q, (1. 1) and (3.2b) yield 

w = few, t), 

which yields a conservation law 

(3.2a) 

(3.2b) 

(3.3) 

K(w, t) = K(wo, io). (3.4) 

Since tq - t = t2d(q/i)/dt, q(t) may be found by 
quadrature. 

4. LAGRANGIAN OF SYSTEM 

Some implications of these coordinate-transforma­
tion invariances of the EM for a Lagrangian L(q, q, t) 
describing the particle were discussed in I. While 
the nature of L for each invariance of the EM 
could not be specified, it was demonstrated that 
invariance of the EM to coordinate translations does 
not require the same invariance of L (while the 
inverse implication is valid). 

If L is to be coordinate-scale invariant,8 it must 
be of the form (see Appendix A) 

L(q/q, t) = L(z, t). (4.1) 

The EM derived from this Lagrangian is 

az 1:.... (aL) + aL [1:.... (az) _ az] = 0 (4.2) 
aq dt az az dt aq aq . 

But z satisfies Lagrange's equation identically, since 
it is an exact derivative; thus 

d(aL/az)/dt = 0, (4.3) 

since az/aq = l/q ~ O. Therefore coordinate-scale 
invariance of L implies the conservation law 

aL/az = r(z, t) = constant, (4.4) 

which in turn implies, algebraically, z = z(t). This 
procedure is to be contrasted with that for the EM, 
where the general form of the coordinate-scale in-

6 Invariance of L means that it has the same values as a 
function of ti', q', t' as L has as the same function of q, q, t. 
However, as is well known, if L(q', q', t') = aL(q, q, t) + 
dR(q, t)/dt, where a is a constant, the equations of motion 
are unchanged. This is a weaker but perhaps more reasonable 
condition on L, which will be called the gauge-invariance of 
L. Tassie and Buchdahl have discussed a form of this weaker 
invariance requirement on L, with a = 1 (see Ref. 2). That 
such gauge transformations on L may be more significant 
than simple invariance has also been suggested by Professor 
A. Katz (private communication). If L is gauge invariant to 
a transformation, the EM is invariant to that transformation 
(except for a multiplicative constant). 
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variant EM (1.11) must be transformed and solved 
M a first-order differential equation to obtain the 
conservation law (1.14), while the integration of 
(4.3) immediately yields the conservation law (4.4). 
But there may exist Lagrangians which are not co­
ordinate-scale invariant, while the EM derived from 
them are. An example is given in Ref. 9 of I, where 
L = q In q + 'Yq. While L is not invariant to co­
ordinate-scale transformations, it is gauge-invariant, 
and therefore the EM (q = 'Yq) is unchanged.7 

Letting q = v, aL/av = L., a'L/aqav = L •. q, etc., a 
necessary and sufficient condition that L(v, q, t) 
produce the coordinate scale-invariant EM (1.11) is 

Lq - vL.,« - L •. , = qf(v/q, t)L.... (4.5) 

LMtly, coordinate-inversion invariance of L Im­
plies 

L(-q, -q, t) = L(q, q, t). 

Considering the time transformations, the invar­
iance of L to time translations implies that L is 
not a function of t, and generates the conservation of 
the Hamiltonian 

H = -L + <l(aL/aq), (4.6) 

if Lagrange's EM is satisfied. 
However, the EM may be time-translation in­

variant without the corresponding invariance of L. 
Consider, for example, 

L = Q(q, q)T(t). (4.7) 

The EM can then be written 

aQ~aq [:t (~~) - ~~J + ~ ~~ = O. (4.8) 

If (4.8) is to be time-translation invariant, from 
(2.2a), 

T-1(dT/dt) = 'Y, 

where 'Y is a constant; then T is proportional to 
e'Y'. Thus if L is separable in the form (4.7), it must 
have the form 

L = e'Y'Q(q, q), (4.9) 

if the EM is to be time-translation invariant; (4.9) 
is also sufficient for such invariance. [The Lagrangian 
(4.9) is gauge-invariant to time translation.] In this 
CMe, 

(4.10) 
7 Another example obtains if L has the form g(q) fez, t). 

Then it can be shown that, for coordinate-scale invariance 
of the EM, g = q'Y, or L = q'Yf(z, t), where 'Y is a constant. 
This L is not coordinate-scale invariant, but it is gauge 
invariant. 

This H is not time-translation invariant, although 
the Lagrange EM is.8 

As shown in Appendix A, L is time-scale invariant 
if and only if L = L(u, q), where u = tq. The re­
sulting EM is 

d[t(aL/au)]/dt = aLjOq, (4.11) 

which is also time-scale invariant. Since (4.11) can 
also be written as 

d (aL) aL aL 
u dq au + au = aq , (4.12) 

which is first order, it implies the existence of a 
conserved quantity 

(4.13) 

i.e., a conservation law. 
If the EM is to be time-scale invariant, it must 

be of the form (2.10). Expressing the general 
Lagrangian for the system as L(v, q, t), a necessary 
and sufficient condition on L for time-scale invar­
iance of its EM is therefore 

L« - vL •.• - L." = r'L.,.f(tv, q). (4.14) 

While the general solution to this partial differential 
equation is not known, one can exhibit a Lagrangian 
which is not time-scale invariant, while its EM is. 
Let L = T(t) U(u, q). The associated EM is 

T't aU + T!i. (t au) = T au (4.15) 
au dt au aq , 

which, if it is to be time-scale invariant, requires 

(4.16) 

Thus, if L = T (t) U (tq, q), a necessary and sufficient 
condition that the EM be time-scale invariant is 
that L have the gauge-invariant form 

L = t'YU(tq, q). (4.17) 

Time-inversion invariance of L requires 

L( -q, q, -t) = L(q, q, t). 

If L is to be invariant to Galilean transformations, 
it must have the form (see Appendix A) L = L(w, t), 

8 For multi-degree of freedom systems with generalized 
coordinates qi, if 

L = ea'Q(qi, qi), then H = ea'[L:q;(aQ/ilqi) - Q], 

which is not time-translation invariant, while the Lagrange 
equations of motion are. However, Hamilton's equations are 
not in general invariant to this transformation. (One must, 
of course, first express H in terms of Pi and coordinates qi.) 
This example is in contradiction to a statement by A. Messiah, 
Quantum Mechanics, G. M. Termmer., Tr. (North-Holland 
Publishing Company, Amsterdam, 1962), Vol. 2, p. 664. 
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where w = tq - q. Then the EM is 

d[t(aLlaw)J!dt = -aLlaw, (4.18) 

which is Galilean invariant. Rearranging (4.18), it 
can be put in the form 

d[t2(aLlaw)]ldt = 0, t =F 0, 

which implies the conservation law 

t2(aLlaw) = constant. 

(4.19) 

(4.20) 

A necessary and sufficient condition on L that 
its EM be Galilean invariant is that 

L. - vL •.• - L •. , = L •.• f(tv - q, t). (4.21) 

While the general solution to (4.21) is unknown, one 
can exhibit a Lagrangian which is not Galilean 
invariant, while its EM is. Consider 

L = W(w, t) + g(q, t). (4.22) 

The associated EM is 

!l (t aw) + aw = ago 
dt aw ow aq (4.23) 

In order for (4.23) to be Galilean invariant, aglaq 
must be a function of t only. Thus, if L has the 
structure (4.22), a necessary and sufficient condition 
that its EM be Galilean invariant is that 

L = W(w, t) + f(t)q; (4.24) 

such L's are not invariant, but are gauge-invariant, 
to the Galilean transformation. 

5. DISCUSSION 

Some implications of the invariance of the EM of 
a classical one-dimensional system to coordinate and 
time translations, scale transformations and inver­
sions, and Galilean transformations, have been in­
vestigated in this paper and in I. Except for the 
space-time inversions, each of these transformations 
forms a one-parameter, sectionally continuous group. 
In such cases,9 it is possible to reduce the EM from 
second to first order by a change of variables. Since 
integrating factors normally exist for first-order or­
dinary differential equations, invariance of the EM 
to each of the continuous transformations above 
implies a conservation law involving only the in­
variants of that transformation. Further, each of 
these conservation laws yields the motion of the 
system q = q(t, Vo, qo, to) by quadrature. 

v That the invariance of a second-order ordinary differen­
tial equation to a one-parameter continuous group generally 
implies that the equation may be reduced to first order is 
shown by A. Cohen, Ref. 3, pp. 88-89. 

Since the general solution of the EM involves only 
two arbitrary parameters, the conserved quantities 
will be independent if the number of invariant 
transformations are two or less, and will be depend­
ent if the number is greater than two. 

Considering the Lagrangian of the system, the 
invariance of L to a continuous transformation is 
a stringent requirement which leads immediately 
to a simple conservation law in the cases of space and 
time translations, coordinate scale and Galilean 
transformations, and to a first-order ordinary dif­
ferential equation for time-scale transformations 
(which in turn implies a conservation law). However, 
in each of these cases, one can exhibit a Lagrangian 
which is not invariant to the transformation, while 
the associated equation of motion is. (In each of 
these examples, the Lagrangian is gauge invariant.) 
Also, time-translation invariance of the EM does 
not invariably imply conservation of the Hamilto­
nian. However, it is gratifying that each conservation 
law, whether obtained from the invariance of the 
EM or the Lagrangian, involves the same invariant 
combinations of the variables of the motion. 

Thus, invariances to the continuous space-time 
transformations and the Galilean transformation 
have strong effects on the equation of motion, and 
on the Lagrangian. Both approaches give conserva­
tion laws involving the same variables, which con­
siderably simplify finding the motion. While these 
effects on the Lagrangian are usually both simple 
and immediate, the approach to invariance require­
ments via the equation of motion is appealing, as 
this equation can be regarded as a direct manifesta­
tion of our attempt to describe the system. The two 
approaches may give quite different results. 
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APPENDIX 

The classical transformations considered here (ex­
cept for coordinate and time inversions) are one­
parameter, sectionally continuous transformations 
of the general form 

q' = q + EU(q, t), 

tf = t + ov(t) , 

(A 1) 

(A 2) 

where u and v are at first arbitrary functions, and 
E and 0 may be regarded as generators of the groups 
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of transformations discussed. Since, physically, these 
transformations may be made independently, the 
above transformations are not carried out simul­
taneously, and may be separated into two cases. 

Case I: 

q' = q + EU(q, t), 

t' = t. 

(A 3) 

(A 4) 

This case includes the coordinate translations and 
scale transformations, and the Galilean trans­
formation. 

The velocity transformation is then (q' == dq'l dt') 

q' = dq'ldt = q + EU. (A 5) 

Solving (A 3) and (A 5) simultaneously to eliminate 

uq' - uq' = uq - uq. (A 6) 

Regarding u and u as functions of t' on the left side 
of (A 6), the quantity uq - Uq is an invariant of the 
transformations (A 3) and (A 4). 

For coordinate translations, u = 1 may be chosen 
(then E becomes the generator of the translations). 
Then q is an invariant quantity, and if (and only if) 
the Lagrangian L = L(q, t), it is invariant with 
respect to this transformation (as discussed in detail 
in I). Considering the EM, q is also invariant, and 
thus f in (1.1) must be a function only of q and t 
for invariance of the EM to coordinate translations. 

For coordinate-scale transformations, u = q may 
be cho~en (E > -1 then generates the scale trans­
formations). The invariant quantity uq - Uq is 
identically o. However, (A 3) and (A 5) are, in this 
case, 

q' = (1 + E)q, q' = (1 + E)q, 

which yield the invariant g./ q. Thus if and only if 
L can be expressed as L(g./q, t), it will be invariant 
with respect to the coordinate-scale transformations. 
Then ql q is also invariant, and the EM must have 
the form (lAb) to be coordinate-scale invariant. 

For the Galilean transformations, u = - Vtl E, and 
the invariant is proportional to tq - q. Thus, if and 
only if L = L(tq - q, t), it is invariant with respect 
to Galilean transformations. Since q is also invariant 
to this transformation, it is necessary and sufficient 
that the EM be of the form 

q = f(tq - q, t) 

for Galilean invariance. 

Case II: 

q' = q, 

t' = t + 5v(t). 

(A 7) 

(AS) 

(A 9) 

These transformations include the time transforma­
tions discussed herein. The resultant velocity trans­
formation is 

(A 10) 

Combining (A 9) and (A 10) to eliminate 5 yields 

q' + t'(vlv)1j' = q + t(vlv)q', (A 11) 

which is not identical in the primed and original 
variables. However, for the time translations, iJ = 0, 
and in this case q and q are invariants. Thus, if and 
only if L = L(q, q), it will be invariant with respect 
to time translation. Also, q is invariant in this case, 
and therefore it is necessary and sufficient that the 
EM be of the form 

ii = f(q, q) (A 12) 

for time-translation invariance. 
For time-scale transformations, v = t, and (A 11) 

reduces to 

q't' = qt, (A 13) 

so that qt is an invariant for this transformation. 
Thus, L will be invariant to the time-scale trans­
formations if and only if 

L = L(qt, q). (A 14) 

From (A 13) and (A 9), it also follows, in this case, 
that 

(A 15) 

Thus the EM must be of the form (2.10) for time­
scale invariance. Alternately, from (A 10), 

(A 16) 

so that iii q2 is invariant, and an EM of the form 

(A 17) 

will also be invariant, but multiplication by t2 con­
verts it to the form (2.10). 
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~ formulation. of the Stokes Parameters for light is found in terms of second-rank antisymmetric 
spmors, and arbltrary Lorentz transformations are made by using the unimodular representation of 
the L~rentz group. A three-component spinor form is established along with its accompanying repre­
s~ntatlOn of the Lorent~ group, and the connection with the photon spin is explicitly shown. Differen­
tial Compton cross sectlOns for any Lorentz frame are calculated. These are seen to be invariant only 
for particular polarization reference directions. 

I. INTRODUCTION 

T HE use of four parameters to completely 
characterize the state of polarization of a 

beam of light was first introduced by Stokesl in 
1852. More recent applications have been made by 
Fano,2 Tolhoek,3 Lipps and Tolhoek,' and a com­
prehensive summary has been given by McMaster. 5 

The use of such parameters for determining polari­
zation effects in scattering processes has been con­
sidered, particularly with regard to Compton scat­
tering.2

,G Recently interest has been directed toward 
the production of high-energy photons by Compton 
scattering of light from energetic electrons, several 
authors8

-
9 having considered this process with a 

laser as a photon source. This effect has also entered 
into considerations of the energy loss experienced 
by interstellar electrons.1O Milburn6 has obtained 
differential cross sections in the extreme relativistic 
limit for a specific initial state of purely plane­
polarized light. Arutyunyan 9 et. al. use the Stokes 
parameters to obtain the degree of polarization of 
Compton scattered light in the extreme relativistic 
limit, although no cross sections are given. 

* This work was supported in part by the United States Air 
Force Grant AFOSR 321-63. 

1 G. G. Stokes, Trans. Cambridge Phil. Soc, 9, 399 (1852). 
I U. Fano, J. Opt. Soc. Am. 39, 859 (1949). 
• H. A. Tolhoek, Rev. Mod. Phys. 28, 277 (1956). 
4 F. Lipps and H. A. Tolhoek, Physica 20, 85 (1954). 
I W. H. McMaster, Am. J. Phys. 22, 351 (1954). 
I R. H. Milburn, Phys. Rev. Letters 10, 75 (1963). 
7 C. Bemporad, Cambridge Electron Accelerator Report 

CEAL-I014. 
8 F. R. Arutyunyan and V. A. Tumanyan, Zh. Eksperim. 

i Teor. Fiz. 44, 2100 (1963) [English transl.: Soviet Phys.­
JETP 17, 1412 (1963)]. 

8 F. R. Arutyunyan, 1. 1. Gol'dman, and V. A. Tumanyan, 
Zh .. Eksperim. i Teor. Fiz. 45, 312 (1963) [English transl.: 
Sovlet Phys.-JETP 18, 218 (1964)]. 

10 E. Feenberg and H. Primakoff, Phys. Rev. 73, 449 
(1948). 

In many astrophysical applications, the incident 
light is partially polarized or unpolarized, and the 
electron energies cover a wide range. Hence a 
general formalism which provides a simple method 
of calculating polarization effects for all energies 
and geometries is desirable. Such a formalism must 
of course include a method of calculating the trans­
formation of polarization effects from one arbitrary 
Lorentz frame to another. The spinor formulation 
of the Stokes parameters presented here provides 
a completely general system for the calculation of 
cross sections and polarization effects for all energies 
and polarization conditions, along with the trans­
formation of all quantities from one Lorentz frame 
to another. In addition to providing a simple and 
straightforward method of calculation, such a 
formalism provides insight into the relation among 
the relevant spinors, the spin of the photon, and 
the polarization. 

The four Stokes parameters commonly used are 
Po, the intensity of the beam, PI, the degree of 
plane polarization with respect to two arbitrarily 
oriented orthogonal axes which are perpendicular 
to the beam, P 2, the degree of plane polarization 
with respect to two orthogonal axes rotated 450 

to the right of those used for PI, and P a, the degree 
of circular polarization. The degree of polarization 
is given by 

P = [P~ + pi + P~ll/po. (1.1) 

More detailed construction of the P; is given in 
Refs. 1-5. As a pure polarization state may be 
written in terms of two orthogonal "basis" states, 
CP = C1CPl + C2CP2, it is possible to describe a partially 
polarized beam as a super-position of such states 
and to form a density matrix 

1916 
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The Stokes parameters are given by 

PI = ICt/2 - IC212, 
Pa = i(C2C~ - CIC~), 

(1.2) 

(1.3) 

Some authors choose to regard the CPI and CP2 as 
creating a two-component first-rank spinor and 
thus utilize Pauli-type spin matrices. It should be 
mentioned that, for photons, this is not strictly 
true, since a Lorentz transformation of first-rank 
spinors does not lead to correct results. Although 
there are only two independent polarization states 
for a plane wave, it will be seen that the correct 
form to use is that of a second-rank spinor. 

In Secs. II and III, a formulation of the Stokes 
parameters in the correct second-rank spinor form 
is given, and the transformation properties of such 
quantities via the unimodular representation of the 
Lorentz group is noted. The spinor form is also 
used to generate a 3 X 3 representation of the 
Lorentz group which bears a close relation to the 
photon spin, and the photon polarization is charac­
terized in this form. The quantum mechanical 
form of the Stokes parameters using the photon 
annihilation and creation operators is discussed 
briefly. Section IV considers the application to 
Compton scattering, the differential cross sections 
being obtained for arbitrary polarization and elec­
tron energies, together with the degree of polari­
zation of the scattered photons. 

II. SPINOR FORMALISM 

In the following, we denote the first-rank two­
component spinors which are elements of a complex 
two-dimensional space by cP = (CPI' CP2). The set 
of unimodular linear transformations on this space 
form the two-dimensional group O2, 

Spinors which transform according to the complex 
conjugate of Eq. (2.1) form an associated space 
which is distinguishable from the space spanned 
by q, = (CPI, CP2) due to the difIerence in the complex 
conjugate of the transformation matrix. (Such a 
distinction could not be made if unitarity were 
required in addition to unimodularity.) We denote 
spinors that transform according to the complex 
conjugate of the transformation in Eq. (2.1) by a 
dot over the index; 

cP~ = aq,a + bcp~, 
ad - bc = 1; 

cP~ = CCPa + dcp~, 
a = 1, fJ = 2. 

(2.2). 

Spinors of higher rank are of course generated from 
the direct product and mayor may not have mixed 
dotted and undotted indices, depending upon the 
spaces involved in the product, e.g., CPa{J = CPa X 
CP{J = (CPaa, CPa{J, cP~"" CP~{J); a = 1, fJ = 2. 

As a classical plane electromagnetic wave may 
be characterized either by the vector potential or 
by the fields E and H, a spinor representation of 
such quantities should serve as a starting point for· 
the formation of the Stokes parameters. It can 
easily be shownll

•
12 that a correspondence exists 

between any four-vector such as AI' and a second­
rank spinor of the form CPa{J. However, as a more 
intuitive appreciation of the polarization of light is 
obtained from the E and H fields, we proceed 
from the field tensor r". One can show12 that to 
any second-rank tensor TI" there corresponds a 
fourth-rank spinor CPa{Jth but due to the antisym­
metry of the field tensor W' it is possible also to 
describe the fields in terms of second-rank spinors 
by first forming the antisymmetric self-dual tensor 
GI" = Fl" + FP.··. This procedure was first intro­
duced by LaPorte and Uhlenbeck,l1 who obtain 
the following second-rank spinor components: 

cPa;. = 2(k2 + ik1) , CP# = 2(k2 - ik1), (2.3) 
CPa~ = CP~a = -2ika, a = 1, fJ = 2, 

where k = H - 'tE. Spinor components with un­
dotted indices are obtained by taking the complex 
conjugate of Eq. (2.3). 

Hence Eq. (2.3) and its complex conjugate give 
the fields in terms of the second-rank spinor com­
ponents. For a plane polarized wave traveling. 
along the z axis, application of E· H = 0 and 
E2 - H2 = 0 gives 

and 

E" = Hcpa;. + CP"''''), 

Eu = l(CPaa - CPu), 
(2.4} 

with a = 1, fJ = 2. The relative phases of E" and 
Eu are not included in Eq. (2.4). For any other 
set of axes the fields will not assume such a simple­
form, but in any case the spinor components cPa(J. 
and their complex conjugates serve to completely 
specify all components of E and H. 

11 O. LaPorte and G. Uhlenbeck, Phys. Rev. 37, 138()' 
(1931 ). 

12 W. Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953)_ 
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One may now regard the polarization properties 
of a light beam as being completely characterized 
by a second-rank spinor, and all relevant operations 
may be carried out in the actual spinor space. 
Such a point of view will be seen to have certain 
advantages in that the spinor form more directly 
reflects the helicity states of the photon, 3-space 
rotations and Lorentz transformations may be 
carried out by simple and (of more importance) 
irreducible representations of the Lorentz group, 
and such representations may be used to generate 
the transformations of the photon annihilation and 
creation operators. 

One may form a 4 X 4 density matrix in the 
spinor space from the product q,,,t!P,,(t or a more 
conventional 2 X 2 matrix using any two mutually 
orthogonal field components and Eq. (2.3). This 
will then correspond to the conventional form of 
Eq. (1.2). For the special choice of axes used in 
obtaining Eq. (2.4), applying Eqs. (1.2) and (1.3) 
gives the Stokes parameters in this case as 

Po = l6 Iq,,,,, 12
, 

PI = l2(q,!" + q,~,,), 
P 2 = l2(q,!" - q,~,,) cos 5, 

P a = a12(q,!" - q,~,,) sin 0, 

(2.5) 

where the relative phase 5 between the two or­
thogonal components of the field has been ex­
plicitly shown. For any other choice of reference 
axes the forms in (2.5) will be more complex, in­
volving terms in q,,,(t, q,(tti, etc. 

Arbitrary Lorentz transformations of the fields 
and polarizations are readily obtained by applying 
the spinor representation of the Lorentz group. 
Such a representation is directly obtained in terms 
of second-rank spinors from the fact that the four­
dimensional group of proper rotations is homo­
morphic to the direct product of the group C2 with 
itself, i.e., C~ X C2 is a universal covering group of 
0 4 • The prime on the first factor indicates that in 
general the parameters of the two groups C2 are 
independent. The proper homogeneous Lorentz 
transformations, with the time coordinate written 
as ict = X4, form a subgroup of 0 4 since the form 
x~ + x: + x= + x; is left invariant, and moreover 
it can be shown12

•
13 that the parameters of C~ are 

completely determined by C2(C~ = C~) so that in 
fact this restricted Lorentz group is homomorphic 
to C2 • The spinor representation must have ele­
ments of determinant 1 (unimodularity) and must 
leave the form q,,,,,q,pp - q,,,t!Pp,,(a = 1, (3 = 2) 

invariant.13 This then allows the transformation of 
any type of polarization, for once the transforma­
tion of the density matrix for a pure state is ob­
tained the same transformation will apply to any 
arbitrary superposition of states. Consider, for 
example, two observers Sand S' such that the 
light travels along the z axis in S [Le., Eq. (2.5) 
applies]. Let S' be cutting across the beam at an 
arbitrary angle 8 with respect to z and with arbi­
trary speed v relative to S. Further let the motion 
of S' be contained in the z-y plane of S. For spinor 
frames where a 4-vector XI' is written as the spinor 
q,tiP = (z + ct, X + iy, x - iy, -z + ct), a uni­
modular Lorentz transformation for a first-rank 
2-component spinor is given, in the case of z axis 
velocity, by14 

L - [A 0 ] 
o A-I 

(2.6) 

and a 4-component q,ap transforms according to 

[

At 0 0 0 1 L* X L = 0 1 0 0 
o 0 1 0 ' 
o 0 0 A-. 

(2.7) 

where 

A 2 = [(1 - (3)/(I + (3)]1 and {3 = vic. 

Rotations are performed via the usual 2 X 2 half 
Euler angle matrices U, the 4 X 4 representation 
being obtained via the outer product. A short 
calculation shows that L* X L* and L X L along 
with the corresponding rotation matrices also 
satisfy unimodularity and leave the form q,aaq,pp -
q,,,Pq,h; a = 1, {3 = 2 (or q,ti"q,66 - q,apq,(ta) invariant 
and hence form a representation of the Lorentz 
group for q,,,(t and q,d. Fields in S' are then obtained 
by the usual sequence of rotation to bring z and z' 
parallel, application of Eq. (2.6), and inverse ro­
tation. 

If one requires that the polarization of a beam 
is always measured with the apparatus oriented 
exactly along the beam (which appears to be the 
only meaningful measurement to make), then the 
inverse rotation is not through - 8 but through the 
angle given by 

cos (J' = [cos 8 - (vlc)JI[I - (vic) cos 8], 

i.e., abberation in Sf must be considered. Applying 
the above-mentioned sequence of three operations to 
the column spinor with elements (q,u, q,,,p, q,(t,;, q,66) 

13 J. Aharoni, The Special Theory of Relativity (Oxford 
University Press, London, 1959). 

14 Reference 13, pp. 195-201. The sign of (j = vIc in this 
book is the negative of that conventionally used. We use the 
conventional sign here. 
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(where only cPu ~ 0 in S) and its complex conju­
gate, gives the spinors as seen in S'. Insertion into 
Eq. (2.5) and (1.1) shows that for any velocity 
and any angle (J, S, and S' observe exactly the 
same type and degree of polarization, although the 
light is of course Doppler-shifted. The real value 
of the above result occurs in cases where no inverse 
rotation is desired. Such conditions frequently 
occur in scattering experiments and in astrophysical 
cases, for example, in the measurement of ampli­
tudes polarized perpendicular to and contained in 
some arbitrary plane. Here the formalism allows 
an easy calculation of the polarization amplitudes. 

m. PHOTON SPIN 

The relation between the photon spin and its 
associated spinors is more clearly seen when trans­
formations are made according to a 3 X 3 repre­
sentation of the Lorentz group generated from the 
spinors cPa and cPa.15 This can be done through the 
standard method of forming monomials of the 
spinors as basis vectors in the representation space. 
However, as opposed to the method for 3-space 
rotations using the unitary group U2 , the spaces 
spanned here by cPa and cPa are distinguishable, 
and thus the monomials must include powers of 
cPa and cPa. 

Let u and v be two independent integers. Then 
form the monomials 

(3.1) 

where K is a normalization constant, 8 and tare 
integers and 

o ::; 8 ::; u, o ::; t ::; v. (3.2) 

Clearly there exist [(u + l)(v + 1)] monomials 
generated by the independent variation of 8 and t; 
hence the forms in Eq. (3.1) span a [(u + 1) (v + 1)]­
dimensional space. As the transformations of Eqs. 
(2.1) and (2.2) are linear, the transformation of 
f •. I by application of Eqs. (2.1) and (2.2) will 
result in a polynomial contained in the space 
spanned by the original f •. I' Calculation shows that 
the product of two transformations equals the 
successive application of them, and that the unit 
transformation [a = d = 1 and b = c = 0 in Eqs. 
(2.1) and (2.2)] yields the original f •. I' Hence 
Eq. (3.1) does provide a representation space, and 
the matrices of the representation are found by 

16 For a slightly different approach to three-component 
spinors and a complete discussion of their properties, see 
A. Peres, J. Math. Mech. 11, 61 (1962). 

applying Eqs. (2.1) and (2.2) to the f •. I and re­
grouping in terms of the original monomials: 

" . 
f~., L L D •.• Dl.ifii 

,-0 ;=0 (3.3) 

" "D " ·f·· £....i £...J 8,_,.1 '1-1-
S i 

The matrix elements D are formed from the direct 
product of irreducible representations of C~ and C2 ; 

hence the above representation is irreducible. If 
unitarity as well as unimodularity could be im­
posed,t6 the elements D would be derived from 
U~ and U2 • As U2 is a universal covering group 
for 0 3 , the three-dimensional rotation group, the 
form of D would be D J

• X Df, where the D J are 
the (2J + I)-dimensional matrices of the irreduci­
ble representations of 0 3 , With this similarity in 
mind, let us set 

u = 2J, v = 2j, 8 = J - M, t = j - m. (3.4) 

The normalization constant K in Eq. (3.1) may 
be evaluated from the condition of unimodularity 
or may be seen directly from the fact that U2 is a 
subgroup of C2 , and thus the same (real) normali­
zation constant is used in representations of both 
groups. Insertion of Eq. (3.4) into Eq. (3.1) yields 

fflm = [(J + M)! (J - M)! (j + m)! (j - m)!rt 

(3.5) 

a = 1, fJ = 2. 

Equation (3.2) becomes 

-J ::; M ::; J, -j ::; m ::; j 

and the forms of Eq. (3.5) span a [(2J+1)(2j+l)1-
dimensional space. Hence the matrices D will be 
[(2J + 1)(2j + l)]-dimensional, and we now find 
their explicit form for a general Lorentz transfor­
mation. 

We consider a general transformation composed 
of a rotation through the two Euler angles (J and w 

and a velocity transformation along the new z axis. 
Uninteresting rotations about the new z axis are 
not considered. In terms of the two-dimensional 
spinor transformations of Eqs. (2.1) and (2.2), the 
velocity transformation is given by Eq. (2.6) and 

16 This cannot be done because the noncompactness of the 
Lorentz group prohibits the existence of finite-dimensional 
matrices which would transform a given finite matrix into a 
unitary matrix. 



                                                                                                                                    

1920 DAVID S. DE YOUNG 

the rotation by the usual 2 X 2 half Euler angle 
matrices of the U2 representation: 

U = = 2 2 • (3.6) 
[
a b) [e'i" cos1.8 e-'!" sin 1.8] 

c d -e'i .. sin!8 e-'i" cos!8 

Equation (3.6) and Eq. (2.6) are applied to the 
spinors fiJa, and the result is substituted into Eq. 
(3.5). In a manner entirely analogous to that used 
for three-dimensional rotations,17 the terms in­
volving fiJa and fiJ" are expanded via the binomial 
theorem and regrouped in terms of the original 
ii/ ... When this is done one finds 

f~~ = L L Di/'Mm'mfM'm" (3.7) 
M' m' 

where 

X D~>t;",(w, 8, O)A 2CM+m) • (3.8) 

Here D~'M and D~,,,, are the standard (2J + 1) X 
(2J + 1) and (2j + 1) X (2j + 1) matrices repre­
senting the three-dimensional rotation group: 

J)~'M(W, 8, A) 

_ " [(J+M)! (J-M) I (J+M')! (J-M,)!]i 
- ~ (J+M-k)! k! (J-M'-k)! (M'-M+k)! 

X (_I)M'-M-ke,M' .. [cos to]2J+M-M'-2k 

X [sin !8Yk+M'-Me,MX. (3.9) 

'This representation is unimodular but not unitary. 
Explicit matrices may be calculated from Eq. (3.8) 
by using the expression 

D J * (I)M-M'DJ 
M'M = - -M'-M' (3.10) 

For the photon case, the above representation 
.connects the photon spin and a classical circularly 
polarized wave via the spinor formalism. A three­
·dimensional representation will be obtained from 
-either D(1O) or D (01 ). That these are in fact the correct 
values for J and j has been shown by Weinberg, 18 
who has demonstrated that, for massless particles 
of helicity A, the condition j - J = A must be met. 
'Th"':l8 for photons of helicity ±1, the relevant forms 

17 See, for example, E. P. Wigner, Group Theory and its 
Applications to the Quantum Mechanics of Atomic Spectra 
(Academic Press Inc., New York, 1959), pp. 163-167; or 
M. Hammermesh, Group Theory and its Application to Physi­
.cal Problems (Addison-Wesley Publishing Company, Inc., 
Reading, Mass., 1962), pp. 350-356. The orientation of the 
.~pace rotation used here is in the same sense as that of 
Hammermesh. 

18 S. Weinberg, Phys. Rev. 134, B882 (1964). 

are D C10 ) and DCOl). Equation (3.5) becomes, with 
J = 1, j = 0, M = + 1, say, 

(3.11) 

The last step in Eq. (3.11) is allowed because any 
second-rank symmetric tensor may be written as 
fiJafJ = !(XalffJ + XfJlfa),19 and in this case our fiJa/S 
is generated from the outer product of a two-com­
ponent spinor with itself. Equation (3.8) therefore 
shows D(10) gives the transformation of fiJafJ under a 
rotation plus z axis Lorentz transformation, while 
D

(01) transforms fiJd. The case M = 0 or m = 0 gives 
the transformation of t(fiJ12 + fiJ21), which in our 
case is equal to CP12 as we always have fiJ12 = CPu 
[Eq. (2.3)]. 

Classically, a left circularly or elliptically polar­
ized beam is characterized, in the case of z-axis 
propagation, by E,. + iEv. Applying Eq. (2.4) gives 
E", + iE. = !fiJll, and therefore D C10 ) transforms a 
left circularly or elliptically polarized beam. In this 
case, the other two components fiJ12 and CP22 of the 
column 3-vector to which D (10) is applied are both 
equal to zero. fiJ12 will always be zero unless the z axis 
is rotated, and fiJll = 0, fiJ22 ¢ 0 corresponds to the 
case of a change in sign of the z axis. The relation 
to photon spin is evident, with D (10) giving the 
transformation of a photon with spin parallel to k, 
the direction of the beam. fiJl1 ¢ 0 corresponds to 
the z axis being oriented parallel to k, and fiJ22 ¢ 0 
corresponds to the z axis antiparallel to k; i.e., the 
two possible "m" components of the photon spin. 
Similarly, a left circularly polarized wave is given by 
E", - iEv = !fiJ",,(a = 1) and transforms according 
to D(Oll, corresponding to a negative helicity photon 
with spin antiparallel to k. Stokes parameters using 
the two circular polarization states as a basis are 
easily formed by a similarity transformation and 
are given as 

P1 = (e_et + e+e!), 

Pa = le+12 - le_12, 
(3.12) 

where e+ and e_ are the positive and negative helicity 
amplitudes. The relative phase between e+ and e_ 
is suppressed here. 

For example, a transformation between the ob­
servers 8 and 8' mentioned earlier involves a rota­
tion through the Euler angle 0 and gives, via Eq. 
(3.8), 

19 E. M. Corson, Introduction to Tensors, Spinors, and 
Relativistic Wave Equations (Blackie & Son Ltd., London, 
1953). 
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[

(1/2)A 2(1 + cos (J) 

D~?km'm = (1/v2)A 2 sin (J 

(1/2) A \1 - cos (J) 

(-I/v2) sin (J (1/2)A -2(1 - cos (J)j 
cos (J (-I/v2)A -2 sin (J • 

(1/v2) sin (J (1/2)A-\1 + cos (J) 

(3.13) 

This allows one to compute the polarization ampli­
tudes parallel and perpendicular to some arbitrary 
plane. Inverse rotation through the angle (J' = 
cos- l [(cos (J - /3)/(1 - {3 cos (J)] and the application 
of a column vector (CPu, 0, 0) gives 

[Y(l + ~ ~C08 ')~u l 
(3.14) 

Application of Eq. (3.12) gives the same polariza­
tion in S and in S'. Eq. (3.14) shows directly that 
the helicity is unchanged, corresponding to the fact 
that the photon spin is parallel or antiparallel to 
its direction of motion for all Lorentz observers. 

In the case of the quantized photon field, Stokes 
parameters may be formed quadratic forms of the 
annihilation and creation operators a and a+. One 
suggested20 form is 

Po = a~al + a;a2, PI = a~al - a;a2, 

P2 = a~a2 + a;alo Pa = i(a;al - a~a2)' 

where a l and a2 correspond to the transverse com­
ponents of the field. Transformations of a and a + 

have been shown by Weinberg18 to again be gener­
ated by the representations D(lO) and D(Ol) but not 
by the 4-vector representation D(H>. Hence the 
present formalism may also be applied in the 
quantized case. 

Tu = !T~(k/ko)2 

1 + cos2 
(J + (ko - k)(1 - cos (J) -sin2 

(J 

X 
-sin2 

(J 1 + cos2 
(J 

0 0 

0 0 

where ko is the incident photon momentum, k the 
scattered photon momentum, (J the angle of scatter­
ing, and To the classical electron radius. Equation 
(4.1) is in units of m ec

2 
= 1, which will be retained 

throughout. The differential cross section is then 
given by 

20 J. Jauch and F. Rohrlich, The TheOTY of Photons and 
Electrons (Addison-Wesley Publishing Company, Inc., Read­
ing, Mass., 1955), p. 45. 

IV. APPLICATIONS-COMPTON EFFECT 

The formalism developed in the preceding sec­
tions may be applied to all processes involving 
polarization effects and especially to scattering 
phenomena. Here the above results provide a con­
venient method of determining the polarization 
dependence of the cross sections, of transforming 
the cross sections between any two Lorentz frames, 
and of finding the state of polarization of the 
scattered beam all in one operation. The particular 
example chosen will be that of the inverse Compton 
effect. The method applies for any conditions on the 
incident and scattered light and on the scattering 
electrons. A useful means of calculating the polari­
zation dependence of Compton cross sections has 
been given by Fan02 wherein a matrix describing 
the scattering process is applied to a four-com­
ponent column" vector" composed of the four Stokes 
parameters. Cross sections are then obtained by 
applying a similar four-component row "vector" 
which describes the type of polarization to which 
the analyzer is sensitive. Fano's matrix is set up 
for incident polarization basis vectors lying in and 
perpendicular to the plane of scattering. Hence, for 
incident plane polarized light polarized parallel to 
the scattering plane, the incident normalized column 
vector with elements (Po, PI, P2 , Pa) becomes 
(1, 1, 0, 0). After averaging over electron spins, 
Fano's matrix becomes 

0 0 

0 0 
, (4.1) 

2 cos (J 0 

0 2 cos (J + (ko - k)(1 - cos (J) cos (J 

(4.2) 

where Vk are the components of the incident Stokes 
"vector" and Wi are those of the analyzer. Equation 
(4.1) is derived for the process seen in the rest 
frame of the electron, a frame which is not always 
that of the observer, particularly in the astro­
physical case. The formalism developed in Secs. II 
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and III now allows us to readily calculate the cross 
sections in any Lorentz frame moving in any di­
rection with respect to the electron rest frame. Let 
us assume head-on collision between the electron 
and photon, i.e., the electron is moving into the 
beam of light, and that the photon is scattered at 
an angle (J as measured in the electron rest frame. 
Transformation of cross sections to the laboratory 
frame of the scattered light is seen thus to be exactly 
that of the example treated in Sec. II, where (J is 
now the scattering angle. Hence the Stokes param­
eters as we have written them are unchanged in 
going from S to S' (except for an over-all normali­
zation factor), and therefore Eq. (4.2) applies in the 
laboratory frame. Hence the differential cross sections 
for scattered photons polarized parallel and perpen­
dicular to the scattering plane are known immedi­
ately to be the same in all frames. Such cross sec­
tions are of course dependent on the electron energy 
due to the Doppler shifting of the incident light. 

In many cases it is experimentally more con­
venient, and perhaps necessary, to measure the 
cross sections for light scattered parallel and per­
pendicular to the plane of polarization of an incident 
beam. Here the differential cross sections are not 
invariant but differ in Sand S', and it is in cases 
such as this that the present formalism provides 
a much simpler method of calculation. The extreme 
relativistic limit of this case has been treated by 
Milburn,6 but, if the electron energy is not always 
high, such an approximation may break down and 
a more general result is desirable. The exact form of 
the transformed cross sections in this case is ob­
tained by applying the results of Secs. II and III 
in the following manner. We consider first the 
process as seen in the electron rest frame, using 
polarization basis vectors appropriate to Eq. (4.1). 
For a linearly polarized plane wave polarized at 
an angle cf> with respect to the scattering plane, the 
incident Stokes" vector" becomes 

( c'?s~¢) -sm2</> • 
o 

(4.3) 

Equation (4.1) is applied to this. The resulting 
column vector must now be transformed to a sys­
tem 2 of whose axes lie along the direction of inci­
dent polarization and along the incident beam. 
Following Milburn,21 we take the z axis parallel to 
the beam and the x axis parallel to the direction 
of incident polarization. Application to this new 
Stokes vector of an analyzer (1, 1, 0, 0) will yield 

21 R. H. Milburn, private communication. 

the differential cross section for scattered photons 
parallel to the plane of polarization of the incident 
photon, while application of (1, -1, 0, 0) will give 
the differential cross section for outgoing photons 
polarized perpendicular to the incident reference 
plane. Such a transformation gives P~ = Po, as 
expected, and 

+ 2P2 cos (J cos cf> sin cf>, (4.4) 

where (J is the scattering angle. P~ is not needed in 
the cross section calculation and P a is always zero 
in this case. So far everything has been performed 
in the electron rest frame. 

In the laboratory frame, Eq. (4.3) is unchanged 
as the photon beam and the electron are moving 
antiparallel to each other. We are measuring the 
polarization relative to our originally chosen axes at 
this point, hence we can apply Eq. (4.1) to Eq. (4.3). 
This gives the scattered Stokes vector for polari­
zations perpendicular and parallel to the scattering 
plane. This has been seen to be invariant, and thus 
we have the same form in S'. A change of reference 
axes may now be performed in S', using the trans­
formed equation (4.4). This is the only nonin­
variant form, as (J must be replaced by (J' = 
cos-1 [(cos (J - (3)/(1 - (3 cos (J)], the laboratory 
scattering angle. Inserting this change and apply­
ing (1, 1, 0, 0) to the transformed Stokes vector 
gives the differential cross section in the laboratory 
frame for scattered photons polarized parallel to 
the plane of incident polarization. One obtains, for 
arbitrary velocity and with x = cos (J, 

(
du) 1 2(k )2( k~(l - X)2 
dQ lab. II = 41"0 ko 1 + k,,(l - x) 

r 1 1 - X
2 

2 ] 2 
XLI - 1'2 (1 + (3X)2 cos cf> + (1 + x ) 

{ 

1 2 [ (X - {J)2 l 
X 1 + 2" cos 2cf> 1 + (1 _ (3X)2 J 

1 [ 1 - x
2 

]} x - (3 . 2 ) 
- 2'y" (1 - (3x/ - 2x 1 _ (3x 8m 2cf:> . (4.5) 

Similarly, application of (1, -1, 0, 0) gives the 
laboratory cross section for photons perpendicular 
to the plane of incident polarization: 



                                                                                                                                    

SPINOR FORMULATION OF STOKES PARAMETERS 1923 

( dO") 2(k )2( k~(1 - X)2 
dn lab • .l = 4

r
O ko 1 + ko(1 - x) 

1 1 - x
2 

]} + 2-l (I _ f3X)2 (2 cos 21/> + I) + (x
2 - 1) 

Taking the extreme relativistic limit fJ ~ 1, 'Y ~ co 

and averaging over the angle 1/>, one obtains exactly 
the result given by Milburn in Ref. (6). 

In astrophysical applications, the incident light 
is usually unpolarized/o.22 e.g., starlight. For cross 
sections measuring the components parallel and 
normal to the plane of scattering and for incident 
unpolarized light (Po = 1, P2 = Pa = PI = 0), 
a direct application of Eq. (4.1) gives 

22 F. Hoyle, Phys. Rev. Letters 15, 131 (1965). 

( dO") _ !-r2(~)2[ k~(1 - X)2 + 2X2J (4.7) 
dn lab. i - 4 0 ko 1 + ko(1 - X) 

and 

( dO") _ .lr2(~)2[ k~(1 - X)2 + 2J. (4.8) 
dn lab • .l - 4 0 ko 1 + ko(1 - X) 

Application of Eq. (1.1) gives the degree of polari­
zation of the scattered light in both cases as 

P = (I - x2){k~(1 - X)2 

X [1 + ko(1 - x)r1 + x2 + 1rl. (4.9) 

The dependence of these quantities upon the relative 
velocities of the two frames is obtained from the 
value of ko in the electron rest frame, given in value 
k, in the observer's frame. The scattering angle in 
the laboratory frame is transformed to x = cos 0, 
the electron rest-frame cosine, via the standard 
formula. The electron energy is E = 'Ymc2 = 'Y in 
our units, and ko = 'Y(1 + fJ)k; for our geometry. 
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~ model for t~e Stark mixing ?f orbital states in the annihilation of particles at rest is solved by 
~Sillg the dyna~cal group techn~ques .. The Schr~dinger equation for the problem is given meaning 
ill a representatlOn of the three-dimenslOnal rotatlOn group and reduced to a two-dimensional linear 
homogeneous differential equation. 

I. INTRODUCTION 

I N attempting to give firmer theoretical grounds 
to the Stark mixing of orbital states in the an­

nihilation of mesons and antibaryons at rest (the 
so called Day-Snow-Sucher effect), Leon and Bethe 
considered a semi-classical model. l It is the purpose 
of this paper to give a solution to this model by 
using dynamical group techniques. 

Let us briefly describe the model. The basic 
physical process involved in this Stark mixing is 
in the close encounter of the mesic atom (or anti­
baryon proton atom) with the protons of the hy­
drogen molecules in the bubble chamber. Leon and 
Bethe idealized this process as the collision of a 
hydrogenlike mesic atom moving (on a straight 
line with constant velocity) through the field <I> 
of a fixed proton screened by an electron. The 
internal states of the mesic atom are described 
quantum mechanically by the standard Schrodinger 
equation. The field <I> is supposed to induce dipolar 
transitions among the internal states only at a given 
energy _!n- 2

• 

Let the internal wavefunction of the mesic atom 
at time t be 

.. ' 
1/I(t) = L: aa(t) Ina). 

a-I 

Here a is some set of internal quantum numbers. 
The physically relevant set we eventually use con­
sists of the orbital numbers land m. Ina) is the 
bound-state wavefunction of energy En = _!n-2 

and internal quantum number a. In appropriate 
rotating axes, 1/I(t) obeys the equation (which is 
the mathematical description of the model) 

ft' 

da(t) = L: {<I>(t)(nal R. InJ3) 
~-l 

+ G(t)(nal Lv Inl1)la~(t). (A) 

For a more complete description of the physical 

1 M. Leon and H. A. Bethe, Phys. Rev. 127, 636 (1962). 

problem, and for the precise forms of <I>(t) (which 
represents the action of the field <1» and of G(t) 
(which is linked to the rotation of the axes), we 
refer the reader to Ref. 1. However, as far as this 
paper is concerned, they are of little significance. 
The solution of the system (A), which we present 
in Sec. IV, is a useful computational tool. Indeed, 
antibaryon annihilation requires the consideration 
of values of n up to 20-30, which makes (A) a 
system of 400 to 900 coupled linear differential equa­
tions, while we need only solve a simple system 
of two or three such equations. 

However, what interests us most here is the 
group-theoretic aspect of the model. It provides us 
with an example of a dynamical problem, the solu­
tion of which can be obtained by pure powerful 
group-theoretic techniques. It is of interest to re­
capitulate the successive steps of this approach. 
We first identify the states of the physical system 
as an irreducible representation R of some group G. 
Secondly, we give a meaning to the various terms 
in the Schrodinger equation relative to this group 
G (here we identify the terms with representatives 
of the Lie algebra @ of G within R). Then the 
Schrodinger equation can be given a purely abstract 
meaning, and can be solved by group techniques. 
It is noteworthy that the second step involves the 
identification of R (the usual position operator) 
in terms of the elements of the Lie algebra @. Thus, 
more generally, we should expect that, in more 
difficult calculations of the same type, not only the 
expressions of the elements of G or @ in terms of 
the observables R, P (and functions thereof) are 
required, but also the knowledge of the observables 
in terms of elements of G or @. 

This program is carried out in the next sections. 
In Sec. II, we collect a few hydrogen-atom prop­
erties, well known since Pauli's early work.2 In 
particular, the needed dynamical group G here is the 
group 0 4 (rotations in a four-dimensional Euclidean 

2 W. Pauli, Z. Physik 36, 336 (1926). 

1924 
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space). At the end of Sec. II and in Sec. III, we 
identify the matrices (na IRI nfJ) and (na ILl nfJ) 
as the representatives of the Lie algebra of 0, 
in the n 2-dimensional irreducible representation of 
0 40 , We refer the reader to the Appendix for the 
proof of similar properties on the infinite multiplet 
of the scattering states at a given energy of the 
hydrogen atom. In Sec. IV, we present the announced 
group-theoretic solution. To carry it through, we 
had to develop a new mathematical technique for 
handling a certain kind of linear homogeneous first­
order differential systems having a Lie algebra 
structure. 

n. THE HYDROGEN ATOM AND THE GROUP 0 4 

In this section, we recall some well-known facts 
and introduce notations. Rand P are the usual 
position and momentum operators satisfying the 
canonical rule [Rk , P j } = i8/cj. Choosing 11, = 1, 
then the Hamiltonian of the hydrogen atom is 

H = p2/2m - e2/R, 

L is the angular momentum operator 

L j = BIltIRcP, = (R x P)j, 

1IDd 

A is the Lenz vector 

A = (2me2)-1(L x P - P x L) + b, 

with b, = R/R. 

The following commutation rules hold: 

[L, BJ = 0 = [A, BJ, 
[L;, Lk ] = i8 juL" [Lf' A,,] = i8 j k/A, 

!Since A is a vector with respect to L; and finally 

-2i 
[A", Aj] = -4- 8ijkHLk • 

me 

We now consider these commutation rules on the 
mUltiplet of bound states of energy H = -IE"I, 
and we introduce K = A(me4/2 lEn!)'. On this 
multiplet, the above commutation rules become 
those of the Lie algebra of the group 0 4 • 

[LI , Lk] = i8 j k/L" 

[Ki' K k ] = i8 jk ,L" [L f , K k ] = i8;k,K,. 

It is well known that this Lie algebra is isomorphic 
to 0 3 X 0 3 , This is easily recognized through the 
substitution 

F = l(L + K), G = l(L - K), 

so that 

[F" Gj ] = 0 for all i, i = 1, 2, 3, 

[F;, Flo] = i8 j k/F" [Gi , G,,] = iBikIG,. 

The irreducible representations of this Lie algebra 
are labeled in the standard way by the values of 
F2 and G2

, 

F2 = A(A + 1), 

G' = p(1-' + 1), A and I-' are half integers 2:0. 

To distinguish between 0 4 and 03 X 0 3 , a further 
algebraic relation is needed. It is provided by the 
property L·A = 0 so that I-' = A and F2 = G2 "= A 
(A + 1) on the multiplet of bound states H = 
-IE . .!. Then we want to relate A to a physical 
quantity. This identification is carried through using 
the algebraic relation 

1 - A2 = (-2/me')H(L2 + 1), 

whence we compute 

IE .. I = !Cme
4/n2

) with n = 2A + 1. 

Therefore, every bound-state multiplet of the hy­
drogen atom with energy -IE"I is a realization 
of an irreducible unitary representation of the group 
0, labeled by the index A, (2A + 1 = n), and there 
exists a one-to-one correspondence between the mul­
tiplets of bound states and the irreducible representa­
tion of 0,. The restriction of L to a multiplet is a 
set of three matrices which represent three of the 
infinitesimal generators of 0 4 , 

m. IDENTIFICATION OF R 

To identify R within a multiplet, we calculate 
the commutation relations of R with Land A. 
Since R is a vector with respect to L, we have 

[L j , Rk ] = i8 j k/R,. 

Then we compute the commutators of A and R in 
such a way as to separate out the nonzero part 
on a multiplet of bound states: 

[A" R j ] = ~ :W2 8ijkLk + ~2 [H, 8ijR2 - RiRj]. 

Hence we have the following lemma. 

Lemma 1: 

3 i 
[A" R j ] = 2" me2 8ijkL" 

on a multiplet of states of negative energy E" = 
-me4/2n2

• 
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We now introduce the vector 0, 

o = R - !(e2/2 IEnDA, 
which has the properties, 

[L j , Ok] = i8jkl OI , [K" OJ] = 0, i, j = 1,2,3. 

We are thus led to Lemma 2. 

Lemma 2: Three n2 X n2 matrices V" commuting 
or not commuting among themselves, but satisfying 
[L j , V k ] = i8;;kVk , [K" Vj] = o on the n2-dimensional 
unitary representation space of 0 4, are three null 
matrices, V, = O. 

Proof: Immediately [F j , V k]=!i8jk1V I , [G j , V k]= 
!i8jkl VI, where F and G were introduced in Sec. II. 

Thus V is the same vector with respect to two 
commuting rotation groups, and as such must be 
zero. An explicit proof is trivial, e.g., using' Jacobi 
identity 

[G2, [Fl' V2]] = [Fl, [G2 , V2]] = O. 

On the other hand, 

4[G2 , [Fl' V 2]] = - Vl , 

thus showing that V is zero. Note that this proof 
is valid for any representation of S03 X S03' 

We can now state the theorem. 

Theorem 1: On the multiplet of the n2 states 
of negative energy En = (_me4/2n2

) of the hydrogen 
atom, the position operator R and the Lenz vector 
A are to be identified with each other as follows: 

3 e2 

R ="2 2 lEn I A 

= InaoK, where ao is the Bohr radius. 

Remark: Between two different multiplets, R has 
much more complicated properties and has to be 
identified with other operators no longer in SO(4) 
but in SO (4, 1), which is a dynamical group for 
the whole set of H-atom bound states. 

Let us state some of the consequences of this 
property. 

Weare going to use the preceding theorem to 
give a group interpretation of some properties of 
the H atom. We remark that, with respect to 0 4 , 

it is natural to consider two bases in the n 2 -dimen-

Basis II: L2 and L. diagonal (L = F + G). The 
states will be labeled Ilm), they are essentially the 
usual angular momentum eigenstates. 

To go from one basis to the other is a standard 
problem in the recoupling of angular momenta. 
We adopt the following phase normalization3

: 

Ilm) = L (2l + 1)'( _I)m ['A A ~ml Ifg), 
f.g t g 

( 

_lJ lig) = L (2l + 1)!( _I)m [A 
A 

Ilm). 
1m t g 

We already can understand Basis I: That F. and 
G. are diagonal means K. and L., i.e., R. and L. 
are diagonal. Thus, Basis I essentially corresponds 
to the so called parabolic coordinates (or "Stark" 
coordinates) up to phase normalizations. It is also 
clear that the coefficients connecting angular mo­
mentum and Stark eigenstates (Appendix of Ref. 1) 
are essentially Clebsch-Gordan coefficients. We 
do not enter any more detailed analysis of these 
facts. 

Now, we verify that Basis II exactly corresponds 
to the usual angular momentum eigenstates if;n,,,,(r) = 
Y";(?)Rn,(r), and that the unitary scalar product is 
the usual f d~ cpTr)if;(r)' Because of the properties of 
the spherical harmonics Y";(?) , we already know 
this to be true with respect to ordinary L rotations. 
We just have to check that the action of K on 
11m) is identical, up to the overall constant factor 
!nao, with the action of R on if;n'",(?), which we can 
compute directly. The following formula tells us 
how Ke. acts on Ilm). 

Kex Ilm) = 2(_I)2},-m[~+~{: ~1[(2l + I)(2l + 3)]! 

X [A(A + 1)(2A + I)]l{l 1 !+I} Il + 1 m') 
}.}. }. 

+ 2(_I)2hn[~-~{: ~J[(2l + 1)(2l- I)Jt 

X [A(A + I)(2A + I)]!{! 1 !-I} Il - 1 m'). 
}.}. }. 

We compute the Racah coefficient by using Racah's 
formula4 

sional representation space. {I 1 I-l} 1+2A{ l[(2'A + 1)2 _ l2] }I 

This 
}.}. }. = (-1) 4A[2A + 1][A + 1][4l2 

- 1] . Basis I: is the basis lig). F., and G. are 
diagonal, 

F. lig) = f lig), 

G. Ifg) = g lig)· 

3 A. R. Edmonds, Angular Momentum in Quantum Me­
chanics (Princeton University Press, Princeton, New Jersey, 
1957), Chap. 3. 

f Reference 3, p. 99. 
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We then derive 

[
(l + 1)2 - m

2J' 
Ko Ilm) = 4(l + 1)2 - 1 

X [(2}' + 1)2 - (l + 1)2], Il + 1, m) 

+ [~l;_m:J\(2}' + 1)2 - l2]' Il - 1, m). 

Now we compute z1/;znm,5 

{[ 
(l + 1)2 - m

2 J' 
z1/;z ..... =!nao 4(l + 1)2 _ m2 

X [n2 
- (l + 1)2]11/;,..1+1. ... 

[ l2 m2J' } + 4l; _ 1 [n
2 - l2]'1/;,..Z_l.m . 

Comparing these last two formulas gives us the 
announced result. 

IV. THE GROUP-THEORETIC SOLUTION OF THE 
STARK MODEL 

Theorem 1 enables us to rewrite the system (A) 
mentioned in Sec. I as 

,." 
a,,(t) = .L: {F(t)(nal K. In,8) 

/J-l 

+ G(t)(naI Lu In,8)}a/J(t), (A') 

where 

F(t) = !n<I>(t). 

We now write 
.. " 

a,,(t) = L: U,,/J(t)a/J(O). 
/J-l 

Therefore, the matrix U(t) is the solution of the 
equation 

,,-
U".,(t) = .L: {F(t)(nal K. In,8) 

/J-l 

+ G(t)(nal Lu In,8)} U/J"/(t) , (A") 

and U(O) = 1. 
Now, we notice that together K"" L u, K. form 

a Lie subalgebra of 0 4 which is isomorphic to the 
standard angular momentum algebra, 

[Kz, L.] = iK., [Lu, K.] = iKz, [K., Kz] = iL •. 

The set of states Ina) also forms a reducible 
representation space for this Lie sub algebra. Thus, 
we can give a more general formulation of the 
problem. We consider a linear vector space B which 
is a representation space for the angular momentum 

fj H. A. Bethe and E. E. Salpeter, Quantum Mechanics of 
One- and Two-Electron Atoms (Academic Press Inc., New 
York, 1957), p. 253, Eqs. (60)-{67); p. 263, Eqs. (63)-{65). 

Lie algebra. We assume that all the topological 
operations we perform are valid, which is cer­
tainly the case for finite-dimensional spaces. In 
particular, we assume that the exponentials of the 
operators J" i = 1, 2, 3, which represent the Lie 
algebra, can be defined; and so can the products 
of such an exponential with the others or with the 
J's. Besides, differentiating an operator with respect 
to t is allowed. On B, the system (A") generalizes 
to the equation (B) below. 

With these provisos, we purport to reduce the 
study of Eq. (B) to the solution of a much simpler 
problem. We now write the system (B): 

O(t) = {~a;(t)J;}U(t), U(O) = 1. (B) 

U(t) is an operator acting on the vector space B; 
ai(t) are three arbitrary numerical functions with 
"good" properties, and the precise form of the 
boundary condition is not important. 

Following Ref. 6, we parametrize the solution 
U(t) with three arbitrary functions 

U(t) = exp [f(t)J+] exp [g(t)L] exp [h(t)Ja]. 

It is a simpler problem to find the three functions 
f(t), get), and h(t). 

We use the following definition for J %: 

J % = (2)-'(J1 ± iJ2), 

thereby redefining the commutation rules 

[J&, J a] = -8Jg , [Jg , J_g] = 8Ja (8 = ±1) . 

Now we compute OU-t, 

OU- 1 = jJ + + (j exp [fJ +]J _ exp [-fJ +] 

+ k exp [fJ +] exp [gJ -]Ja exp [- gJ -] exp [-fJ +]. 

Assuming that the Baker-Hausdorff formula 

exp [}.A]B exp [-}.A] 
}.2 

= B + }.[A,B] + 21 [A, [A,B]] + 
is valid, enables us to calculate OU- 1 as an element 
of the Lie algebra spanned by J" i = 1, 2, 3. 
Moreover, since the J's are linearly independent 
(provided J; ~ 0), we can write the following 
system of equations for f, g, and h. 

j - gl(f) - k[f + !Crg)] = a+, 

g + kg = a_, 
gf + h(1 + gf) = as, 

where as = (2-')(al - i8a2). (1) 
8 J. Wei and E. Norman, J. Math. Phys. 4, 575 (1963). 
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Then the derivatives of the unknowns are 

h = a3 - a_I, 

'Ii = aa(tu) + a+C2r'v, 

V = -a3iv + a_(2)-'u. 
(4) 

(} = -a3g + a_(1 + 'g), 

j = a31 - a-elf) + a+, 

(2) Now, the derivative with respect Lo t of any func­
tion cp(A, B, C) can be written as 

where we decided to compute h as an integral over 
·a3 - a_I. Next, let A = g, B = 1 + Ig, and C = 

j + !f2g. Clearly A, B, and C are not independent; 
indeed, they verify the relation B2 - 2AC = 1. 
However, the great virtue of this change of un­
knowns is that (2) can be linearized in a most 
interesting way. Thus we get 

where 

(These three operators verify the angular momentum 
rules up to obvious factors -1.) 

A. = -aaA + aJ3, 

B = a_C + a+A, 

C = a3C + a+B. 

Since we want system (4) to be satisfied inde­
pendently of the precise forms of the functions a, 

(3) we must have 

We can rewrite (3) in matrix form. 

where 

and 

[
-1 0 0] 

Ma = 000, 

001 

M_ = io ~ ~] , 
l~ 0 0 

M+ = 100 • [
0 0 OJ 
o 1 0 

In the M matrices, we recognize the standard three­
dimensional irreducible representation of the angular 
momentum Lie algebra. We thus have the result 
that, in order to solve Eq. (B) in the space B, it is 
enough to solve the same system on the three­
dimensional space of the standard three-dimensional 
irreducible representation. 

Going one step further, we easily check that 
w(A, B, C) == B2 - 2AC is constant in time (1.b = 0), 
thereby confirming the fact that ABC are not in­
dependent. This leads us to the question of whether 
there exists a change of functions u(A, B, C), 
v(A, B, C), [and w(A, B, C)] such that u and v 
satisfy Eq. (B) on the two-dimensional spin rep­
resentation of the angular momentum algebra. We 
prove that the answer is no because the constant 
w(ABC) has the value 1. u and v would verify the 
conditions (up to an ir~elevant constant equivalence) 

daU = lu, d_U = 0, 

daV = -tv, d_V = (2-')u, 

d+U = (2-i )v, 

d+V = O. 

From these equations, one easily derives the algebraic 
relation 

uvw = o. (5) 

Now, since system (3) is linearly homogeneous, it 
has two types of boundary conditions, 

w == B2 - 2AC = 1 

and 

B2 - 2AC = o. 
In the first type, we deduce uv = 0, which indicates 
that there does not exist any appropriate change 
of functions; this, unfortunately, is our case. In 
the second type, condition (5) is automatically 
satisfied and the proper changes of unknowns are 
readily found to be 

A = lu\ C = tv'. 
Weare going to present another way of solving 

the same problem. Here, we use the parametriza­
tion and the notations used in Ref. 6. 

uCt) = exp [h(t)H] exp [g(t)E] exp [f(t)F], 

where 

E = J u - iJ." F = -Ju - iJ." 

H = -2J •. 

The only significant difference between our pa­
rametrization and that of Ref. 6 is the fact that, 
in Ref. 6, exp [hH] appears on the left instead of 
on the right of the other two factors. We carry 
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out a similar calculation, and reduce the system 
(B) eventually to the following nonlinear system: 

j = ee-2A
, 

o = be2
" - ce-2"l, 

it = a - ege-2
", 

(6) 

where a= -!cx., b=Hicx.+cxy ), and e=Hicx.-cxy ). 

Now, the authors of Ref. 6 reduce system (6) to a 
Ricatti equation. Here we depart from their ap­
proach. We introduce the following successive 
changes of functions: First, let 

h = ! Log y to get yj = e, 

In view of the nature of this paper, we defer 
numerical calculations to another less abstracted 
paper, where we also study the effect of absorption, 
and try to assess the value and the limitations of 
the model. 
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APPENDIX. IDENTIFICATION OF R WITHIN A 
MULTIPLET OF SCATTERING STATES OF 

THE HYDROGEN ATOM 

We present here another instance of the identifica­

YO = by2 - el, 
if = 2ay - 2eg. 

(7) tion of an observable in terms of the elements 
of the underlying dynamical group. We identify R 
with -j(2mE)tK (note the minus sign) on the 
multiplet of standard regular scattering functions 
of the hydrogen atom at energy E (we call these 
states the multiplet E). Thus, this Appendix is 

We compute f in terms of the other functions, 
f = f (ely) dt, and concentrate on the last two 
equations of (7). Setting 

g = w, 

then (7) has the form 

u = -au + 00, 

y = v\ 

iJ = av - cu. 

Finally, we set X = u + v, y = u - v, and Z = (~), 
a two-dimensional column vector. We then have 
the formula 

Z = [cx.(t)!O"" + cxyCt)!O"y + cx.(t)!O".]Z, 

where the O"/s are the standard 2 X 2 Pauli matrices. 
Hence, solving the system (B) on the space B is 
reduced to solving a homomorphic system on the 
two-dimensional representation space of the standard 
representations of the angular momentum Lie al­
gebra. The price we pay here for reducing the num­
ber of dimensions to that of the lowest faithful 
representation is in the logarithm needed to com­
pute h = ! Log y = Log v. 

From a purely mathematical standpoint, one can 
guess that interesting problems are lurking behind 
these simple calculations. These questions will be 
discussed in a separate paper to be published lat€r. 

Before closing, let us comment briefly on the 
application of the solution obtained. The physical 
problem is to investigate the effect of the Stark 
mixing on the relative rates of annihilation in the 
orbital Sand P states of the initial system (proton­
antiproton, etc.). Thus, we have to work in the 
angular momentum basis Inlm), and we face a re­
coupling problem in an irreducible representation 
of 0,. This is a matter of standard Clebsch-Gordan 
and Racah coefficients. 

an extension of Sec. III. 
On the multiplet E, the commutation rules of 

the components of the Lenz vector become 

[A" Aj] 

Weare thus led to set 

so that 

[K" K j ] = -iL". 

Thus Land K obey the commutation rules of the 
Lie algebra of the proper homogeneous Lorentz 
group .e!. 

A. Identification of the Multiplet E with an Irreducible 
Unitary Representation of.e~ 

This is a very straightforward task, since a de­
tailed account of the structure of the Lorentz group 
is presented in Naimark's book. 7 We use his nota­
tions: 

[
Hz = Ll ± iL2 

Ha = La [
Fz.=Kl± iK2 

Fa = Ka. 

An irreducible unitary representation R of .e! is in­
finite-dimensional. It is labeled by two numbers 
[c (pure imaginary or real 0 :::; c :::; 1) and ko (positive 
integer or half integer)]. ko is the lowest weight of 
the representation of the three-dimensional group 

7 M. A. Naimark, Les representations lin~aires du groupe 
de Lorentz (Dunod Cie., Paris, 1962). 
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contained in R. Since S-wave Coulomb scattering 
exists, we already know that ko must be zero. We 
now use the Casimir operators to identify c. Con­
sider first 

il'==H+F_+H_F+ +F+H_ +F_H+ +4HaF3=4KL 

on R; 

il' = -4ikoc 

Now, we know Ka is an explicit differential operator 

K = in[~ (L2 .E. - .E. L2) + cos oJ. 
a 2e2 iJz iJz 

(Ref. 7, p. 138), We know that K·L = 0, therefore We now gather a few formulas from Appendices 

koc = O. 

Consider next 

il == F+F_ + F_F+ + 2Fi 

- (H+H_ + H_H+ + 2Hi) = 2(K2 - L2), 
onR, 

il = -2(k~ + c2 
- 1). 

Since 

we conclude that 

k~ + c2 = -me4 j2E. 

Thus we consider the multiplet E as an irreducible 
, t I' th unitary representation of £+ be onglllg to e 

principal serie8 and is labeled by 

ko = 0, 

Now we finish the proof of the above statement 
while analyzing this representation R in more con­
crete term. We show that the standard regular 
wavefunctions given on p. 22 of Ref. 5 can be 
identified with a standard basis f~ of the representa­
tion space of R (in the sense of Theorem 2 on p. 98 
of Ref. 7), up to normalization factors we compute. 
The mass is put equal to one for convenience. Let 
us call 

I y 1 (f) ( . \1 az -fP 
1/Im(E) == m -tPl (2l + I)! e 

X FeZ + 1 - n, 2l + 2, p) == y ~(f)fz(p), (AI) 

where Y Z (f) are the standard spherical harmonics, 
P = 2i(2E)ir, n = -ie2 /(2E)t, and 

a a(a + 1) Z2 
F(a, {3, z) = 1 + ~ z + {3(ft + 1) 2! + 

Since K is a vector with respect to L, it is enough 
to compare K31/1~(E) with formula (54) on p. 98 
of Ref. 7, which, in our notations, has the form 

A-37 and A-22 of Ref. 5: 

:z y ~(f)fz(r) 

= [Cl + m + 1)(1 - m + I)J~! yZ+I(!!.. - ~)f (r) 
4(l + 1)2 - 1 m dr r I 

+ [(l +4~)~ ~ m) TY~-{:r + l(l + 1) Jfz(r) , 

cos OY ~(f%(r) 

_ [(l + m + 1)(1 - m + I)]IYl+lf (r) 
- 4(l + 1)2 - 1 '" 1 

+ [U + m)(l - m)]i yl-1f (r) 
412 _ 1 m Z • 

We can now write 

K31/1~(E) = {(1 +4~)~ ~ m) J y~-l(f) 
X [ -2l(;p + 1 ~ 1) + n}l(p) 

+ .[(l + m + 1)(l - m + 1)J' yl+l(f) 
t 4(1 + 1)2 - 1 ... 

X [2(l + l)(;p - ;) + n }1(P)' 

The problem is thus reduced to finding the nor­
malization al in (AI) in such a way that the set 
of f(p)'s fulfill the equations 

(e - n2)ifz_lCP) = {-2z[;p + 1 ~ 1 J + n}fz(p) 
and 

[(l + 1)2 - n2]!fl+lCP) 

= {-2(l + I{;p - ;] - n}f,(p). 
We spare the reader the term-by-term comparison 

of the series expansions, just stating the result that 

al = tC-zY{(-n2)(1 - n2) ••• (l2 - n2)jl, 
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where ~ is some arbitrary number. The standard 
basis in Naimark's sense can be written as 

"'m/CE) = Y 1(,,)(_ ) 1 [-n
2
(1 - n

2
) ••• (l2 - n

2
)]l 

or m r p (2l + 1)! 

X e-iPF(l + 1 - n, 2l + 2, p). 

B. Identification of R on the Multiplet E 

Lemma 1 in Sec. II can be used once more to 
yield, between states of energy E, 

[ K;, (~4YimlRjJ = if,;jkLk' 

Since 

[K;, K j] = -if,;jkLk, 

it is clear that the vector n = K + i(2mE)iR 
satisfies the properties that (1) it is a vector with 
respect to Land (2) it commutes with K, 

[L;, OJ] = if,;jkOk, 

[K" OJ] = 0, i, j = 1, 2, 3. 

Theorem 1 A: Such a vector operator is rep­
resented by the null operator on an irreducible 
representation of £1 such that ko = O. 

Proof: An irreducible representation R of £1 is, 
of course, a reducible representation for its subgroup 
BO(3) with infinitesimal generators L. As such, R 
is built up as a direct sum of irreducible representa­
tion spaces mLk for BO(3), (2k + 1)-dimensional. 
If ko = 0 (i.e., if L·K = 0), then R contains all 
mLk'S for k = 0, 1 ... " (each mLk once); and if R is 
unitary, then" = co. 

We call f:, v = -k, -k + 1, ... , +k a standard 
basis for mLk• Then Naimark proves thatS (our K 
coincides with his F) 

Kat; = W - l)iCd;-l - [(k + 1)2 - l]tCk+lf;+l 

with 

. (k2 
_ c

2 )t 
Ck = ~ 4e - 1 

(c2 
:::; 0, or -1 :::; c :::; +1 for R unitary). 

Morever, a careful scrutiny of the derivation of 
the above formula reveals that any vector operator 
V (with respect to L), independently of its commuta-

8 Reference 7, p. 98, Eq. (55), and p. 100, Theorem 3. 

tion relations with K or with itself, verifies the 
formula9 

Vat! = (k2 
- v~tCk(V)t!-l 

- vAk(V)t! - [(k + 1)2 - ljiDk+l(V)f!+l 

and analogous formulas for V+, V_. 
Now we want to examine the consequences of 

[Vi' K;] = 0 for all i, j = 1, 2, 3. Since V and K 
are both vectors, it is enough to consider [Va, Ka] = 0 
and [Va, K+J = O. 

Let us apply [Va, KaJ = 0 on f:. A straightforward 
calculation shows that 

Dk+1(V)Ck+2 = Ck+lDk+2(V), 

Ak(V)Ck +1 = Ck+1Ak+l(V), 

W - V
2)Ck [Ck(V) - DiV)] 

= [(k + 1? - l][Ck+l(V) - Dk+l(V)], 

From the above relations, one easily derives 

Thus, we now write 

Vaf! = -avf! + blW -l)iCkf!-l 

- [(k + 1)2 - v2]tCk+d!+1}. 

Then we recognize Va = -aLa + bKa• 

It is now clear that 

[Va, K+] = 0 

implies a = ° = b, i.e., V = 0, as stated. 

Remark: It should be obvious that the proof we 
have just given, also goes through for an irreducible 
representation of 80(4). Indeed, the only thing to 
be changed is the value of Ck which becomes 

Ck = (±)[(n2 
- k2)/(4k2 

- 1)]t. 

This does not affect the proof . 
We can also remark the interesting fact that one 

goes from an irreducible representation of 80(4) 
to one of £1 by a proper analytic continuation of a 
Racah coefficient [n2 == (2;\ + 1)2 becomes c2J. 

Theorem 2A: On the multiplet E, E > 0, R 
-3/(8mE)iK. 

g Reference 7, p. 94, Eq. (36). 
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The relation between the mass and spin-parity Jp, and internal quantum numbers of elementary 
pa~icle~, hints at a nontrivial conn~ction between the external symmetry, namely the Poincare group 
or Its LIe algebra, a.nd a so-called mternal.symmetry. Studying this connection mathematically, we 
fin~ tha~ any extensIon ~f ~resp. by) the Pomcare Lie ~lgebra (l> by (resp. of) a semisimple Lie algebra 
~ IS eqUivalent to t~e tnvial one,. a: ffi ~. Moreover, If we are looking for a Lie algebra containing (l> 

and ~ m an ~c~noffilcaland no~t~v~al way, ~amely what. we call a (nontrivial) unification of (l> and ~, 
we ~n.d restrICtIOns on the pOSSIbilItIes of chOIce of ~, whICh exclude compact internal symmetries. An 
e~liClt treatment ?f 8L(3, C) as internal symmetry, related to the external symmetry by the unifi­
catIOn process of LIe algebras, gi.ves a ~ass formula which is in very good accordance with the experi­
mental data, and can be theoretICally mterpreted by means of a so-called "classification principle". 

1. INTRODUCTION Michell did, the theory of group extensions. Michel 
studied the central extensions of P and pI by an 
Abelian gauge, or by an internal symmetry group, 
from the algebraic point of view. The only non­
negative results he obtains are phase relations of 
the kind (_l)B+L = (_1)2J (obtained by studying 
the central extensions of P by an Abelian gauge). 

As we are looking for a connection of nondiscrete 
type between internal and external formalisms (in 
view, for instance, of a mass formula), and as 
-gl"PIlP. belongs to the (center of the) enveloping 
algebra of the Lie algebra (p of the Poincare group 
P, and also for other reasons, the details of which 
we do not discuss now, it will be worthwhile working, 
at least as a first step, with Lie algebras instead 
of Lie groups-but of course with Lie algebras on 
the real field. 

Assuming that the internal quantum numbers are 
related to a semisimple internal Lie algebra OC 

2 ' several authors obtained, under somewhat re-
strictive assumptions, negative results concerning 
the connection between (p and oc. We also see 
in Sec. 2 that any extension of (p by (semisimple) 
OC, or of OC by (P, gives the direct sum (P E8 oc. Ac­
cording to these results, it would seem that "in­
ternal" and external motions of elementary particles 
are independent. But what we see later in Sec. 3 
(concerning the unification of (P and an internal 
Lie algebra a::) and the following remarks hint very 
strongly at the nonindependance of these motions. 

VARIOUS authors have recently investigated 
the possible connections between external and 

internal symmetries, or the possibility of inter­
preting the isotopic-spin space as reflecting "real 
internal motions" in Minkowski space. From ex­
ternal formalism treatments, one knows that ex­
ternal motions of elementary particles are invariant 
under the universal covering p. of the Poincare 
(inhomogeneous Lorentz) group P (because of half­
integer spin values, we consider PW). On the other 
hand, internal quantum numbers (such as I, la, 
B, S) have been phenomenologically introduced, 
which are conserved by strong interactions, and we 
know from Noether's theorem that (non discrete) 
conservation laws are related to (continuous) sym­
metry groups. Naturally, the question arises: what 
is the possible connection between isospace, or, 
more generally, "internal space" and Minkowski 
space? Are ptl and the so-called internal symmetry 
group independant, or does there exist a certain 
connection between the two? Physically speaking, 
the question is that of finding relations between 
external spin J (or possibly spin-parity Jp) and the 
squared physical mass of a particle -gl"ppp, on 
one hand, and internal quantum numbers on the 
other hand. Mathematically, the problem can be 
formulated as follows: given the Poincare group P 
(or given pI) and an internal symmetry group X, 
which, in general, is taken (for simplicity) as semi­
simple, can we find a group which contains both 
and connects them in a nontrivial way (in a sense l~. Lurcat and 1--. Michel, Nuovo Cimento 21, 574 (1961). 

L. MIChel, Extenstons centrales du groupe de Poincar~ pre-
to be explained later on), and which is physically print, Ecole Poly technique (1964); Nuc!. Phys. 57, 356 (1964). 
interesting with respect to the above problem? 2 W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964)' see also E. C. G. Sudarshan, J. Math. Phys. 6 1329 (1965) 'and 

One can try and treat this problem by using, as references therein. " 

1932 
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If we consider elementary particles in the SU(3) 
classification (for instance), we see that to every 
supermultiplet (set of particles classified in the same 
representation) a certain spin-parity Jp is assigned. 
Physically, this may be justified by the fact that it is 
in accordance with experience (or by semi-empirical 
treatments). But there exists no mathematical reason 
of this fact, since, as we see later, each unification 
of CP and of the Lie algebra {lu(3) is trivial, CP EB {lu(3), 
that is to say that any spin can be attributed to 
any classification-representation, and that for in­
stance there is no group-theoretical reason why there 
should not be an octet of particles of spin-parity i + (I). 

But, from the phenomenological point of view, 
it seems that (for baryons) the sequence (Jp, I, 
la, Y) of quantum numbers defines at most one 
baryon. This shows that there must be a close link 
between internal and external statistics, and that, 
because of this, there must also exist a link between 
"internal" and external motions: the baryon, a 
fermion with respect to external statistics, is prob­
ably also a Hfermion" with respect to the internal 
formalism. Therefore there must also be, in internal 
statitsics, a kind of exclusion principle for baryons. 

The Okubo-Gell-Mann mass formula, or all 
similar formulas obtained in compact groups, is in 
fact purely phenomenological: this formalism does 
not explain the connection between -g'''P"P. (the 
squared relativistic physical mass of a particle) 
and the strong mass splitting. Indeed, if the link 
between (J> and the internal algebra X is the direct 
sum CP EB X (and it is so if the internal group X is 
compact, or even under somewhat less restrictive 
assumptions, as we see in Sec. 3), there is incom­
patibility between the notion of mass in external 
formalism and Gell-Mann-Okubo-like formulas giv­
ing what is supposed to be a strong mass splitting; 
for in that case, g'" p"P. commutes with every ele­
ment of X, and therefore all the particles classified 
in the same representation of X should have the 
same mass: supposedly those representations that 
give a H mass spectrum" give a degenerate spectrum. 
And on the other hand, the method used contains a 
mysterious process of /I symmetry breaking", the 
significance of which is that it works. Actually, all 
that is done in the works of this type consists in con­
sidering the mass (or any function of the mass, if it 
seem3 more convenient) as a tensorial operator, and 
then in applying the Wigner-Eckart theorem. But if, 
for us, the use of this theorem is clear and well justi­
fied in problems concerning angular and magnetic 
momenta of particles, the consideration of an 
operator like the mass operator as a Wigner-Eckart 

operator, and moreover the precise specification of 
its tensorial type, is an (td hoc hypothesis without 
any theoretical justification. 

We consider the (squared) mass operator as 
-g"'p"p,. Our problem is therefore first to find 
a Lie algebra 'U. containing both CP and X in an 
economical and nontrivial way (in a sense to be 
explained), so that g"'p"P. will not be an invariant 
of 'U.-and this excludes the trivial connection, 
CP EB X. In order to get an invariant, we have to 
add to -g"'p"P. a Hcorrection", which, in some 
"good" cases, can be expressed as a nice function 
of internal quantum numbers (such as I, la, V). 
This invariant is constant in every (irreducible) 
representation of 'U, and the constant is one of those 
that characterizes the representations of 'U, and 
therefore also related to representations of X (e.g., 
by induced representation technique). The correc­
tion (in nice cases) gives the strong mass splitting 
in the supermultiplet [and the constant may then 
be considered as the squared mass of a (sometimes 
hypothetic) singlet, related to the supermultiplet]. 
We can also look directly for the spectrum of the 
operator representing -g'''PPP. in irreducible rep­
resentations of 'U (but then, the expression of the 
mass-splitting in terms of internal quantum num­
bers is less clear). Within this frame, we have there­
fore no mystery of broken symmetry: the concept 
of mass is a geometrical one, given by the connection 
between external and internal formalisms. 

However, this interpretation of mass raises some 
difficulties-but mass must be somehow interpreted 
in some external formalism, and the most natural 
interpretation is the usual relativistic one. In the 
finite-dimensional representations of CP (and also 
of the "unification" 'U), the p/s are nilpotent 
(they are even such that p! = 0 in 4-dimensional 
representations of CP); therefore we cannot hope to 
get a real mass spectrum (by taking the eigen­
values) except in some infinite-dimensional repre­
sentations (skew-Hermitian Lie algebra representa­
tions on Hilbert space, for instance) of some unifi­
cations 'U (of (J> and of some well-chosen internal 
Lie algebras X), because we need (real) eigenvalues 
not only for the invariant, but also for the "cor­
rection term". Nevertheless, the mass formula, 
which gives the strong and electromagnetic mass 
splitting obtained in the case of SL(3, C), is in very 
good accordance with the experimental data if we 
give it a formal meaning without considering the 
justification of the passage to the eigenvalues. And 
in any case, if we do not classify strong particles in 
suitably chosen infinite-dimensional representations, 
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the problem arises of connecting the two facts that 
(1) we classify particles .according to some finite­
dimensional representations of the internal group, 
and that (2) we can hope to give an exact meaning 
to the mass formula only in some infinite-dimen­
sional representations. We therefore propose the 
introduction of a classification principle: we classify 
particles by means of finite-dimensional representa­
tions of the strong group (considering a vector 
space of fields on which the representation trans­
formations operate), and for each one we give 
a formal sense to the mass formula by relations 
between the masses of the particles classified in that 
representation. This might be related with some 
mathematical connection between finite-dimensional 
representations of the internal symmetry and 
infinite-dimensional representations of the unifi­
cation (acting, e.g., on states). 

It is then possible that the partial success (from 
the phenomenological point of view) of unitary 
symmetries is due to the fact that the results we 
deduce from them are a good approximation of 
what would be obtained from infinite-dimensional 
unitary representations of the "good" group (non­
compact), and that they reflect a symmetry of 
states rather than of a Hamiltonian. This is, in a 
way, analogous to nonrelativistic atomic spec­
troscopy, where the state of orbital momentum L 
is invariant under SU(2(2L + 1», whereas the 
Hamiltonian is only SO(3)-invariant [SO (3) has 
only a geometrical meaning]. In "elementary­
particles-spectroscopy", in which states of higher 
and higher energy are measured, one can fit experi­
mental results by using (phenomenologically) uni­
tary symmetries of higher and higher dimension­
whereas, according to the results to be developed 
in Sec. 3 concerning the unification process of Lie 
algebras, and to geometrical considerations de­
veloped elsewhere [cf. Refs. 3 and 4; the "internal 
P, C, T operations" can be defined in internal sym­
metries containing the Lorentz group in a way 
similar to that developed in Ref. 3], it is most 
probable that the "Hamiltonian" symmetry of 
strong interactions is "space-time-like". 

We conclude this introduction by two remarks. 
The first one is to insist on the fact that the internal 
quantum numbers, with which we want to get 

8 M. Flato, G. Rideau, and J. P. Vigier, Nucl. Phys. 61, 
250 (1965); see also M. Flato, Symetries de type Lorentzien et 
interactions fortes (Gauthier-Villars, Paris, 1966), Chaps. I and 
III, Sec. 3. 

4 D. Bohm, M. Flato, F. Halbwachs, P. HiJlion, and 
J. P. Vigier, Nuovo Cimento 36, 672 (1965); M. Flato and 
D. Sternheimer, Compt. Rend. 260, 3532 (1965). 

a mass-splitting expression, have been phenomeno­
logically introduced, by generalizing what was 
known. For instance, the isospin 1 has been intro­
duced in a way analogous to ordinary spin, on the 
basis of Heisenberg's idea that the proton p and 
the neutron n are two states of the same particle 
(the nucleon N), their masses being very close; the 
hypercharge Y has been in fact defined by the 
Gell-Mann-Nishijima formula, which generalizes 
the charge formula for nucleons. And although it 
has been claimed that the only (nondiscrete) 
exactly conserved internal quantities are those 
already introduced (I and la, B, S), this does not 
necessarily imply that the mass is a function of 
those quantities alone. It may well be that, for 
instance, other quantities, not conserved in the 
nowadays-observed strong interactions (i.e., they 
are not "good quantum numbers"), occur in a mass 
formula. Maybe there exist other quantum num­
bers that we have not noticed yet, because they are 
not conserved in strong interactions (and until 
now we studied the quantum numbers mainly from 
the point of view of conservation laws), and with 
which the classification or the mass formula, for 
instance, can be written in a very simple way. It 
might also turn out that the mass should be taken 
as an independant feature characterizing the parti­
cles. (As to the mass, we take these possibilities 
into account implicitly when we look directly for the 
spectrum of the operator representing -gP·pPP.). 

The second remark is not less basic. Until now, 
we implicitly assumed that our internal Lie algebra 
was a finite-dimensional one-and, as a matter of 
fact, very little is lmown on infinite-dimensional 
Lie algebras. But let us look more closely at Yang 
and Mills's argument (developed by Sakurai5

) as 
compared to the usual theory. In the latter, we 
know that, e.g., the conservation of baryonic num­
ber is equivalent to the invariance under a phase 
transformation of the kind 

of the complex field 1/1« ({3 is a real parameter; b the 
baryonic charge); the same applies to isospin and 
hypercharge, e.g.; from that, one gets the conserva­
tion laws by direct use of Noether's theorem, and 
those phase transformations can be mathematically 
expressed by the fact that the Lie algebra of the 
corresponding Lie group is finite-dimensional. On 
the other hand, if we examine Yang and Mills's 

6 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954); 
J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960). 
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argument closely, the local nature of field theory 
implies here that we have a gauge transformation 

1/;" - exp (ib(3(x»1/;" 
of the first kind, where (3(x) is a certain real func­
tion of the XI"S (i.e., on Minkowski space). We 
therefore get not only the existence of a vectorial 
field undergoing a gauge transformation of the 
second kind, but also that the Lie algebra corre­
sponding to the internal group may be infinite­
dimensional. Although we agree with a great part 
of Sakurai's philosophy (especially on his criticism 
of broken symmetries), we use other mathematical 
tools and introduce some new physical principles 
(connection between internal and external sym­
metries, etc ... ), for his study can no longer account 
for the many experimental data already known. 
But, in view of Yang and Mills's argument, the 
internal finite-dimensional Lie algebra we consider 
have to be in a certain sense an "approximation" 
(more for what concerns its structure than its 
dimension) of the infinite-dimensional Lie algebra 
implied by their argument. Our work deals mainly 
with the choice and the study of a suitable internal 
Lie algebra (of finite dimension). 

2. EXTENSION THEORY AND THE POINcARt 
LIE ALGEBRA 

We choose our internal Lie algebra according to 
several criteria; we already studied some geometrical 
ones,3.4 and our object in Sees. 2 and 3 is to de­
velop "algebraic" criterions, namely the limitations 
on the possibilities of choice of an internal Lie 
algebra OC imposed by the necessary existence of 
a suitable connection between <P and oc. The first 
idea in this way is to study the extensions of <P by 
OC, or of OC by <P. We recall the following: 

Definition6
: Let It and 0 be two Lie algebras 

(L.a.) on the same commutative field K. An extension 
of 0 by It is an exact sequence: 

0- It ~ g -4 b - 0, (2.1) 
where g is a L.a. on K, p, a homomorphism of g on 
h, A an isomorphism of It onto the kernel of p, 

(ker p, = Im A ~ a). Two extensions a ~ g -4 0 
and It ~ g' ~ b are said to be equivalent if there 
exists a (necessarily bijective) homomorphism f 
of g into g' such that f 0 A = A' and p,' 0 f = p.. An 
extension is said to be inessential or a semidirect 
product, and we write g = 0 . n if there exists in 
g a supplementary subspace of ker p. which is 

6 N. Bourbaki, Algebres de Lie (Hermann & Cie, Paris, 
1960); C. Chevalley, Theorie des groupes de Lie (Hermann & 
Cie, Paris, 1951, 1955), Vola. II and III. 

a subalgebraj if there is such a subspace which is 
an ideal, the extension is called trivial; it is called 
central if ker p. is contained in the center of g. 

A semidirect product can also be defined6 by the 
existence of an isomorphism II of 0 into g such that 
p. 0 II is the identity on 0; it is equivalent to a semi­
direct product constructed in a canonical way with 
an homomorphism <p of 0 into der (n), the deriva­
tion algebra of It (the L.a. of the K-linear operations 
D of It such that 

D[at, azJ = [Dat. a2] + [alJ Da2] (2.2) 

"::/ aI, a2 E It), by defining the commutators on 
the product vector space It )( 0 as 

[(a, b), (ai, b')] 

= ([a, a'l + <p(b)·a' - <p(b')·a,[b, b'D. (2.3) 

Here, <pCb) is the derivation of It, image of b by <po 
Let us recall also the following results. 

Proposition 1: Any extension by a semisimple 
Lie algebra n is equivalent to the trivial one (and 
then g ~ It EB 0, the direct sum). Any extension 
of a semisimple L.a. 0 is inessential. 

The first part is a consequence of a result of 
Bourbaki6 Corollary 1 to Proposition 1, Chap. 6, 
No.1, and the second is Corollary 3 to Theorem 5 
(Chap. 6, No.6), which is the Levi-Malcev theorem, 
(see Ref. 6, especially work by Chevalley), ac­
cording to which any L.a. is semidirect product 
of a Levi (maximal semisimple) subalgebra by the 
radical (maximal solvable ideal). Moreover, it is 
easily seen that any extension by a complete Lie 
algebra (i.e., where all derivations are inner, and 
with {OJ center) is also trivial. 

Therefore any extension of 6> by OC semisimple (or 
complete) is equivalent to the trivial one (<P E9 OC). 
In order to study the inessential extensions of OC 
by <P (the only one for any OC, as can be seen), we 
must first study the structure of der (<p). 

Structure of der «(P) 

One knows that <P is a semidirect product of the 
Lorentz L.a . .£ by a four-dimensional commutative 
ideal <Po (corresponding to the translations), the 
defining homomorphism <p :.£ - der (<po) ~ gl(4, R) 
being the liN aimark representation" DN of .£, corre­
sponding to the realization of .£ by the basic repre­
sentation of 130(3, 1) in 4 dimensions (cf. Appendix). 
We denote by small German letters the Lie algebras, 
except for those most used in this paper; see Ref. 7 

7 S. Helgason, Differential Geometry and Symmetric Spaces 
(Academic Press Inc., New York, 1962). 
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for the notations ~o(p, q), ~u(p, q), etc. Let P E (P: it 
can be written P = 1 + Po, with 1 E .,c and Po E (Po. 
Let PI = II + POI, P2 = l2 + P02 be two elements 
of (P. Then we have 

[PI, P2] = [lI' 12] + ([11, P02] + [POI' 12])' (2.4) 

If P = 1 + Po, we can write 1 = L(p) and Po = T(p) 
(L and T are linear operations). Let D E der «(p), 
P E (P, and write 

Dp = dp + Ap + ap + AP, (2.5) 

where dp = L(Dl) , AP = L(Dpo), ap T(Dl) , 
and Ap = T(Dpo) if p = l + po. As one knows 
(Bourbaki, Ref. 6, Chap. 5, No.5, Proposition 6) 
that any derivation of a Lie algebra sends its radical 
into itself (more precisely, into its greatest nilpotent 
ideal-but, as far as (P is concerned, these two 
coincide), A = 0; one can also derive this last 
result directly by an elementary computation. If 
p, p' E (P, one sees immediately that 

d[p, p'] = L(D[l, 1']) = [1, dp'] + [dp, 1'], 

a[p, p'] = T(D[l, 1']) 

= lap, 1'] + [1, ap'] = lap, p'] + [p, ap'], (2.6) 

A[p, p'] = T(D[l, p~] + D[po, 1']) 

= [1, Ap'] + [Ap, 1'] + [dp, p~] + [Po, dp']. 

Therefore a E der «(p), and consequently d + 
A E der «(p). The restriction to .,c of the derivation 
d + A of (P is also a derivation of .,c, and it is exactly 
d. .,c being semisimple, any derivation is inner 
(Bourbaki, Ref. 6, Chap. 6, No.2, Corollary 3 of 
Proposition 1), i.e., there exists an element 0 E .,c 
such that d = ad.ll 0 (ad.ll standing for the adjoint 
mapping of .,c). But ad 0 = ad(\' 0 is an (inner) 
derivation of (P, and it coincides with d on .,c. 
Therefore we can put 

A' = d + A - ad 0, (2.7) 

and A' E der «(p), A' : .,c ~ 0, (Po ~ (Po (exactly 
as A did). 

Thus we have decomposed D in a sum of 3 de­
rivations [with OeD) E .,c]: 

D = a(D) + A'(D) + ad O(D) , (2.8) 

where we wrote explicitly the dependence of each 
term on D. Let us now take a basis (ak; bk) of .,c 
and (Pk, P.) of (Po(k = 1, 2, 3), the commutators 
being the usual one (cf. Appendix). We have 
[a", P.] = 0 and therefore [ak, A'p.] = 0, V k, 
whence A'p. = ap4 with a = a(D) E R. But we 
have also [b k , Pk] = P., and A'.,c = 0; therefore 

A'Pk = apk with the same a. Now let 1r denote the 
derivation 

p = 1 + Po ~po (2.9) 

(the projection on the radical-always uniquely 
determined-(Po); one checks easily that this is 
a derivation of (P. We have then A'(D) = a(D)7r, 
for some a(D) E R. 

Let us now write 

a'ak = :Z~a~pp, a·bi = :ZJ3:pp (2.10) 

(fJ = 1, 2, 3, 4; k = 1, 2, 3) and use the commuta­
tion relations of (P 

[ai, bd = 0, [a" b;] = bk , [a" a;] = ak (2.11) 

(ijk cyclic); we get straightforward a(D) = ad Po(D), 
where 

Po(D) = a:PI + a!P2 + a~P3 - tJ~P., 

[We could have given a more abstract proof: f = 
d + a is a R-linear mapping of .,c in the vector 
space (P of the representation q : 1 ~ ad(\' 1 of .,c; 
therefore, in view of a lemma due to Whitehead 
(cf. Bourbaki, Ref. 6, Chap. 6, No.2, Remark 2), 
and because 

f([l, 1']) = D([l, 1']) = [1, f(l')] - [l', f(l)], 

there exists -p(D) = 0 + Po in (P such that 

Dl = -q(l)p = [p, 1]; 

thus D = ad p + A', where A' = A - (ad p) I Cl'o 
(the last symbol means ad p restricted to (Po) is 
also a derivation of (P, which is zero on .,c [cf. also 
G. P. Hochschild, Am. J. Math. 64, 677 (1942)]; but 
q I Cl'o is the (complex) irreducible representation 
DN of .,c, and 

[A', ad l] = ad (A'l) = 0; 

therefore A' = a7r (with a E R since A' is a R­
linear mapping of (P).] 

We thus obtained 

D = ad (O(D) + Po(D» + a(D)1r, 

that is, 

Dp = [OeD) + Po(D) , p] + a(D)po 

(ifp = Po + l). (2.12) 

Moreover, it is clear that, if DI, D2 E der «(p), 
then a([DI' D2]) = 0, and one can check easily 
that: 

O([DI' D2D = [O(DI), O(D2)], 

and because [D, ad p] = ad (Dp) : Po([D1, D2]) 

D1Po(D2) - D2Po(D1), which is equivalent to the 
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fact that the mapping D -+ ad po(D) is a deriva­
tion of der «(5» [Le., E der (der «(5») = der «(5»]. 
It is not difficult now to see the structure of the 
L.a. der «(5». Let us denote by &0 the (5-dimensional) 
solvable L.a. generated by (5)0 and a monodimen­
sional L.a. u(l), a generator of which we denote 
by 1r', with the communtation law [1r', Pol = Po, 
Po E (5)0' &0 is a semidirect product (u(l)· (5)0), a 
defining homomorphism u(l) -+ der «(5>0) = gl(4, R) 
of which is given by 

1r' -+ 14 = (011°1)' 
One checks easily that der (CPo) is composed of 
5 X 5 matrices (h aft) with h5fJ = 0, the other being 
any real number. If DN denotes the representation 
DN EB 0 (0 is the trivial one-dimensional represen­
tation) of £, we have 

der «(5» :::::: £·(5)0, (2.13) 

a defining homomorphism of this semidirect product 
being DN • Also, 

der «(5» :::::: u(l) .(5), (2.14) 

a defining homomorphism here being u(l) -+ R1r C 
der «(5», and 

der (<p) :::::: (.c EB u(I» . <Po, (2.15) 

a defining homomorphism being .c -+ DN(.c), 1r' -+ 1, 
[1r' is the generator of the u(l)]. Moreover, one 
gets a five-dimensional representation of (5) [and of 
der «(5» J with 

.c -+ (DN EB O)(.c), P/Io -+ (ad PI') I (Po = E/Io5 

(in the canonical basis of the g1 algebras), and for 
der «(5», 1r -+ 14 EB 0 = (ad 1r) ! &0 (for instance). 

Let us now pass to the following. 

Study of Inessential Extensions by (5) 

o -+ (5) -+ <R -+ oc -+ O. 

They are the only extensions if oc is semisimple­
and also the only one, since (5) has {O I center and 
der «(5» = u(l). <P, in any case. We must therefore 
seek all possible homomorphisms cp : oc -+ der «(5», 
and see what semi direct products they define. We 
have, "if x E X, 

cp(x) = ad p(cpCx» + a (cp(x»1r , (2.16) 

from the structure of der «(5». If [OC, OC] = OC (X is 
equal to its derived algebra), any element of OC is 
a linear combination of commutators of elements 
of X. But cp is a homomorphism, and the a's of 
commutators of derivations are O. Therefore cp( X) C 
ad <Pi as the center of <P is to}, 1/1 = ad-1 

0 cp is a 

homomorphism OC -+ <P, and therefore cp = 0 (i.e., 
the extension is necessarily trivial) if OC, supposed 
semisimple, has no direct factor isomorphic to .c, 
or to ~o(3) or ~1(2, R). But the triviality of the 
extensions holds in a more general context, a8 a 
consequence of the following result. 

Proposition 2. Any inessential extension (2.1) de­
fined by a homomorphism cp = ad 0 ,p, where ,p is a 
homomorphism 0 -+ a, is equivalent to the trivial 
extension a EB o. 

From the definition of commutators on the prod­
uct-vector-space n X b, we have 

[(a, b), (a', b')] = ([a + ,pCb), a' + ,pCb')] 

- ,p([b, b'D, [b, b'D, (2.17) 

for ,p is a homomorphism. Now it is clear that the 
mapping f : g -+ nEB· 0 defined by 

g (a, b) -4 (a + 1/I(b), b) E It EB 0 (2.18) 

is a homomorphism (the commutators of n EB b 
being the usual one of a direct sum). Further, the 
diagram 

A?, g ",/10 
0-+ a", L, ;>10 -+ 0, 

A nEBo/ /10 
(2.19) 

where A : a -+ (a, 0) and J,£ : (a, b) -+ b, is commuta­
tive, i.e., f 0 A = A, J,£ 0 f = J,£. Therefore6 the two 
extensions are equivalent. Q.E.D. 

Any element Ca, b) E g can be written 

(a, b) = (a + ,p(b) , 0) + (-,pCb), b), 

and it is easy to check that this expresses the de­
composition of g into the direct sum of two or­
thogonal (Le., with zero commutator) ideals A(a) 
and v'(b) = (-1/1(0), b); the setv(o) = {(O, b) I b E o} 
was only a supplementary sub algebra of A(n) in g; 
thus, with nonzero ,p (if there exists such a ,p), we 
get what can be called an "oblique direct sum", 
because then A(n) is orthogonal to v'(o) but not to 
v(o), and this fact may hide the triviality of the 
extension. 

Corollary. If n is a L.a. with to} center, any 
inessential extension of a L.a. 0 by a, corresponding 
to a homomorphism cp : 0 -+ der (n), the image if; 
of which in der (a)jad It (ad n is the L.a. of inner 
derivations of a) is {O}, is equivalent to the trivial 
extension. 

As a conclusion of this study (for which a direct 
approach is just as short as . the transcription of 
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Hochschild's general cohomological theory of exten­
sions), we may write down the following: 

Theorem. Any extension of <p by X 8emisimple 
or complete, or of X 8emisimple by <P, i8 equivalent 
to the trivial one. Any (inessential) extension of a 
L.a. X such that [X, xl = X by <p is equivalent to 
the trivial extension. 

For instance, any (inessential) extension of <p' ~ (P 

by <p is equivalent to the trivial one. The result 
obtained is somewhat comforting, in a sense, be­
cause of the fundamental di88ymmetry of the notion 
of (nontrivial) extension; nontrivial extensions of 
b by a, or of a by fI, are very different. And if we 
could get nontrivial results in extending <P by an 
internal L.a. X, or X by <P, there would remain to 
understand why Nature prefers to extend (p by X, 
rather than X by <P, or the reverse. 

We can now get some information on group ex­
tensions. More precisely: 

Proposition 3. Any topological extension of the 
Poincare group P, or of its universal covering pI, 
by an analytic group X whose Lie algebra X has 
but inner derivations, is a central extension (and 
therefore a trivial one, in the case of pfl). 

From the condition on X, Aut(X)/Int(X), the 
factor group of all automorphisms of X by the 
adjoint group Int(x), which is isomorphic to 
Aut(X')/Int(X) (where X' is the universal covering 
of X, and Aut(X') the group of its analytic auto­
morphisms) is totally disconnected, and therefore 
cannot contain a non-trivial homomorphic image of 
pI or P; hence any (topological) extension is central. 
The last part follows from the work of Michel. I 

It seems that a similar result is true in the case 
of extensions of X by P (with [X, Xl = X in order 
to get the triviality of the extensions); it depends 
mainly on the topological nature of the adjoint 
group lnt( (P) = Ad P-whether it is a closed sub­
group of GL(lO, R) or not. 

Remarks on Field Extension 

Let a be a L.a. on a (commutative) field K. The 
following commutation law, on the product vector 
space a x a, defines a Lie algebra a': 

[(Xl' YI). (X2. Y2)] 

= ([Xl. YI] + [xz• Y2]. [xt. Y2] + [X2. YI]); (2.20) 

a' can be obtained from a by extension to K[kJ of 
the scalars' ring, k being an algebraic element of 
order 2 on K (i.e., k Et: K, e = 1), and then restric­
tion to K. It is a direct sum of two orthogonal 

ideals (HI ± k)a), both isomorphic to a. If now 
K = R, and if we denote by b 

b = aCe) IR = a@C, (2.21) 

the "twin-form" of a (obtained by extension to C, 
the complex field, of the scalars, and then restric­
tion to R, the real field), we have bee) ~ a'(e) 
(cf. Bourbaki, Ref. 6, Chap. 1, Exercise 4). 

Therefore, as £ ~ aCe) I R, where a is any simple 
L.a. of order 3 [i.e., {ll(2, R), or {In(3) = {lu(2)], 
£(e) ~ aCe) E8 aCe) and thus 

£(e) I R = £ @ C ~ £ E8 £. 

The same thing is not true for <P, which, on the con­
trary of £, does not have a complex structure (e.g., 
see Ref. 7). In <P@C, gI'Vp",P. is no more an invariant; 
we must indeed consider g"'V(pl' + ipp)(p, + ip.), 
where ipp = q", stands for the element PI' @ i of 
<P @ C, and we get the invariants gf.'·Pl'q. and 
gpV(p"pv - q",q.). We have therefore here a "cor­
rection" to g"·P .. P., and a relation of the kind 
m2 =C+m'2

, where C is an invariant, m2 = -g'''P"P. 
and m,2 = -g""'q~q •. But in such an hypothesis, it 
is not quite clear which is the internal Lie algebra, 
and for this reason also one does not see how to 
express the "correction" in functions of internal 
quantum numbers. 

We have thus seen that the extension theory of 
Lie algebras failed to give us the desired connec­
tion between the external algebra (p and an internal 
semisimple algebra X. For what concerns group 
extensions, their possible nontriviality (in cases 
when the Lie algebras extensions are trivial) is 
due to the relative positions of a discrete subgroup, 
as it is in the case of U(2) = U(1). SU(2) [semidirect 
product, isomorphic to (U(1) X SU(2»/Z2], from 
where one can deduce the phase relation (_1)2I = 
( -1) Y; thus, in such a case, the consideration of 
group extensions gives us only phase relations­
similar to those obtained by Lurc;at and MicheP­
but one cannot in such a way get "nondiscrete" 
relations, such as a mass formula. The theory of 
field extension also does not seem to give any 
interesting result. We are then naturally led to the 
considerations of Sec. 3. 

3. UNIFICATION OF LIE ALGEBRAS 

The most natural solution-and which, contrary 
to the extension theory, is symmetric-is to find 
a L.a. containing both <P and an internal L.a. X as 
sub algebras. Formulated in that way, this problem, 
studied by various authors (cf., for instance, Gar-
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diner,8) is highly indeterminate, and cannot give 
any criterion for OC, as it is always possible to 
imbed <P and OC in another algebra of sufficiently 
high order [and even to do it in such a way that <P 
and OC do not commute]. In order to get criterions 
for the choice of OC, minimality conditions have to 
be imposed on the Lie algebra containing <P and 
OC. And besides, if the algebra containing <P and OC 
is too large, the physical meaning of the super­
fluous generators (those of a supplementary sub­
space of the subspaces <P and OC) will not be clear. 

Though one of us (M.F.) announced as early as 
May 1964 (in seminars, in Marseilles and Torino) 
the main features of the results of this part, the 
first results published in this direction were nega­
tive.2 In such attempts, it was supposed that we 
are given a Lie algebra, the underlying vector space 
of which is the direct sum of those of <P (with 
generators M~. and PI') and of a semisimple L.a. OC 
(with generators X a), and such that [£, OC] = 0, 
i.e., [M"., X a] = 0 "I JI., II, a, or with apparently 
weaker (but in fact equivalent) hypotheses (such as 
[M ... , X,,] = 0, "la, for some 111 ... ). A calculation 
on structure constants, eventually simplified by 
use of a Weyl basis (use which is somewhat delicate 
when dealing with real L.a., with which we must 
deal if we want, e.g., to look at topological con­
siderations) gives [<p, ~] = O. We give here a simple 
proof of this result, in a somewhat more general 
context; this lemma will be useful in what follows. 

Lemma 1. Let ~ be a semisimple Lie algebra 
(on R, e.g., or on any commutative field with charac­
teristic zero) of finite dimension, and suppose there 
exist isomorphisms ip and if of (respectively) <P and ~ 
into a Lie algebra ffi. such that ffi.=ip(<P)+if(OC), (not 
necessarily direct) sum of vector spaces, and that 
we have [ip(£), ~(~)] = O. Then ip( <P) (\ if(~) = {O l 
and ffi. ~ <P EB ~. 

Here, £ stands for a Levi subalgebra of <P (iso­
morphic to the Lorentz L.a.), and it is always 
possible to select a basis (M "., P .. ) of <P such that 
M ... is a basis of £, and the commutators are the 
usual ones. Any element of ip( <P) (\ ~(~) commutes 
with the whole of ip(£) by hypothesis; but, in <P, 
only IO} commutes with the whole of £; therefore 
ip(<P) (\ ~(~) = 101 and the sum of vectors spaces 
is direct. Now, given any Po E <Po, there exist 
(not uniquely determined, but it does not matter) 
l E £ and p~ <Po such that po = [l, p~] (indeed, 
we have p .. = [M ... , -g .. Ppp]); whence 

8 C. W. Gardiner, Phys. Rev. Letters 11, 3 (1964). 

[,,(x), ip(Po)] = [,,(x), ip([l, p~])J 

= [ip(l), [,,(x), ip(P~)]] (3.1) 

because ip is a homomorphism, applying the Jacobi 
identity and the hypothesis. From (3.1) we get, 
again by the hypothesis, (~(x), ip(Po)] E ip(<p), for all 
x E ~,Po E <Po, and thus [if(~), ip(<P)] C ip(<p) : ip(<P) 
is therefore an ideal of ffi., which is then an extension 
of ~ by <P, and, by the results of Sec. 2, isomorphic 
to the direct sum <P EB ~. This last result 
can also be proved directly, using the Levi-Malcev 
theorem, which shows that ffi. has as Levi sub­
algebra ip(£) EB ~(~), and the fact that gI(4, R) = 
~1(4, R) EB u(l) contains no sub algebra isomorphic 
to £ EB OCt, "I ~t simple L.a., which shows that 
every homomorphism fromip(£) EB ~(~) to der (<Po), 
coinciding with the representation DN on ip(£) 
[in order to get ip(<p) by the semidirect product], 
is trivial on ~(~). We have, moreover, that ffi. = 
ip(<P) EB tf(~). 

Remark. Let us now suppose that we have ffi. = 
ip(<p) + ~(~), direct sum of vector spaces, and that 
~(~) commutes with one regular element of ip(£), 
say ip(lt). Then, by a similar argument, ffi. ~ <P EB ~. 
Indeed, there exist elements 12 , la, If, 1;, l~ that, 
together with II, make up a basis of £, such that 

[l" I;] = ±l,,, [l;, zn = ±I~" 
[l~, In = ±lk' [l" In = 0 (ijk cyclic), 

As [tf(x), ip(lt)] = 0 "I x E ~, we get, by the Jacobi 
identity, [,,(x), ip(lk)] E ~(<p) (k = 2, 3) and 
[~(x), ip(IOl ip(<p) (k = 2, 3, 1), and therefore 

[ifex),ip(po)] Eip(<p) Vpo E <Po (as Po = [l,pm; 

hence ip( <P) is an ideal in ffi., which is therefore an 
extension of OC by <P, and thus isomorphic to <P EB ~ 
(~ being semisimple). In a similar way, if ffi. = 
ip(<P) + if(~) without intersection, and if a regular 
(or a semisimple) element Q of tf;(~) commutes 
with all ip(<P), we find, by use of a Weyl basis, that 
,,(~)(e) is (See Ref. 2) an ideal in ffi.(e), and thus 
ffi.(e~ is isomorphic to <p(e) EB OC(e); therefrom, 
passIng to real forms (and because £ is already a 
twin form), ffi. ~ <P EB ~. However, it must be 
emphasized that the assumption Q semisimple does 
restrict generality (as long as ~ is noncompact)­
and this, regardless of the interpretation of the 
commutation or noncommutation of Q with ipC <P). 
The negative results of Ref. 2 are thus seen to be 
special cases of our study in Sec. 2. We see later 
that positive results can be obtained; but first let us 
~et our problem more precisely, and, for this purpose, 
Introduce the following definition. 
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Definition 1. Let aI, ... , an be n finite-dimen­
sional Lie algebras, over the same commutative 
field K. A Lie algebra u over K is called a unifying 
algebra of all ... , a.. if there exist isomorphisms 
Ai of ak into u(k = 1, ... , n) such that 

not necessarily the direct sum of vector spaces. 
We write u = U(al , ••• , an). 

This definition calls for a few remarks. First, we 
do not suppose that all possible pairs of algebras 
Ak(ak) have null-intersection. We thus say that we 
have a unification with (specifying if necessary 
which algebras have such intersection) or with­
out intersection. In the case of two algebras with to} 
intersection, we get as a special case the notion of 
inessential extension (in that case, one of the algebras 
is an ideal in the unification). In any case, we have 
always a (trivial) unification with to} intersection, 
namely the direct sum al EEl ••• EEl an. It may 
happen that this is the only unification (with or 
without intersection). For instance, it may be seen, 
by trying to define the missing structure constants, 
that there is no U(00(3), 00(3» with one-dimen­
sional intersection, and from this (using the Levi­
Malcev theorem, and showing that the Lie algebra 
of the inhomogeneous rotation group in 3 dimen­
sions is not a unification) that the only U(00(3), 
00(3», apart of 00(3) itself, is the trivial one, 
{l0(3) EEl 00(3). Moreover, if we try to define, a 
priori, the structure constants of a unification, 
we see that the Jacobi identity implies (in general, 
quadratic) conditions, the number of which is 
much greater (in general) than the number of the 
missing constants. Therefore the existence of a non­
trivial unification is a somewhat rare, and there­
fore an interesting, phenomenon. 

We see also that the notion of" minimality" is here 
realized: we have dim u ~ dim al + ... + dim an 
(being equal only in case of to} intersection). If 
two algebras (for instance) are imbedded in a 
higher-dimensional L.a., the latter being not a 
unification of the two former L.a., it can always 
be considered as a unification of the two former 
and of a suitable number of one-dimensional L.a. 
u(l) (this notation being considered as having, a 
priori, no topological implications on the com­
pactness or noncompactness of the corresponding 
one-parameter subgroup of a Lie group correspond­
ing to the unification). If we limit that number a 
priori, we can make more precise the wanted degree 
of minimality. 

It is quite banal to state that any L.a. can be 
considered as a unification of itself and of any sub­
algebra. Moreover, if two L.a. have a common 
direct factor, their direct sum, divided by this 
direct factor, is a (quite trivial) unification, with 
intersection on this common direct factor (that is, 
so to speak, "put in common"). We are therefore 
led to the following: 

Definition 2. (i) A unification u = U(a, b) is 
said to be trivial if, while a ~ al EEl a', b ~ al EEl b', 
one has u = al EEl a' EEl b'. In the same way, a 
unification of n L.a. is said to be trivial if it is iso­
morphic to the direct sum, possibly up to a common 
(to two or more L.a.) direct factor. 

(ii) A unification u = U(a, b) is said to be banal 
if b C a and u ~ a (or if a C band u ~ b). Ac­
cordingly, a unification of n L.a. is said to be banal 
if one L.a. contains all the others (possibly up to 
a direct factor, or to a trivial unification). 

We introduced the notion of banal unification 
and distinguished it from that of a trivial one for 
the following reason: In a trivial unification, any 
invariant of one L.a. is an invariant of the unifica­
tion, while that is not (in general) the case for a 
banal unification. We see for instance that <P C 
{lu(2, 2), but gP'pPP• is not an invariant of {lu(2, 2) 
(banal unification of <P and of itself). 

Before we pass to the general study, we first 
treat two particular cases (interesting in them­
selves), one with positive and one with negative 
results. 

Example 1. A nontrivial and nonbanal unifica­
tion U(<P, £, u(l) EEl u(l» with a 2-dimensional 
intersection. 

[We construct later a unification U(<p, £) with 
such an intersection]. Let us consider the semi­
direct product CR = £. CRo, where CRo is a lO-di­
mensional commutative ideal, and a defining ho­
momorphism cp : £ ~ gl(10, R) = der (CRo) cp = 

DN EEl ad (ad standing for the adjoint 6-dimen­
sional representation of £). Denote by (qk, qD 
(k = 1, 2, 3) a basis of the space of the representa­
tion ad; (Pk, P4) being a basis of <Po C CRo, the 
space of DN , (Pk, P4, qk, qO is a basis of CRo, and 
CR ~ (£. (po) = <P. In this basis, the commutation 
relations of CR are those of <P, in addition, with CRo 
commutative and 

[b" qi] = Emq!., [b" qn = -Eijkqk. (3.3) 

£ is a Levi sub algebra of CR, any other being of the 
form (I + ad (Po + qo) )£, where I is the identity, 
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po E <Po, and qo is a linear combination of the qk'S 
and the qrs. We are looking for a subalgebra £' 
of <R isomorphic to £, with £' ('\ <P minimal. For 
this problem, it is enough to look for a £' of the 
form (1 + ad qo)£. If qo = Lk (akqk + a~qO, we 
get £' with a (canonical) basis (a~, b~) where 

a~ = a; + alqk - Olkql + a~q~ - a~q: 

and 

b~ = b; - a~qk + a~ql + alq~ - akq~ 

(i, j, k cyclic here). 

Now, in general, we have £ ('\ £' = {u(l) ffi u(l)}, as 
the general element Lk (Aka", + !J.kbk) E £ belongs 
also to £' if and only if 6 linear homogeneous equa­
tions (the expression of which is evident from the 
a~'s and the b~'s) in the Ars and !J.~'s are verified, 
a two-parameter solution of which is readily seen; 
moreover, wesee that if (Ak' !J.k) is a solution, (!J.k, - Ak) 
is also a solution. Therefore the intersection is a 
(maximal) commutative 2-dimensional sub algebra of 
£ (or the whole of £ if qo = 0), for 

[L (Akak + !J.kbk), L (!J.kak - Akbk)] = O. 
k k 

In the nondegenerate case, we have 

<R = <P + £' + (u(l) ffi u(l», 

where <P = £. <Po, non-direct sum of vector spaces, 
and so <R = U(<p, £, (u(l) ffi u(l») with a 2-dimen­
sional intersection. 

Remark. Here, g'''p~p. commutes with £, but 
also with <Ro (commutative), and is therefore an 
invariant of <R. We see that this is a general phe­
nomenon in all unifications of <P and of a Lorentz 
L.a. £. In order to avoid this, we have to consider, 
as an internal algebra, a L.a. containing strictly £ 
(and not as a direct factor). 

Proposition 1. Every unifying algebra U (<p, ~ u (3) ) 
is isomorphic to <P ffi ~u(3). Every unifying algebra 
U(<p, ~u(3), u(l) is isomorphic either to <P ffi ~u(3) 
[I-dimensional intersection, between u(l) and <P, 
or ~u(3)], to u~(3) ffi <P ffi u(l), or else to the pseudo­
trivial unificationu~(3) ffi der(<P). 

Weare looking for a unification <R-a L.a. such 
that there exist injective homomorphisms 'fJ, ~ 
(and possibly ~'): 

o -7 <P ~ <R, 0 -7 ~u(3) ~ <R 

[and possibly ~' : u(l) ~ <R], (3.4) 

such that 

<R = 'fJ(<p) + ~(~u(3» [and possibly !/-'(u(l»]. 

Let us denote by CB a Levi subalgebra of <R : <R= CB. <Ro 
(<Ro is the radical); CB must contain ~ £ (i.e., a. 
subalgebra isomorphic to £) and ~ ~u(3). More­
over, dim CB :::; dim <R :::; 18 [or possibly 19, if we 
add a u(l)], and, if dim CB > dim £ + dim ~u(3) = 14 
(or possibly 15), we must have CB ::> ~<P, because 
with every Po E <Po, [£, Po] gives <Po. CB cannot be 
a real form of types a2 or g2 (as none contains £), 
nor of type O2 [none contains ~u(3)]; CB cannot be 
~l(3, C) (type a2 @ C), the latter being of dimension 
16 and not containing <P. The only real form of 
type a3 containing ~u(3) and £ is ~u(3, 1), which 
does not contain <P [and has no real 4-dimensional 
representation, a fact that eliminates the possi­
bility of constructing <P by a semidirect product of 
~u(3, 1) and a 4-dimensional-at most-commuta­
tive ideal, because we are dealing with L.a. over R]. 
Therefore CB cannot be a simple L.a. If now CB = 
CB1 ffi ... ffi CBk , with ill; (j = 1, .. , , k) simple, 
by the same argument, a single CBI cannot contain 
both ~ £ and ~ ~u(3); therefore £ EB ~u(3) is a. 
semisimple sub algebra of CB (and of <R) [and, by 
Lemma 1, U(<p, ~u(3» is isomorphic to <P EB ~u(3)]. 
This is then a Levi subalgebra, because it is con­
tained by no other semisimple L.a. of dimension 
:::; 19, containing <P if its dimension is 2': 16. As 
~u(3) has no real 4- or 5-dimensional representa­
tion, the homomorphism £ EB ~u(3) -7 der (<Ro) , 
defining the semi-direct product ill. <Ro (with <Ro of 
dimension 4 or possibly 5), and coinciding with 
DN on £ (<Ro must here contain a 4-dimensional 
commutative subalgebra, <Po) is 0 on \'lu(3). There­
fore 

U(<p, ~u(3» ~ <P ffi ~u(3) (3.5) 

and also 

U(<p, ~u(3), u(l» ~ ~u(3) ffi U(<p, u(l». (3.6) 

The proposition follows then from the lemma: 

Lemma 2. U(<p, u(l» ~ <P (banal unification), 
or <P EB u(l) (trivial), or der (<p). 

Indeed, £ is a Levi subalgebra of such a unifica­
tion <R, which is therefore <R = £. <Ro, <Ra being a 
solvable 5-dimensional ideal (if it is not the banal 
unification); but £ has no 5-dimensional real repre­
sentation containing D N , except DN EB 0 (0 is the 
trivial I-dimensional representation). Therefore, 
<R ~ (£ ffi u(l»· <Po (since <Ro must contain <Po, 4-
dimensional commutative L.a.). DN being irreduci­
ble, the only matrices of order 4 commuting with 
D N (£) are scalar matrices, and therefore the image 
of uCI) by a defining homomorphism is either {OJ 
or all the scalar matrices, whence the result. 
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Before we go to the general study, let us recall 
two theorems, that we need later on (see Ref. 7 
for the first one, and Ref. 9 for the second). 

Theorem A (Iwasawa). Let 90 be a real semi­
simple L.a. There exists a decomposition (the 
I wasawa decomposition) 

(3.7) 

(direct sum of vector spaces), where fo is a maximal 
compactly imbedded subalgebra, ao a maximal 
Abelian subspace (with semisimple elements-cf. 
Ref. 6 for this notion) of the subspace Po corre­
sponding to the Cartan decomposition go = fo + Po 
(fo + ipo is then a compact real form of the com­
plex L.a. g, of which go is a real form), and no a 
nilpotent subalgebra. There exists moreover a 
basis of 9 = 9o(e) such that the matrices of 
ad (fo + ipo) are skew-Hermitian, those of ad no 
lower triangular, and those of ad ao real diagonal. 

Theorem B (Malcev). In a complex simple L.a., 
the maximal dimension of commutative subalgebras 
(with nilpotent elements then) is [ten + 1)2] for 
a.., in (n - 1) + 1 for bn (n 2:: 4), in (n + 1) for 
c,., in (n - 1) for bn , and 3, 5, 9, 16, 27, 36 for 
92' b3, f4' C6, C7, and Cg , respectively, and they are 
all conjugate by automorphisms except for b4, b4 

(2 classes), 92 (3 classes) (and for alt a2 ). 

For real forms of those complex simple L.a., 
the maximal dimension of commutative subalgebras 
with nilpotent elements is at most that of the 
corresponding complex L.a.; even for noncompact 
forms, it may be smaller. For instance, one checks 
that for ~o(p, 1) this dimension is p - 1, which is 
definitely smaller than the above number for p 2:: 9. 

We begin the general study by the case of the 
simple L.a. that are contained in CP (and there­
fore in .c), i.e., ~o(3) and ~I(2, R) (type at). We 
denote by D4 a 4-dimensional real representation 
of .c, nonequivalent to D N , and nonreducible by 
real transformations [one gets it by considering 
subalgebras of ~I(4, R) isomorphic to .c in a basic 
representation of ~I(4, R), or by considering the 
basic representation of ~o(3, 2) as ~p(2, R), in 
4 dimensions; cf. Appendix]. We prove now the 
following lemma, on U(cp, ~) and U(cp, ~, u(I» 
for ~ of type a1-here, as in the whole study, we 
study the influence of the addition of a one-di­
mensional algebra on the triviality of the unifica­
tions, because of the possible physical interpretation 

9 A. 1. Malcev, Transl. Am. Math. Soc., Ser. 1, 9, 214 
(1962) (original in Russian, 1945). 

of this addition. [Moreover, the results are very 
similar for U(cp, ~, u(l) EB u(I».] 

Lemma 3. Every U(CP, ~o(3» is either trivial 
[CP EB ~o(3)] or banal (cp). Every U(cp, ~o(3), u(I» 
is either trivial or banal [cp, CP EB ~o(3), CP EB 
~o(3) EB u(I), or CP EB u(I)], or pseudo-trivial 
[~o(3) EB der (cp)], or else a semidirect product 
(.c ·(Ro) defined by the representation DN EB D4 of 
.c, (Ro being an 8-dimensional commutative ideal. 
The same holds for ~I(2, R)-with the obvious 
transposition. 

Indeed, the unification (R cannot be a simple 
L.a. because it must be of dimension ::s; 13 [or 
possibly 14, if adding a u(I)] and contain CP. Now, 
~o(4, 1) = U(.c, ~o(3), u(1», but we cannot form 
a semidirect product of that algebra with CPo so as 
to get CP (it has no 4-dimensional real representation). 
The same holds for ~I(2, R) with ~o(3, 2) (the 
4-dimensional representation of that algebra giving 
D4 on .c, and not DN). Therefore any Levi sub­
algebra <B of (R is isomorphic either to ~ EB .c or to 
.c (~ being here of type at). If it is ~ EB .c, then 
U(cp, ~) ~ CP EB ~ from our lemma, and 
U( CP, ~, u(l» ~ (.c EB ~) ·(Ro, with (Ro solvable 
and 4- or 5-dimensional, containing CPo; the de­
fining homomorphism must then be null on ~ 
[for a1 EB a1 EB a1 ([ a4, from Ref. 10] and (R ~ 
~ EB U(cp, u(l». If it is .c, (R = (.c·(Ro) with solv­
able (Ro of dimension ~ 8, and we must be able to 
"translate" a subalgebra of .c isomorphic to ~ so 
that to obtain (R = .c + ~ + (possibly) u(I). 
Further, the defining homomorphism must contain 
DN as a "direct factor" (so as to obtain CP = .c. CPo); 
therefore, (Ro must be 8-dimensional-commutative, 
and the defining homomorphism DN EB D4 (or a 
similar expression, with D4 replaced by a representa­
tion equivalent to D4-possibly by complex trans­
formations), because one checks that DN EB DN 
gives a (too large) intersection between £ and ~. 
It is now easy to check that this is a unification, 
as described here above [for instance, if we 
take a basis p~, q~ of (Ro and ~ ~ ~' C .c, 
then (I + 2 ad aq4)~' = ~ will do, the added u(l) 
being, e.g., generated by q4]. 

Propost·lt·on 2. Let ~ be a simple compact L.a., 
distinct from ~o(3). Then every U(cp, ~) is trivial 
(CP EB ~), and every U(cp, ~, u(I» banal or trivial 
[CP EB ~ or CP EB ~ EB u(l)] or pseudo-trivial 
[~EB der (cp)]. 

10 E. B. Dynkin, Transl. Am. Math. Soc., Ser. 2, 6, 111, 
245 (1957) (original in Russian, 1952). 
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It follows from such a result that compact simple 
L.a. are excluded by our criterion on possible in­
ternal symmetries (we see later that all compact 
symmetries are excluded). 

Let at be the unification, ffi a Levi subalgebra 
of (R, containing the image 1/I(X) of X in (R; ffi :::> !/I(X) 
strictly, for ffi :::> ~£ also. Then either ffi is simple, 
or ffi is semisimple-nonsimple, in which case ffi ~ 
X EB £ because of dimension considerations. In 
that case, by Lemma 1, and by the same considera­
tions than in the case of ~u(3), U( <P, X) ~ <P EB X 
and U(<p, X, u(l)) ~ X EB U(<P, u(l». Let us 
therefore suppose ffi simple; we have dim ffi ::; 
dim (R ::; dim X + 10 (or possibly 11). But we 
learn from DynkinlO that maximal semisimple sub­
algebras of greatest dimension are in tl,., Un-I; in 
On, b,,; in c", c,,-l EB al; in b", 0,,-1; in Ih, a2 ; in f4' eu, 

e7, es, subalgebras, the dimension of which is smaller 
by more than 12 than the dimension of the algebra. 
Therefore ffi ~ £ EB X, except perhaps in case X 
is of types g2, ~u(n) (n = 2, 3, 4, and possibly 5), 
~o(n) (n = 5, 7, 8, 9, 10, and possibly 11), because 
of the difference of dimension between the above­
mentioned algebras, and the fact that the non­
compact real form of g2 (that, following Freuden­
thallI we denote by g2.2) does not contain £ (we 
denote the compact form by {b.o)' 

As no real form of Va contains both £ and (b.o 
(compact), the hypothesis X = g2.0 fails. We al­
ready treated the cases of ~u(2) = ~o(3), and 
~u(3) (in that case, we had the announced result). 
For X = ~u(4) = ~o(6), ffi simple can be only 
either ~o(6, 1) or ~u(4, 1); but then ffi must be the 
whole unification CR, which it is not, since those 
algebras do not contain ~ <P. [The "noncompact 
part" of ~o(6, 1) is of dimension 6, and that of <P 
is of dimension 7; for ~u(4, 1), we check it in a 
basic representation. Besides, if it were a unifica­
tion, the intersection between cp( <P) and !/I(X) would 
be at least 3-dimensional-a compact subalgebra 
of <P-and not, as imposed by dimension considera­
tions, 1- or possibly 2-dimensional.] 

We have the same result for X = ~o(5) = ~\l(2), 
because ~o(5, 1) = ~u*(4) J) ~<P, and has no real 4 
(or 5)-dimensional representation. For X = ~o(7), 
it is clear that g2 Q9 C does not fit; but ~o(7, 1) also 
does not fit, since it does not contain <P: the nilpotent 
sub algebra of ~o(7, 1) in the Iwasawa decomposi­
tion is 6-dimensional but commutative, while <P 
contains a 6-dimensional non commutative nilpotent 
subalgebra. Besides, one sees from a basic repre-

11 H. Freudenthal, Math. Ann. 156, 263 (1964). 

sentation of ~o(p, 1) that. these algebras (for p 2 4) 
contain the "inhomogeneous ~o(4)" L.a., but not 
the "inhomogeneous ~o(3, 1)" L.a., for which we 
need, among the algebras ~o(p, q), p 2 4 and q 2 2. 
Thus ~o(7) fails. 

In the case of X=~o(8), the (only) possibility ffi= 
CR = ~o(8, 1) fails for the same reason (and, besides, 
the nilpotent subalgebra is 7-dimensionaI, but 
Abelian). The cases of ~o(9), ~o(10), ~o(l1) are simi­
lar (and, besides, the intersection of a supposed unifi­
cation CR = ffi must be at least 3-dimensional, which 
is impossible). Hence we have ffi ~ £ EB X. Q.E.D. 

Proposition 3. If X is semisimple and no simple 
ideal of X has a real representation of dimension 
at most 10 [resp. 11], then either X J) ~ <P, in which 
case U(<P, X) ~ <P EB X [resp. U(<p, X, u(l)) ~ 
X EB U(<p, u(l»], or X :::> ~<P, in which case there 
is also the banal unification X [resp. OC, or OC EB u(l)]. 

It is sufficient to prove the proposition for simple 
X. From the Levi-Malcev theorem, the unification 
CR = ffi·CRo (ffi is a Levi subalgebra)j ffi :::> ~X. If 
ffi is not simple, ffi ~ £ EB X, and the result follows. 
If ffi is simple, it has, a fortiori, no real representation 
of dimension at most 10 [resp. llJ; so CR = ffi EB CRo; 

but CR :::> ~<P and ffi :::> ~£, so that <B ~<P 
from the structure of <P (which is not a direct sum 
of two sub algebras), and therefore CRo = {OJ [resp. 
{OJ oru(1)J. Q.E.D. 

Among the remaining simple algebras, all contain 
.£ except for the following three (noncompact): 
~r(3, R), ~u(2, 1), and 9a.2' 

Lemma 4. Every U(<p, ~r(3, R» is <P EB ~r(3, R) 
and every U(<p, ~r(3, R), u(1» is U(<p, u(1» EB 
~I(3, R), up to isomorphism. 

Let CR = ffi·CRo be a unification, ffi being a Levi 
subalgebra. ffi :::> ~.£ and ~ ~1(3, R), and therefore 
cannot be any real form of b2 or gz. But dim ffi ::; 18 
(or possibly 19) and ~1(3, C) J) ~<P; the only 
remaining possibility is thus ~{(4, R). However, 
the inhomogeneous ~1(4, R) L.a. is not a U(<p, 
~1(3, R), u(l», as we can verify easily by consider­
ing its structure (which we read immediately from 
Table 1.a. in the Appendix and from the basic 
representation of that algebra, written in the Ap­
pendix). Q.E.D. 

Lemma 5. We have ~u(2, 2) = U(<p, ~u(2, 1» 
and, in a similar way, ~o(4, 3) = U(<p, gZ.2), the 
intersection being the (only) nilpotent noncommu­
tative algebra of order 3 (denoted by g3 in Bourbaki, 
Ref. 6, Chap. 4, Exercise 9). 
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Let us take as generators of ~u(2, 2) the (ak, a~, C2; 
b1" bj" Cl, ca) with which Table II is written (cf. 
Appendix). ~u(2, 1) can be represented in ~u(2, 2) by 

(t(ak + a~), t(af - ~ + 2cz); i(bi + c1), 

Hb~ + ba), Hb2 -b~), Hb1 + ca», (3.8) 

as is easily seen in a suitable 4-dimensional repre­
sentation of ~u(2, 2), in which ~u(2, 1) is represented 
by 3rd-order matrices. We can represent <P in 
~u(2, 2) by 

(ak; bIn Pk =: (a' + bD, p", = (Cl + C2»' (3.9) 

We have also other ways (equivalent for our pur­
pose) to represent these subalgebras in ~u(2, 2). 
With <P and ~u(2, 1) thus represented in ~u(2, 2), 
and with the aid of the above-mentioned 4-repre­
sentation, one checks easily that their intersection 
is the only nilpotent noncommutative L.a. (iso­
morphic to that of lower triangular matrices, with 
zero diagonal, of order 3) generated by 

tXa = (ai + cz) + (b{ + Cl) ::; Pl + p"" 

(a2 + a~) + (b~ + bs) 

= P2 + (a2 + ba) = XII 

(aa + a~) - (b2 - b~) 

= Pa + (as - b2) = Xh 

with commutators 

(3.10) 

[Xl' X2] = Xat [X2. XaJ = [Xh xal = O. (3.11) 

[We notice that this is the Lie algebra of the ca­
nonical commutation relations.} Since 

(£ EB uCl» . <Po ~ der (<p) 

is a (nonsemisimple) maximal subalgebra of ~u(2, 2) 
(generated by as, b", Pic, P4, ca), and ~u(2, 1) is a 
(simple) maximal subalgebra, the described unifi­
cation (up to conjugacy) is the only one; this can 
also be seen from the Iwasawa decompositions of 
~u(2, 2), ~u(2, 1), and a similar decomposition of <P, 
decompositions in which we specify the commutative 
part of the nilpotent sub algebra, and the classifica­
tion of alI3-dimensional (order-3) L.a. (cf. Bourbaki, 
Ref. 6, Chap. 6, Exercise 23), by a close study of 
the nature of the intersection needed to obtain the 
wanted unification. 

The case of gZ.2 and ~o(4, 3) is very similar; 
indeed, we have the decomposition: 

\:1M = (~u(2) + ~u(2» + [(Abelian subalgebra with 
semisimple elements of order 2) + (nilpotent 
subalgebra of order 6, and with order-3 
commutative part)] = ~u(2, 1) + {sub-

space generated by two "compact gener­
ators", one noncompact semisimple and three 
nilpotent generators} . 

(12,2 is irreducible in ~o(4, 3) (with respect, e.g., 
to the basic 7 -dimensional representation 10). 

~o(4, 3) == (~u(2) + ~u(2) + ~u(2» + [(Abelian 
subalgebra with semisimple elements, of 
order 3) + (nilpotent subalgebra of 
order 9, with order-5 commutative part)] 

= ~o( 4, 2) + {same subspace as above} 
$ ~u(2, 2) + {same subspace} 

[as ~u(2, 1) is real-irreducible with respect to the 
6-dimensional representation of ~o(4, 2)}, and there­
fore, 

~o(4, 3) = (<p + ~u(2, 1) with order-3 intersec­
tion) + I same subspace} 

= (<p + g2.2 with order-3 intersection). 

Thus ~o(4, 3) = U(<P, (12.2) with a 3-dimensional 
nilpotent intersection. 

Thus, we cannot have nontrivial and nonbanal 
U(<p, OC), with simple OC, except perhaps with 40 
simple L.a., namely (12.2 and ~u(2, 1), and 38 L.a. 
containing £ as subalgebra: 

I:, = ~o(3, 1) = ~{(2, C) = ~41(1, C) = ~o(3. C); 

~o(3, 2) = ~1l(2, R), ~oC4, 1) = ~41(1, 1); 

~r(4, R) = ~o(3, 3), ~u*(4) = ~o(5, I), 

~u(2, 2)= ~o(4, 2), ~u(3, 1) = ~o*(6); 

~I(3, C); ~o(5, C) = ~1l(2, C); 

~o(p, q)(1 S q S p, 7 s P + q s 10) 

[including ~o*(8) = ~o(6, 2)J; ~41(n, R) (n == 3, 4, 5); 
~u(3, 2), l3u(4, 1); ~(n, R) (5 S n S 10); and 
~l(n, C) (n = 4, 5). This does not mean that, with 
each one, we can have other than trivial and banal 
unifications U(<p, OC). However, with any other 
simple L.a., any U(<P, OC) is either <P EB OC, or, if 
<P C OC, the banal U(<p, OC) = OC ~ <P (~ £ then), 
or else, if OC is of type aI, the banal unification 
U(<p, OC) == <P (which is oino interest for our problem). 

Now let OC be asemisimple L.a., oc= OCr EB· . ·EBock , 

where OC j is a simple L.a. (j = 1, ... , k), and 
suppose that no OC j is of type ai, nor contains £, 
nor is ~u(2, 1) or (12 .z[U( <P, OC j ) is then trivial for all j]. 
Set U(<P, oc) = <R = dHRo (m being Levi sub­
algebra). Then we have m ~ OC{ EB ... EB OCh 
where OC~ is simple. We cannot have k' < k because 
we would then have either 

ocr ~ (OCl EB OC2 and ~ £) 
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or 

Xf ~ Xl EB X 2 and X~ ~ (Xa and ~ o£), 

if we order the X;'s and X;'s in a suitable way; 
and both hypotheses are excluded by dimension 
considerations, according to Dynkin's classification 
of semisimple sub algebras of simple L.a .. lo Thus 
either k' = k + 1, X~+l ~ O£, X~ = Xi (j = 1, .,. , k) 
(and thus, by our Lemma 1, U(cp, X) ~ CP EB X) 
()r k' = k, X~ = Xi (j> 1) and therefore (X{ ·CRo) = 
U(cp, Xl) and U(CP, X) = (EB;>l Xi) EB U(cp, Xl) 
from the same lemma. In a similar way, the results 
for U(cp, X, u(l» are extended to semisimple L.a. 

If now X be a compact Lie group, its L.a. X is 
reductive, i.e., X = Xl EB X 2 , where Xl is maximal 
semisimple and X 2 Abelian. Now, except the case 
in which Xl has ~0(3) as direct factor (in that case, a 
banal unification is possible), U(CP, Xl) ~ CP EB Xl' 
If Xl ~ Xf EB ~0(3), we may have also the unifica­
tion U(CP, Xn ~ CP EB Xi. Therefore, a Levi sub­
algebra CB of U(cp, X) necessarily contains £ EB Xl 
(or possibly £ EB Xn. By virtue of dimensionality, 
this must be, in fact, the total Levi subalgebraj 
therefore, the only possible unifications are 

U(cp, X) ~ U(CP, X 2) EB X{, 

with Xi = Xl or possibly Xl ~ X{ EB ~0(3), 
and with 

(3.12) 

(3.13) 

where X~ C X 2 and dim X 2 - dim X~ ~ 1. More­
over, if we distinguish between compact and non­
compact generators of the Abelian sub algebra of 
U(cp, X) which will come from X2 , we can have either 
CP EB X or CP EB Xl EB X~, with dim X 2 - dim X~ = l­
or else, if X{ EB ~0(3) ~ Xl, CP EB X{ EB X 2 • 

Therefore, g"'·p",P. is an invariant of any CR = 
U(cp, X) for any L.a. X of a compact Lie group X 
if we want to reCOver X by passing to a Lie group 
of Lie algebra CR. 

We sum up our results in two theorems. 

Theorem I: Let X be a realsemisimple Lie algebra. 
(i) If X C £ [strictly, i.e., ~0(3) or ~[(2, R)], any 

U(cp, X) is either trivial (cp EB X) or banal (CP, un­
interesting case for our purpose). 

(ii) If X = ~u(2, 1) [resp. X = 1h.2], one can have 
~u(2, 2) = U(cp, ~u(2, 1» [resp. ~0(4, 3) = U(cp, g2.2)] 
with intersection on the nilpotent noncommutative Lie 
algebra of order 3. 

(iii) If no simple ideal of X has a real representa­
tion in dimension ::::; 10, every U (CP, X) is either 
trivial (cp EB X) or banal (X, if X ~ cp). 

(iv) If X contains no subalgebra isomorphic to 

O£, nor any simple ideal of the types considered in 
(i) and (ii) [~0(3), ~[(2, R); ~u(2, 1), g2.2], then every 
U(cp, X) is trivial (CP EB X). 

Corollary. In order to get U(cp, X) ~ CP EB X 
and ~ CP, with semisimple X, it is necessary, if 
<p(cp) n if;(X) is semisimple (in particular, to}), 
that X contain a subalgebra isomorphic to O£, and, 
in any case, it is necessary that X be non-compact. 

If X is a compact Lie group, with Lie algebra 
X = Xl EB X 2 (Xl s.s. L.a.), every U(CP, X) is 
isomorphic to U(cp, X2 ) EB X:, where X: C Xl and 
Xi differs (possibly) from Xl only by a direct factor 
~0(3) ("put in common" with cp). Moreover, the only 
topologically interesting unifications are CP EB X', 
where X' C X and may differ only by a direct factor 
u(l) or (possibly) ~0(3). 

Theorem II: Let X be a real semisimple Lie algebra, 
containing no subalgebra isomorphic to O£, nor any 
simple ideal of the types considered in (i), (ii), of 
Theorem I. Then every U(cp, X, u(1» is isomorphic 
to X EB U( CP, u(l», i.e., either CP EB X, or CP EB X EBu(I), 
or X EB der (cp). In the cases of ~0(3) and 13[(2, R), 
there are also the banal unifications CP and CP EB u(l), 
and the semidirect products CP·CR~ = o£. (cpo EB <R~), 
with a 4-dimensional commutative ideal CR~. In the 
cases of ~u(2, 1) and of g2.2, we have also the same 
result as in Theorem I (ii), with (or without) a possible 
direct factor u(1) in addition. 

To conclude this section, we first give two ex­
amples of unifications, the first with £ different 
from the one already shown and the second with 
the de Sitter algebra ~0(4, 1) (with which we 
get a nontrivial correction to Y"'·P",P.). Next, we 
study, a priori, the general form of the unifications 
U(CP, X), for simple X. 

Example 2. Let <R be a nontrivial unification 
U(cp, o£') with o£' ~ o£, CB a Levi sub algebra of 
unification: 6 ::::; dim CB ::::; dim CR ~ 16, and CB ~ ~CP 
if dim CB > 12. In this last category, the only 
possibility is CB = <R = ~0(4, 2), but the structure 
of this algebra (cf. Table II.a in the Appendix) 
shows it is not a U(cp, o£') with order-1 intersection. 
Therefore, CB ~ o£; indeed, CB of type 62 Cnoncom­
pact real form) is excluded, because the inhomoge­
neous de Sitter Lie algebras [X· CRo, with 5-di­
mensional CRo and X = 130(3, 2) or ~0(4, 1), the 
defining homomorphism being a 5 dimensional real 
representation of X] are U( CP, X, u(1» with inter­
section on o£, but are not U(cp, o£'). Therefore 
CR = (o£·CRo), and, if we do not want the banal 
unification CP, we must have CR = O£. (<Ro EB fJo) 
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with 4 or 6-dimensional commutative ~o (commu­
tative, because if the defining homomorphism is a 
representation reducible by real transformations, we 
do not get a unification). As 6-dimensional real rep­
resentation of .£, we examined the adjoint, which 
is (in a suitable basis) "12 ® Da + J 2 ® Da", 
where 12 = (~ Y), J 2 = (Y -~), and Da is the adjoint 
representation of 130(3). The above expression 
means that an element x E 130(3) is represented by 
12 ® Da(x), and Jx E JI30(3) [J is a complex struc­
ture of.£ :::::3130(3) ® C (see Ref. 10)] by J 2 ® Da(x). 
We have a similar result with "Da ® J 2 + Da ® 1/'. 
We notice that the representation we denoted 
by D4 is obtained in a similar way by considering 
.£ :::::3 13{(2, R) ® C from a basic 2-dimensional real 
representation of 13{(2, R). Now, if we take ~o 4-
dimensional, we cannot take the defining homo­
morphism of (.£. (fto) as DN EB DN because a computa­
tion shows that, in that case, the intersection is 
at least 3-dimensional, and we have thus only 
U«(9, .£', u(l». But we can take DN EB D4 and 

<,0 ( (J» = £. (J>o, if;(£') = (I + ad qo)£ 

for qo E ~o. A not too difficult computation shows 
then that we have intersection on 

if a system of 4 homogeneous linear equations III 

the 6 (Ak, Ilk) is verified, system which has, in 
general (for nonsingular qo), a solution in, e.g., 
Ak, III for fixed 1l2, Ila (the solution being never such 
that all the Ak'S or all the Il/S are simultaneously 0), 
and that if (Ak' Ilk) is a solution, (Ilk, - Ak) also. 
Therefore, we have, in general, a U«J>, £') with a 
2-dimensional commutative intersection. 

Remark. Given U«(9, £'), we have 

U«(9, .£{ EB £~) = £{ EB U«J>, £~) (3.14) 

(£{, £~ isomorphic to £). Thus we have all the 
possible unifications of (J> and £{ EB £~. 

Example 3. Now, let ~ = 130(4, 1), take as basis 
the generators (ak, a~; bk, cj ) of 130(4, 2), and form 
the semi-direct product (~. (fto), with 10-dimensional 
(fto, by the adjoint representation (in that basis). This 
representation splits on £ = (ak; bk) in DN EB ad.e; 
let us take as basis of (fto the elements (Pk, P4, qk, qf.), 
and let qo be a general linear combination of the 
q.'s and qCs. We may take 

if;(~) = ~, 

(fto being commutative, one sees that, as a conse­
quence of our treatment of the first example of 

U«J>, .£, u(l) EB u(1» = £·(fto 

(with the same (fto as here), we have 

(ft = <,0«(9) + if;(~) + if;'(u(l) EB u(l». 

Moreover, the adjoint representation of 130(4, 1) 
being "orthogonal" [more exactly, in 130(6, 4) re­
alized by its basic representation], we have an 
invariant 

(3.15) 

of that unification, and thus a nontrivial" correc­
tion" to -g~·p~P. (we choose gkk = Okk, g44 = -1). 

Types of Unifications 

Now let ~ be a simple L.a. and set U( (9, ~) = 
(ft = (CB·(fto), where (fto is the (solvable) radical; 
we have (ft = if;(~) + <,o«J». There are then two 
possibilities: either CB = if;(~), or CB ::) if;(~) strictly, 
if CB is a Levi subalgebra containing if;(~). We 
suppose (ft nontrivial (¢ (9 EB ~). 

If, in the first case, moreover, ~ ::) :::::3(J>, we have 
(ft :::::3 (~·(fto), where the semidirect product must 
clearly be nondirect. From dimension considerations 
(on the possible intersection of the supposed unifi­
cation), (fto must be either to} (banal case) or 
solvable and 6-1O-dimensional. If ~ J) :::::3 (9, we 
have (fto :J (90, the semidirect (nondirect) product 
being defined by a representation containing DN on 
a subalgebra :::::3 £ of ~ (~ :J :::::3£ for ~ is here 
a Levi sub algebra of the unification). 

Now if (ft = (CB·(fto) with CB:J ~ (strictly), and if 
CB J) :::::3(9, (fto ::) (J>o, and thus dim CB - dim ~ ::::; 6; 
then the only possibility is [by dimensional con­
siderations of the algebras, or of their representa­
tions, and by the structure of the inhomogeneous 
13{(4, R) algebra, 13{(4, R)· (90 with 4-dimensional 
commutative (90] the banal unification (J>, for ~ of 
type Uj. If CB :J :::::3(9, dim (fto ~ 5 or =0, and 

10 ~ dim (fto + (dim CB - dim~) ~ 6, 

the dimensions of l>ubalgebras of (J> (an intersection 
of two L.a. is a subalgebra of both), and the classi­
fication of simple L.a. (and of the dimensions of 
their basic representations) show that (fto = {O} . 

Therefore, there are only three possible types of 
nontrivial and nonbanal U«J>, ~) = (ft: 

(Ur) (ft :::::3 (~. (fto), ~ :J :::::3(J>, (fto solvable of 
dimension 6-10. 

(Ull) (ft :::::3 (~·(fto), ~ J) :::::3(9, (fto :J (90, the de­
fining homomorphism giving DN on a sub­
algebra:::::3 £ of ~. 
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(UIlI) <R simple :J a:: (strictly)-and of course 
then <R :J ~<P. 

A priori (we must still verify in most cases that we 
have indeed a unification, and this may very well not 
be), (UI) can be the case of ~1(5, R) with a 1O-dimen­
sional representation; of ~l(n, R) (6 ::;; n ::;; 10) 
with a basic representation; of ~l(n, C) (n = 4, 5), 
~\l(5, R), ~o(p, q) with p 2:: 4, q 2:: 2, p + q ::;; 10; 
and ~u(3, 2), with basic real representations. (UlI) 
is surely the case of .£, ~1(4, R), and perhaps other 
algebras. (UIII) is the case of the "exc€ptional" 
unifications, for ~u(2, 1) and Q2,2, and perhaps of 
~o(p, q) = a:: [with <R = ~o(p + 1, q) or fJo(p, q + 1), 
p 2:: q, p + q ::;; 10, and p + 1 2:: 4, q 2:: 2 or p 2:: 4, 
q + 1 2:: 2] or fJf(4, R) = a:: [with <R = el(5, R)]. 

Note. This work was written before L. O'Raifear­
taigh's structural considerations12 were published. 
One may notice that these (however unwieldy their 
development) are essentially parallel to the study 
of types of unifications we made here [both being 
based on the Levi-Malcev theorem and the fact 
that <P = .£. <Po, wherefrom if <R = (ffi·<Ro) is any 
L.a. containing <P, either there is a Levi factor ffi 
containing <P, or <Po C <RoJ. As to the problem of the 
spectrum of the operator M representing -t·p~p, 
in some representation of a Lie algebra <R :J <P in 
which it is self-adjoint, the claimed result of O'Rai­
feartaigh is not true,13 though it must be said 
that it did lead to a public clarification of the 
question. In fact, a much weaker result could be 
proved by Jose 4-and the (final version of the) 
proof shows that all the assumptions are needed in 
an essential way-namely that for irreducible uni­
tary (continuous) representations of a connected 
(finite-order) Lie group G :J P, the spectrum of 
M is a connected set (thus, while an isolated eigen­
value is the whole spectrum, eigenvalues with 
"continuous background" are not excluded). This 
does not hold as far as only Lie algebras are con­
cerned (and we dealt mainly with Lie algebras in 
this paper), and counter-examples can be given.13 

4. APPLICATION TO A MASS FORMULA 

We have seen that, except for two (/ exceptional" 
cases, any interesting semisimple internal L.a. 
must contain ~ .£. But .£ itself is not enough, since 
we have only type (UII) unifications (as is easy to 

12 L. O'Raifeartaigh, Phys. Rev. 139, BI052 (1965); see 
also Phys. Rev. Letters 14, 332, 575 (1965). 

13 M. Flato and D. Sternheimer, Phys. Rev. Letters 
IS, 934 (1965); 16, 1185 (1966). 

14 R. Jost [private communications; the final version is 
published in Helv. Phys. Acta. 39, 369 (1966)]. 

check), and then, the ideal being commutative, 
g'''PIlP, is an invariant. On the other hand, we have 
some reasons to think' that the internal L.a. is a 
subalgebra of fJf(4, C). Now, the (phenomenological) 
classification of elementary particles according to 
some representations of the type-112 complex algebra 
[the compact real form of which is fJu(3)] seems 
until now, at least for baryons, in good accordance 
with the experimental data. For these (and other) 
reasons, we are particularly interested [besides the 
exceptional unification ~o(4, 2) = U(<P, fJu(2, 1», 
the implications of which we deal with more details 
elsewhere (our interest is this unification arose first 
during informal discussions with Dr. G. Rideau)], 
in the possible unification of <P with the algebra 
fJf(3, C) = fJu(3) ® C [which contains .£ and is 
contained in fJI(4, C)]. 

Let us therefore look for the unifications U (<P, a::) 
and U(<P, a::, u(1», for a:: ~ ~1(3, C). If <R denotes a 
unification, we write, as usual, its Levi decomposi­
tion <R = ffi· <Ro, where <Ro is the radical and ffi 
a Levi sub algebra. If <R is not isomorphic to a:: 
(which is of complex type 112 EB 112), we have at 
least <R of types I1s or 113 EB !l3, the dimension of 
which is greater than 27; since by extension of 
the base field, a unification remains a unification, 
we must have <R = a::'<Ro, where the semi-direct 
product gives <P with a sub algebra ~ .£ in a:: and a 
commutative subalgebra <Po C <Ro. Now, <Ro is of 
order ::;; 11; because of the dimensions of the real 
irreducible representations of .£ in dimensions ::;; 7, 
and of the irreducible representations of a:: in di­
mensions ::;; 11, we maya priori have <Ro of orders 
8, 9, 10. Thus, our first step is to look for a real 
8, 9, or 10, dimensional representation of a:: = 
eI(3, C) containing DN on a subalgebra ~ .£. Then, 
we must prove that we indeed get a unification 
[and, in the case we consider, we see that this 
is a mere consequence of our study of U(<p, .£)]. 
Once we have a suitable unification, we try to find 
a "correction" to gil. p~p., and then express it in 
terms of internal quantum numbers. 

As we do not know the exact way in which the 
representations of oc split on the various sub algebras 
~ .£(~o(3, C) and 1\\1(2, C», we start from some re­
duced representation of a certain subalgebra.£. C oc, 
and try and build therefrom a representation of a::, 
that is to say find 10 more matrices, representing 
generators of a supplementary subspace. Let us 
first consider the 1O-dimensional representation 
DN EB ad .£, on £. = ~o(3, C) = (ak ; bk ) (in the 
basis of Table IILa-cf. Appendix). But if we then 
try to determinate the coefficients of the represent-
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ing matrices of .e3 ~ ~1(2, C) C X (for instance), 
we arrive at contradictory conditions, and the same 
thing occurs if, instead of ad .e, we take another 6-
dimensional real representation of .e, obtained from 
the canonical 3-dimensional complex realization as 
~o(3, C) by doubling the dimension. Again, the 
same thing occurs if we take .e. = .e3 [e.g., see the 
Appendix for this notation of a ~1(2, C) subalgebra 
of ~1(3, C)] and try to extend it to (ak; bk) = 
~o(3, C) C X. If one seeks an eight-dimensional 
representation of X, decomposed on a subalgebra 
.e. ~ .e in DN E9 D4 , one arrives at the same im­
possibility, whether one takes.e. = (ak; bk) or.e. = 
.e3 (or, which is equivalent, .el or .e2). 

Our problem is mainly to get a real-irreducible 
(irreducible by real transformations) representation 
(with real coefficients, of course) of ~1(3, C) = X, 
and then to see if, on some .e. C X, it splits so that 
we get DN E9 (another real representation of .e.). We 
do know that the DN representation of .e ~ ~l(2, C) 
is the Kronecker product of a (basic) 2-dimensional 
representation by its contragredient, and this sug­
gests the consideration of the Kronecker product 
of a (basic) 3-dimensional representation of X by 
its contragredient, which will contain DN on a 
~I(2, C) subalgebra of X (i.e., a sub algebra like 
.e l , .ea, or .e2), and be real. If, moreover, among 
all complex-equivalent representations, we can 
select one that splits on a .e C X in a way so as to 
obtain a unification, our first (and most unwieldy) 
step is accomplished. 

We therefore try and build a 9-dimensional repre­
sentation of X, which, on .ea, splits into DN E9 
(- D,,) E9 0, where - D4 is also a representation of 
.e (the "-' standing for transposition), and 0 is the 
trivial representation in one dimension. For com­
modity in the calculation (and also in order to 
check the lO-dimensional case from another point of 
view), we try and prolong the lO-dimensional repre­
sentation DN E9 ( - D4 ) E9 0 E9 0 of .e3 to all X. In 
this way, we obtain a U(eP, X, u(l». 

We take as representing matrices of the generators 
(tc~, ... , tba) of .ea (cf. Appendix), those obtained 
in representing the elements (aI' ... , ba) of .e by 
DN and (-D4); we need 10 more basis elements. 
Let us then set 

al = 2: A"pEaia, f3 = 1,2, ... ,9,0) (4.1) 
a.fJ 

(E"fJ is the canonical basis of the gl's). We have 

taa = E21 - E12 + t(E65 - ES6 + ES7 - E78)' 

If we write down the conditions given by [aa, all = a2, 

and then by [a2, aa] = aI, we get al and a2 with 
only 40 coefficients A (instead of 100), in 10 sets 
of 4. Now we put 

(4.2) 

and express [aa, bll = b2 , [b2 , aa] = bl , to get bl , b2 

with 40 coefficients A' (same expression as above 
with the A's). Moreover, [aI' ba] = -b2, whence 
the X"S in terms of the A's. We then write [aI, a2] =a3, 
from where' we obtain relations in the A's, and 
[bl, b2l = -aa, whence (opposite) relations in the 
AilS, with which we can make those in the A's more 
precise. We further write down the relations be­
tween the A's obtained from [aI, bl]=O, [bl, ~]=ba. 
As we construct a matrix Lie algebra, the Jacobi 
identity is automatically verified; using it, we find 
that all the commutation relations of the algebra 
.eo = ~o(3, C) = (ak; bk) are verified. The conditions 
on the A's we get are too long to be given here, 
even after simplification by use of vectorial con­
siderations. We give them a much simpler form by 
supposing (this seems to be necessary, from the 
general look of the conditions) that the repre­
senting matrix of a l (a "compact generator", i.e., 
generating a compact one-parameter subgroup by 
the exponential mapping, in the given 3-dimensional 
realization, for instance) is skew-symmetric (there­
fore, that of a2 is also a skew-symmetric matrix). 
We can now simplify the conditions by considering 
the commutators 

b~ = [aI' b~l = [b2 , cn = [W. bI], 

and also by expressing them in a vectorial form. 
We obtain (for al = 2: AapEafJ as above) 

= cos () cos tp = A46 = A31 = k'Aso = kk'Ash 

where k,2 = t(l + k2
) (k is const ~ 0), 0 S () S t1l", ° S tp < 211", and 3 similar sets of equalities, the other 

coefficients being null. If now we write [c{, b{'J =2al, 
we get k2 = I and sin 2tp = 0, or sin 2tp = 0 and 
sin 2() = 0. We now verify that (if k2 = 1 in both 
cases) [az, W] = 2c~, and [a2' b~l = 2C2, and that 
we get the desired results with the commutators of 
c~ with W, aI, W; of CI with aI, b{, Wi of c~ with 
b~', a2; of Cz with a2, b~, W; and of Ca and c~ with 
aI, b1, b{, b{', az, b2, b~, b~'. By use of the Jacobi 
identity, we check that all other commutation 
relations are verified (of course, one uses also the 
antisymmetry property of commutators). 

All the matrices representing elements of X are 
then of the form 
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l
( A kk'OI. k'OI.] 

kk'{3 h kh • 

k'{3 kh h 

where A is an 8 X 8 matrix, k2 = k,2 = 1, 01. is an 
8-component column vector and {3 an 8-component 
row vector, the representing matrices of the base 
elements being either symmetric or skew-symmetric. 
The matrix 

[ I. O!~J V = ..!. ek' 
V- l 

o V2 k' 

brings them to the form 

[~p 
V201. 

~l· 2h 

0 

and thus reduces the obtained representation to 
Dg EB 0, where Dg is a 9-dimensional real repre­
sentation of ~ (In denotes here the order-n unit 
matrix). This is an irreducible representation, be­
cause (after reduction) 2c l + Ca is represented by 

Al = [-:14 

;4 ~] cos 2q:1 

o 0 4 

(with cos' 2q:1 = 1), thus by a regular matrix, that 
cannot be reduced into a direct sum of an 8-dimen­
sional matrix EB 0 by a similitude Al ~ V~l Al Vl , 

(Vl being the regular 9-dimensional matrix). How­
ever, Dg is reducible when restricted to the max­
imal compact subalgebra ~u(3) generated by 
(all, W, c:, cO (k = 1, 2, 3), and only into an 8-
dimensional real representation (equivalent to the 
adjoint) EB 0 (0 is the trivial I-dimensional repre­
sentation) as can be seen by an argument similar 
to the one we just used (the representing matrices 
of the above-mentioned base elements have a 9th 
row and column which is V2 times the 4th). Actually, 
we obtained here two (irreducible) representations 
Dg and D~ (since (J is defined modulo 11" only, there 
are 2 possible choices of q:1 such that sin 2q:1 = 0), 
and these coincide with DN EB (-D4) EB 0 on £a 
and are related by D9(£1) = D~(£2) and D 9(£2) = 
-D~(£l). Thus, they are essentially the same repre­
sentation. In the Appendix, we have given D g• 

More precisely (Table IV), we have given the 
commutators between ~ and the ideal (Ro in the 
semi direct product (R = ~. (Ro of defining homo-

morphism Dg, from where it is easy to get Dg• We 
have taken a basis (p,,) (fJ = 1, 2, 3, 4) of <Po C (Ro, 
(q,,) of (;}o C (Ro, and ro = V2r6 of a supplementary 
subspace; we see that, e.g., 

[al. pd = -ql cos (J - q4 sin (J. 

As we take the basis of (Ro in the ordering 
(Pl, ••• , P4; ql, ••• , q4; ro), this shows that the 
matrix representing al has a first column with 0 
coefficients, except - cos (J in the 5th row and 
-sin (J in the 8th. Similarly, the relation 

[al' q4] = sin (J(Pl + P4 - ro) 

shows its 8th column is 0 except for sin(J in the 
1st and 4th rows and - V2 sin (J in the 9th. Here, we 
have a representation (and therefore a unification) 
depending on a parameter (J(O ~ (J ~t7l", mod 11"), 
although we do not need this fact in the following. 

It is then easy to check that we have a unification 

(R = U(<p.~. u(I». (4.3) 

with a (commutative) 2-dimensional intersection 
between <P and ~. First (and this is because of the 
irreducibility of Dg) one can check, by an elementary 
computation [looking for commutation relations of 
(Ro such that Dg(~) C der «(Ro), i.e., Dg(x) E der «(Ro). 
"t x E ~; we express this on a basis] that (Ro must 
be commutative (and not only solvable). Next, we 
consider the algebra 

£~ = (I + ad qo)£a. 

where qo is a linear (real) combination of the q,.'s. 
For instance, we may take qo = 201.q4, where 01. is a 
(real) constant. Since (Ro is commutative, [£~, <Po] = 
[£a, <Po], i.e., [l~, Po] = [la, Po] "t Po E CPo, la E £3, 
l~ = (I + ad qo)la. Thus, we have 

q:1(<p) = (I + ad qo)(£a·<Po) ~ <P. (4.4) 

But, one checks, exactly in the same way as for 
U(<p, £) with DN EB D 4 , that, in general (and, in 
particular, for qo = 201.q4) , £~ (\ £a is a commuta­
tive 2-dimensional subalgebra. Therefore, ~ (\ q:1( cp) 
is 2-dimensional (for "nondegenerate" qo's), and 
~·(Ro = (R is a unification U(cp, ~, u(I», the added 
u(l) being generated by ro, for instance. 

Let us now pass to the second step, the search 
of a suitable correction to g'" P"P. in the above unifi­
cation. g"Yp"P. is a second-degree term in the en­
veloping algebra of the unification (R; we would like 
to find an element in the center of that enveloping 
algebra which contains it. But the representation 
Dg of ~1(3, C) = ~ is not" orthogonal", i.e., Dg(~) 
is not contained in a 9-dimensional realization of a 



                                                                                                                                    

1950 M. FLATO AND D. STERNHEIMER 

real form of the complex algebra 04. We know thaeo 
a2 EB a2 is a maximal regular semisimple algebra of 
06, and is also maximal (nonregular, nonsimple) in 
as [as is 8L(3) X 8L(3) in 8L(9)], but is not con­
tained in 04; this is a fortiori true when passing to 
real forms. As we see later (and can guess from 
Dynkin's remarks on invariants10

), this is a source 
of difficulties, since we are looking for a second­
degree invariant in the enveloping algebra of (R. 

Indeed, let 

and set 

'Y~' = [-Yo, z], g~ = [x, go], 'Y~ = [-Yo, y], 

y' = [x, y], ht = [x, ho], and z' = [x, z]. 

Since (Ro is a commutative ideal in (R, one sees im­
mediately that 

[x, (y + gO)2] = 2(x + go)y' + g~(y + go) 

+ [y', go] + [y, g~] + [y', x], 

['Yo, (y + gO)2] = 2'Y~(Y + go) + [y, 'Y6]' 

[x, (y + go)(z + ho)] 

= (y' + g6)(z + ho) + (y + go)(z' + h6), 

['Yo, (y + go)(z + ho)] 

= ('Y'zo + Y'Y6') + C'Y6ho + go'Y6'). 

[It is also possible to make these considerations more 
precise by writing 

(Ro = (Po + ~ + (ro) 

and 

oc = llu(3) + J llu(3) 

but we need no such considerations.] 
If now we are looking for a second-degree ex­

pression 

commuting with all OC, we must have, for all x E oc, 

[x, L y2 + L yz] = 0, (4.6) 

and therefore :E y2 + :E yz will have to be a Casimir 
operator of oc. If, moreover, we want an expression 
commuting with all (R, it is not possible to take 
all the go's and ho's as zero, and then it is necessary 
that 

L L g~ + L goho] = 0 (4.7) 

(in any case, this is needed if we are looking for 
an invariant really containing g"·p"P.), and it is 
sufficient if we take every y and z as zero. 

So, we must find a second-degree expression in the 
elements of (Ro containing _m2 = g"·p"P. and (if 
possible) commuting with all oc. We know that 
[m2

, £3] = 0, and see further that [cr, m2
] = O. 

We now write out a big table (not reproduced here) 
giving the commutators between the 16 base ele­
ments of OC and all 45 two-by-two products of base 
elements of (Ro (Le., p!, q!, r~, P"P. and q"q. for 
II- ~ v, p"ro, p"q., q"ro). In this table, we see that 

Hal' g"·p"P. + o"'q"q.] = -ql cos (J(ro - 2p4) 

- q4 sin (J(ro ~ 2PI) = [al,2p4rO]. (4.8) 

In the same way, we see that 

g"·p"P. + 0'" q"q. - 2p4rO 

commutes with all the generators of the maximal 
compact subalgebra of OC, llu(3) = (ak' b;', c{, en, 
but not with the other generators of oc. Moreover, 
it is enough to look at the commutators of £3 and of 
a1 with the 2-by-2 above-mentioned products in 
order to be convinced that no second-degree ex­
pression in (Ro can commute with all oc. Therefore 
there exists, in the enveloping algebra of (R, no 
(global) invariant of degree 2. On the other hand, 
the expressions 

and 

C 2 = p~ + p~ + p~ 
+ i(P4 - ro)2 + q~ + q~ + q~ + q! 

and therefore also 

-c = C2 - tc~ 

= p2 _ p! + q2 + q! _ 2p4rO 

(4.9) 

(4.10) 

(4.11) 

(where p2 = :E~ p~, q2 = :E~ qi) commute with 
the llu(3) = (ak, b~', cr, c~) subalgebra, and of course 
also with the ideal (Ro. An inspection of C1 and C2 

shows (once more) that Dg is reducible on llu(3) into 
an 8-dimensional ("orthogonal") representation, 
EB O. We have 

Thus 

m2 = _ g"·p"P. 

= C - 2C1ro + q2 + q! + r~, (4.12) 

where C and C1 commute with llu(3) and (Ro, and 
therefore with the sub algebra llu(3)· (Ro of (R. 
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Remark. By using the inclusion a2 EB a2 C bo, 
and the already mentioned fact concerning the in­
clusion a2 C a3 = h3 (and its consequence on 6-di­
mensional representation of a2), we can get a 12-
dimensional "orthogonal" representation of ~, 
which is real-irreducible-because it can be obtained 
from a 6-dimensional representation of ~u(3) by 
doubling the dimension of the (complexified) 6-di­
mensional representation of ~. With the correspond­
ing inhomogeneous algebra, we have a quadratic 
invariant, but in order for it to give us what we 
want, it is necessary for there to be, among all the 
equivalent representations, one that, on a certain 
,c. C ~, splits into DN EB (something else); and 
even then, we have to add at least two supple­
mentary u(l) in order to get a unification. In our 
case, we can also have a global invariantlO but it 
will be of higher order (probably of order 9-a 
determinant-), and thus a most unwieldy expres­
sion, in which it is very difficult to find a mass 
formula. 

We now express the "correction" in terms of 
internal quantum numbersl5

; but before, we show, 
by use of a "~1(3, C) contracted model", why it can 
be considered that we obtained a correction term. 

Let u E (R = ~·(Ro and set u = a + b + r, where 

a E a = ~u(3), b E b = J~u(3), 

a + b being a Cartan decomposition of ~1(3, C) = ~, 
and r E (Ro. The commutation relations of ~ (Table 
III) give us the following relations: 

[a, a] a, [a, b] = b, 

[a, (Ro] (<po + c:lo) C (Ro, 

[b, bl = a, [b, (Rol = (Ro. 

lf we multiply the generators of band (Ro by pER, 
and set b' = pb, (R~ = p6l.~, we get a L.a. (R(p), 
isomorphic to (R = (R(I) for p ~ 0, the structure 
constants of which depend on p, and can be written 
as follows: 

(R(p) : [a, a] = a, [a, b'] = b', 

[a, (R~] = (<p~ EB c:l~) C (R~, 

[b', b'] = / a, [b', (R~] = p(R~; 

i.e., the structure constants of (R(p) are those of (R, 
except for the last two types of commutators. If 
p ~ 0, (R(p) has for a limit (in the sense defined, 
e.g., by Segapo) the limit-algebra (R(O) ~ a· (bo EB (Ro), 

iii M. Flato and J. Sternheimer, Compt. Rend. 259, 3455 
(1964). 

16 1. E. Segal, Duke Math. J. 18, 221 (1951). 

semidirect product of ~u(3) by an Abelian (8 + 
9 = 17-dimensional) ideal, defined by the repre­
sentation ad. EB Dg (which, as we have seen, is 
reducible on ~u(3». 

We develop here some remarks on the physical 
meaning of the notion of limit-algebra, also called 
contracted algebra. 17 It is well known that, in 
physics, the commutation or noncommutation of 
quantities, as well as the commutatiors themselves, 
characterize the "level" in which we are working. 
For instance, at the "classical level", everything 
is commutative (only functions are considered); 
at the "quantum level", the p's (e.g.) commute, 
and also the q's, but [p, ql ~ O. At a "finer" level, 
the p's (e.g.) do not necessarily commute. On the 
other hand, a very small change in structure con­
stants (in commutation relations) do not change 
the level in which we are working, and besides, 
from the experimental point of view, a suffi­
ciently small change in the structure constants 
cannot be observed. These considerations may give 
physical meaning to the notions of "neighboring" 
algebras (in the sense of Segal, i.e., with" neighbor­
ing" structure constants) and of limit-algebra, of 
which we have here shown an example. Moreover, 
it is not very surprising that in the limit we get 
what can be called an "extended ~u(3) model", 
containing ~u(3) and the squared mass-operator 
[and besides it happens, as seen later, that the 
operators used in the mass formula are composed of 
elements of the subalgebra ~u(3) ·(Ro, of which C 
and C1 are invariants], since we know that, phe­
nomenologically, ~u(3) has given, to a certain 
extent, suitable results. 

In the limit-algebra (R(O), C and C1 are global 
invariants. In (R(p), we have [b', Cn C ~, and 
[b', C'l C p(R~(R6, where C', C{ denote the elements 
corresponding to C, C1 in (R~~ (set of linear combi­
nations of elements r'r{, where r', r{ E (R6) and (R~. 
For very small p, [b', Cn and [b', C'l are very small 
compared to, e.g., [a, m'2] (where m'2 = _g'''p~p~), 
i.e., 

-2C{r6 = -20{r6 + El(P), 

and C' = 0' + E(p), where 0' and Or commute 
with all (R(p) and E(p) have commutators [with (R(p)] 
very small compared to [a, m'2]. In the L.a. (R(p) , 
isomorphic to (R for p ~ 0, we thus have the formula 

m,2 = 0' - 20{rri + q,2 

(4.13) 

17 E. P. Wigner and E. Inonii, Proc. Nat!. Acad. Sci. 
U. S. 39, 510 (1953). 
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Therefore, Eq. (4.12) gives us (after expressing 
the correction term as a function of internal quantum 
numbers) a mass formula in our original sense (cf. 
Introduction), up to a perturbation which is as 
small as we want. Rigorously speaking, we consider 
that we do here a contracted unification of OC, CP, 
and u(l), which is also a unification of ~I(3, C) 
contracted to ~u(3)· bo, of a u(l), and of CP con­
tracted to ~o(3)· (ilio EB cpo) where ilio is an order-3-
Abelian ideal. We further notice that, in these 
contractions, the commutation relations of the sub­
algebra ~u(3) ·illo (in which are contained the squared 
mass-operator, its correction, and the expression of 
that correction in terms of internal quantum num­
bers) are the same as in the unification ill. 

Now, set 

£~ = (I + 2 ad o:q4)£a = exp (20: ad q4)£a, 

and take CP = £~. CPo. Denote the generators of £~ 
by J i, Ni, the Ji's being generators of the ~o(3) in 
£~. Denote by 

R = (Rk) = (lc~, lW, laa) 

the II rotation vector" of £a (k = 1, 2, 3): 

[R., Ri ] = E;;kRk, 

and set J = (Jk), q = (q], q2, qa). From the defini­
tion of £~, we have then J = R + o:q and NJ 
tCa - o:q4, from where we deduce 

~2 = (1/0:2)(J _ R)2 

= (1/a?)Ct + R2 - J·R - R'J), (4.14) 

i.e., 
q2 = (1/0:2)(J2 + R2 - 2J .R), 

where J ·R stands for the symmetrized expression 
!O·R + R· J). Moreover, we have 0: = o:(J), fixed 
for fixed J. 

Now, we consider R represented linearly in an 
operator space e; we have 

R = e®E, J = e®E', 
where E and E' are 3-dimensional real vector spaces. 
If (which is always possible) we suppose that a 
duality between those spaces is defined, we can define 
the symmetrized scalar product J ·R E e. We also 
notice that the definition of e ® E is actually that 
of irreducible tensor operators (in the sense of 
Wigner-Racah). 

If A is a matrix belonging to SO(3) in its 3-di­
mensional (real) realization, since it conserves the 
scalar product of vectors, we have 

(AJ·AR) = J·R. 

However A E Aut (~o(3» also, since it is easy to 
check that 

Aut (~o(3)) = Int (lSo(3» ;:::::: SO(3). 

Thus, [AR;, AR;] = EiikARk' and similarly for J. 
Moreover, it is always possible to choose A so that, 
when taking the eigenvalues of the corresponding 
operators (represented in e), AJ = (0, 0, AJa); 
and thenR·J = (AJa) (ARa) (for given J). 

It is necessary to stress one point, in regard to 
what we have done here, and in general, with the 
expression of a mass formula. The treatment done, 
concerning applications to finite-dimensional classi­
fication representations, is purely formal, because 
the spectra of the considered operators can be 
calculated only in infinite-dimensional representa­
tions. Finite-dimensional representations will there­
fore have to do with fields, or with a so-called 
"subquantum level". 

Now, we do the identification R = 1 (isospin), the 
product 2J ·R defining (PC)Ia = ARa, and giving 
2)...(J) (PC)Ia for fixed J in the formula. Here, 
following standard convention, PC stands for the 
particle-antiparticle passage. We can also identify 

ro = (3(PC)Q + "'I(PC)Ia, (4.15) 

which defines the electric charge Q [by means of the 
added u(l)], and q! = _(3,2(t y2) (as q4 is a difference 
of "noncompact generators"), or, if it seems more 
convenient, 

2 212 (3,2( 1 y2) q4 = -71 - 4 (4.16) 

(as q2 contained also an 12 term), where Y is the 
hypercharge, and {3, "'I, (3', 71, are "identification 
constants". Now if we apply the Gell-Mann­
Nishijima formula [which relates the added u(l) 
to the enveloping algebra of OC], and put {3 + "'I = 0, 
we have the formula 

m2 = (C + 0:-2t) - C]{3(PC)Y 

+ (0:-2 - 71 2)12 - 2(C] ~ + 0: -2)...(J»(PC)Ia 

+ {3 U a Y + ~2 I~ + ({32 - {3,2)t y2. (4.17) 

We can remark here that the identification R = 1 
and J = exp (20: ad q4)R, i.e., the fact we get J 
from 1 by a special automorphism of the unification 
ill (which, in view of our identification of q!, is 
closely related to the strangeness S) is fully com­
patible with the phase relation 

(_l/(I-J) = (_1)8, (4.18) 

which we can obtain from the already mentioned 
relations (_l)2I = (-1) Y and (_l)2J = (_1)B+\ 
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and which shows that, for a fixed S, I and J are 
not independent; this automorphism expresses a 
kind of "J-I symmetry". 

Moreover, the presence of J2, of a = a(J), and 
of A(J) in the formula hints at a kind of ClJp assign­
ment" that we get by fixing J when going from 
representations of <R to that of the classification 
L.a. ~ (J does not appear in the intersection <P (\ ~). 

If fJ2 = fJ,2, we have no y2 term, and it can 
be shown that the experimental situation suggests 
such an identification. In the formula, we have two 
kinds of coefficients: C, ClI a, A(J) depend a priori 
(by their origin) on the classification representa­
tion, while the others (fJ - and fJ' -, 6, and possibly 
7]) are "identification coefficients", which do not 
necessarily depend on the representation. We thus 
get the following mass-formula: 

m2 = m~ - a(PC)Y + bI(l + 1) 

+ cYla - d(PC)Ia + eI~ (4.19) 

(+fy2 eventually), where m~, a, b, d depend, a 
priori, on the representation, and c, e, (and f) do 
not. As it is easy to verify, the average of I~,on an 
isomultiplet is 

(4.20) 

Thus, identifying fJ2 = fJ,2, we get the strong mass­
formula 

(m2
) = m~ - a(PC) Y + b'I(I + 1), (4.21) 

where b' = b + Ie (and is numerically very close 
to b, as is seen later), and the electromagnetic cor­
rection 

cYla - d(PC)Ia + e[I~ - lI(I + 1)], (4.22) 

the average of which on each isomultiplet is O. 
It is interesting to notice here that, even with some­
what different identifications of generators appear­
ing in the "raw" mass formula, the strong mass­
splitting given by (4.21) will be similar. 

For completeness we now give some indications on 
the experimental verification of the mass formula, 
following J. Sternheimer (Ref. 15, and private 
communications). It is seen that we can consider 
the (identification) coefficient of y2 to be 0, since 
the influence of such a term is less than half of the 
experimental margin (while that of the I~ term is 
similar to the margin); m~, a, b are much greater 
than c, d, e (which can be considered as constant 
when J varies), c and d being greater than e. This 
shows that the numerical contribution of the "in­
variants" C and CI in the formula (and that of a-I) 

is greater than that of the "identification co­
efficients" . 

If we apply the strong mass-formula 

(m2
) = m~ - a(PC)Y + b'I(I + 1) + fy2 (4.23) 

to the case of the basic ! + octet, one finds - f ~ 
0.001 ± 0.0015 Bey2, and therefore, in that case, 
it is fully justified to identify fJ2 = fJ,2, so that f = O. 
For the i + decuplet, we have phenomenologically 
I = 1 + !Y, and so 

y2 = 41(1 + 1) - 6Y - 8. 

In that case, there will necessarily be a compati­
bility condition, which is written later, as a con­
sequence of (4.23), and so nothing opposes the 
identification f = O. We see that the formula (4.21) 
seems very well verified for the t+ spin; besides, 
we see that it is possible to consider the identifica­
tion coefficients (which appear in the electromag­
netic correction) as constant as the spin varies. 
Therefore, the mass formula will be taken without 
a y2 term. For the I~ term, we first notice that I: 
itself becomes appreciable only for IIal = i or 
more. Next, we see that, in the case of the! + octet, 
the coefficient of Ii is about 2 x 10-2 Bey2, while 
c ~ 6 X lO-a Bey2 and d ~ (8.5) X lO-a Bey2, 
and that these values are also appropriate in the 
case of the i + spin (for other spins, there are yet 
no experimental informations on the electromag­
netic correction), the coefficients a, b, and m~ being 
much bigger (the smallest, b, is about 9 x 10-2 Bey2, 
for these two spins). So, on one hand, the introduc­
tion of an I~ term is not appreciable in the strong 
formula, and on the other hand there are now only 
two indications in favor of such a term in the mass 
formula. 

Let us now denote by mE the mass of the particle 
E(Jp, I, Y, mE), or the strong mass of the corre­
sponding isomultiplet. In the case of the basic ! + 

octet, we get from (4.21) the following compatibility 
relation: 

4(m~ + mi) = 3m~ + 5m1, (4.24) 

which is verified with a precision of 0.05% for an 
experimental margin of 0.08%, while the Okubo­
Gell-Mann formula shows a difference of 0.5% for 
the same margin. Moreover, we get the following 
electromagnetic compatibility relation (there are 
two such relations, if we neglect the Ii term15

): 

(m~- - m~o) + (m! - m!) = (m~- - m~+) (4.25) 

from (4.19), which is verified with a precision of the 
same order than the well-known corresponding 
linear relation. 
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Obviously, the same formulas hold for antiparti­
cles. In the case of this octet, the only experimental 
indication in favor of an Ii term is the value of m2:-, 
which is found by the most recent experiments to be 
about 1197 MeV (instead of 1196 as before). 

In the case of spin ! +, with the quadruplet .l, 
the triplet YI~' the doublet ZI~' and the singlet 
!r, we find a strong compatibility relation: 

(4.26) 

which is verified with a precision of 0.035% for an 
experimental margin of 0.18%. There are also 
3 (or 4, if we neglect the I~ term) electromagnetic 
compatibility relations, of which only one can be 
verified at present (and the experimental situation 
is not very clear): 

(m~" •• - m~".-) + (m~+ + -m~.) 
(4.27) 

The most serious indication in favor of the Ii term 
is given by recent values of mass differences of the .l 
particles, for it seems now that m/l.++ is very close, 
but slightly superior, to m/l.+-

For spin -! +, it seems now possible (as predicted 
in Ref. 15) that n (?, 1, 0, 1650 ± 6) has a spin 
t+, and that it is also the case of the particle 
Z~ (?, t, -1, 1816 ±3) (also considered with that 
spin in Ref. 15). With NI't(t+, !, 1,1688) and 
Yo't(!+' 0, 0, 1815), we see that the compatibility 
relation [which is a consequence of (4.21)] 

4(m~". + m~,.) = 3m~,. + 5m~ ••• (4.28) 

is verified with a precision of 0.12% for an experi­
mental margin of 0.3%. We also notice that there 
exists at present no other formula that gives a 
suitable mass for Z~ (the Okubo mass formula 
gives 1865 MeV, and the other formula are worse). 

For mesons of negative parity, we remark that our 
D9 (real) representation of 13(3, C) may permit to 
classify the nonets of presently well-established 
mesons (pseudo-scalars and vector mesons) with 
spins 0- and r. It is found phenomenologicallylS 
that it is convenient to replace in formula (4.21) 
the hyper charge Y by a quantum number n that 
takes integer values (maybe a kind of principal 
quantum number) and therefore to replace (4.21) 
by the formula 

(m2
) = m~ + an + bI(I + 1). (4.29) 

For spin 0-, with 1], K, 7r, and (1]27r), we find, by 
elimination of m~, a, b, 

8nK - 3n .. - 5n, 
n(,2r) - n, 

2 
3 

(4.30) 

with a precision better than 0.1%. If we take (in 
accordance with the above relation) n, = 1, nK = 2, 
n .. = 3, n(,2r) = 4 [thus, n distinguishes between 
1] and (1]27r)], we geeS a compatibility relation that 
is verified with a precision of 0.08% for a tolerated 
margin of 0.15%. 

In the case of spin r, we take p, K*, cp, and w. 
Here, the experimental situation does not allow 
us to attribute, with certainty, values of n to the 
different particles; if we take for n the values 0, 2, 4, 
and 1, respectively, for the above-mentioned parti­
cles, we get a very well verified compatibility rela­
tion. In both cases, by attributing different values 
to n, we may predict the masses of some particles. 
[One can also introduce such a "principal" quantum 
number by "degeneracy-lifting" considerations in 
Riemannian manifolds. IS] 

In the case of negative parity for baryons (and 
positive for mesons), we cannot say, at present, 
anything III favor of, or against, the proposed 
formula. 

CONCLUSION 

We end this work by three remarks. The first 
(which we develop in more detail in other papers­
see, e.g., Refs. 13 and 19) is that it must be worth­
while to consider the "exceptional" unification 
eu(2, 2) = U(rJ', eu(2, 1» [thus taking eu(2, 1) as 
the internal L.a.]' because of (among other reasons) 
the physical meaning of the conformal group, the 
Lie algebra of which is eu(2, 2), and then, for 
instance, to try to apply [by a study of the in­
variants of eu(2, 2)] our treatment of the squared 
mass-operator (or a similar one) in order to get a 
mass formula (or look directly for the spectrum of 
the mass-operatorI3

). 

In that case also, difficulties due to the problem 
of unitary representations of SU(2, 2) (or of repre­
sentation of its Lie algebra) will arise, and this also 
leads us to our last remark. 

The second remark concerns finite "internal" 
groups: several attempts have been made in this 
direction. It is true that (non-connected) extensions 
of [resp., by] P by [resp., of] finite groups (or "uni-

18 M. Flato, D. Sternheimer, J. Sternheimer, J. P. Vigier, 
and G. Wataghin, Nuovo Cimento 42, 431 (1966). 

19 M. Flato, D. Sternheimer, and J. P. Vigier, Compt. 
Rend. 260, 3869 (1965); D. Bohm, M. Flato, D. Sternheimer, 
and J. P. Vigier, Nuovo Cimento 38, 1941 (1965). 



                                                                                                                                    

SYMMETRIES OF STRONGLY INTERACTING PARTICLES 1955 

fications" of these-in the sense of coset-products) 
may give a mass-spectrum (spectrum of the operator 
representing -g"·p"P.), though no real mass for­
mula. But, as will be shown, this is about the only 
feature of some interest to be expected from such 
a treatment, that on the other hand raises many 
difficulties which cannot be overcome [such as 
natural derivation of charge-independance (which 
is usually supposed ad hoc in this type of models, 
if we want the discrete "internal" group to play 
the role of invariance group), nonpossibility of 
getting pure mesonic states, etc.]. This being said, 
we may proceed freely to our last remark. 

of the p,,'s in finite-dimensional representations, 
in order to give a nonformal sense to the mass 
formula, etc ... , we must study infinite-dimensional 
(unitary or "local") representations (and these do 
not always give the wanted result concerning the 
eigenvalues of the operators appearing in the 
formula). We have thus introduced a classification 
principle, which enables us to give a formal sense 
to the (then experimentally well verified) mass 
formula, and to classify the particles as usual. 
Mathematically, this principle raises the problem 
of the connection between some infinite-dimensional 
representations (of the unification) and some finite­
dimensional representations (of the internal sym­
metry). Physically, this principle too suggests the 

We have seen that, because of the noncompacity 
of the groups we consider, because of the nilpotency 

,,1 
[ 

a. 

TABLE La. Ill(4, R). 

b. a'I a'. a'. b', b'. d, d. 

---1----1----1----1--- -------------1-----1----1-----1----1= 
a, o aa -a, o b. o a'. -a'. -2(d.-d.) -b' • b', o b'l -b'l 

1----1----1-----1--------------- ---1-----1-----1-----1--- -----
a. -a, o -b. o bi -a'a 0 a'i b', -2(d.-dI) -b/l -b', 0 h'. 

1----1-----1----1--------------1----1----1-----1------
a. a. o -hI o a't -a'l 0 -b't b'I b'. -b'. 0 

--1====1===1===1=========1====1====1====1=== = 
hI o h. -b. o -a. h', o a'. 

1----1----1-----1--------------- ---1-----1-----1-----1--- -----
h. -b. o o -al b'a 2d. b'I a'a o a', 

1----1----1-----1------------------1-----1-----1-----1-------
b. b. -bi o -a, ai o b'. b'I 2d. a', o a'a a'a 2a'a 

--1'====1==='1====1=========1====1====1====1===-
a', o a'. -a'2 -2dl -b'a -b' 2 o o b. b, 2h, bi bi 

----1----1----1-------------1----1----1-----1------
a', -a' a o a', -b'a -2d. -b', -a, 0 b. o h. 2b. b. 

--------1----1--- -----------1-----1-----1-----1-----
a'a a', o -b' 2 -h'I -2d. o b, b. o b, b. 2h. 

====1====1====1=========1,==='1==='1====1==== 
b'I 2(d,-d,) -b's b', o -a'. -aft o -b. -b. o a. -a, o al -a1 

1----1-----1----1-------------1----1----1-----1------
b'. b', -b't -a'a o -a'l -ba o -bi -a. o -a. 0 a. 

1----11----1-----1--------------- ---1-----1-----1-----1--------
b'. -b' 2 b'. -a't -a'l o -b. -hI o o a. -a. 0 

--1====1==='1==='1========1====1'===1===1==== 
dl 0 b'2 -b' • -2a'l -a'! -a'a -2bl -b2 -ba 0 at -aa 0 0 0 

1----1----1-----1--- ------------ ---1-----1----------1--- -----
d. -b'l o b', -a'l -2a'2 -a'a -bi -2b2 -ba o a. o 0 0 

1----1----1-----1------------------1-------------1----1-
d. b'. -b't o -a'l -a/t -2a'. -b i -b2 -2ba a. o o 0 0 

TABLE: 1. h. {1l(4, R). 

di -a.+b'. a,+b', bI-a'l o -a. a, 1" {3. -13 f t 

a.+b', d, b'l-al b2-a'2 a. o -{3'. 1" {3I 

-a,+b', b'I+aI d. bl-a'a -a. o -13'1 1" 

-d. 
bl+a'l b2+a'2 ba+a'a -d, 1" -f3'1 {3. o -a', 

-d. 

{3. 1'a -{3'1 a'a o -a'l 

-fJ'2 {3. 1'1 a'I o 
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existence of a possible connection between our 
quantum level and a so-called "subquantum level", 
or more traditionally, between states and fields. 

APPENDIX. SOME LIE ALGEBRAS 

We give here, in skew-symmetric tables, the 
commutation relations of three L.a.: 61(4,R), 
~u(2, 2), and ~1(3, C), and those of the unification 
U(<9, tH(3, C), u(l» we have constructed (the ideal 
<Ro being there commutative). We also give the 
basic representations of these L.a., and indicate 
how the representations DN and D4 of £ appear in 
them. The tables are expressed according to a certain 

basis of the considered L.a., as are the basic repre­
sentations, which are given in a condensed way by 
a matrix constructed as follows: if the element x 
is represented by a matrix, the coefficient of which 
is A at a certain place, we write AX at this place; 
and if, in addition, y is represented by a matrix 
with J.L at the same place, we write AX + p.y, etc. 
For a well-chosen basis (and a semisimple L.a.), 
we can get all the fundamental invariants (Le., a 
basis of the polynomial ring which is the center of 
the enveloping algebra) as coefficients of the formal 
symmetrized characteristic polynomial of the matrix. 

For 61(4, R), (Table Lb) we give the basic four-

TABLE II. a. {\U(2, 2) 

,,1 
[ 

a, G. a. b. b. a'. a'. a'. ., b', b'. b', c. 

-----------------------------------------1----1--; 
a, o a, -as o b, -1>. o a', o o b', -b't 0 0 

---------------------------------------1----1--_1 
a. -G, o -b. o -a', o a', o -b' • o b', 0 0 

-b, o a'. -a't o o -b'} 0 0 0 
--==============='1===1== 

o b, -b, o -a. < .. c, o o a', c. o 0 b', 0 
---------------------------------------1----1--_1 

bJ -b. o a, o o <, o a'. o 0 b'. 0 
---------------------------------------1----1--_1 

b. -b, o -a, a, o o o c, o o c, b'. 0 
--==============='1===1==1 

a', o a'. -a'l o o o a. -a. b, c. o 0 0 -b'l 
---------------------------1----1---; 

0 0 -b't 

c. 0 -b'l 

a'J ~ __ o_~ __ o_~ __ o_~ __ o ___ a_' ___ b. ___ o ___ C'_I---I----I---I 
a'. a', -a', 0 0 0 -c, a, -a, 0 b. 0 0 

-----------------------------------------1----1--; 
0, o o o -all -aft -a'a -0, -b. o o o 0 -c. -c, 
--=============='1===1==1 

o b', -b't o o -Ca o o o o -a. a. -b, -a'l 
---------------------------1----1---

b'. -b'a o b', o -c, o o -co o o a. o -a, -b, -a', 
---------------------------------------1----1--_1 

b', b'. -b't o o o -c, o o -c, o -as 0 -b. -a.'. 
-----------------------------------1---1----1----1--

c, 0 0 0 -b', -b', -b'. 0 DOc, b, b, b. 0 -c, 

-c.-- 0 0 I 0 0 0 0 b', b', b', c, a', a', a'. C, 0 

TABLE II. b. {\U(2, 2) 

ao+ib, 0 -a'l -a't -ala; C, -c. 
ia,-b,+q, 2(-p,+p.) 2(ip.-p.) 

+'a.-b. a', 0 -a, a, b, b', 

-a2-ib2 a', a. 0 -a. b. b', 
-ia,+b,+q, -2(ip.+p.) 2(p,+p.) 

+'a.-I>. a'. -a, a, 0 b. a', 

az-ib, c, b, b. a. 0 c, 
-2(q,+q.) 2(iq.-q.) ia,+b,-qo 

+ia.+b. -c, b', b'. b'. -c. 0 

-a. +.1>, 
-2(iq.+q.) 2(q.-q.) -,a,-b,-go 

+'a.+b, 
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TABLE III. a. 5l(3, C) 

,,1 ]/ bl b, b. b, b~ b; b;' b~' b;' CI c. 
, , 

> a, a. CI c. 
[ [ 

al 0 u, -ex" 0 b, -b, -2c, -b; b~ -2c, b" - a W 2b, -bi 2bi' -bi' at 

a. -a. 0 a, -b. 0 b, bi 2(c, + ea) -bi W 2(c; + cD - bi' I I s-" I -W' -w a, 
... 

a. a, -a, 0 b, -b, 0 -b; bi -2c. -b~ bi' j-2C' 2b; j-b;' 2b;' a. 

b, 0 b. -b, 0 -a, a, -2c; -b;' W 2c, b; I -b~ 2bi' -bi '-2b; bi bl 

b. -b. 0 b, Ua 0 -al b~f 2(c; + c;) -bi b; -2(c, + Ca bi -w -b~ b~ b~ b. 

b. b, -b, 0 -a, a, I 0 -b~' 

-
bi 2c, -b; b~ 2c~ b" - . W 0 

b~ b; -2(c, + e3)! -bi b~' -2(c; + cn -bi' -u. 

b; -b~ bi 2c, -b;' b~' 2c; a, 

bi' 2c; b" - . b~' -2c, b; -b; 0 

b;' bi' -2(c; + ci) -bi -b; 2(cl + ca) bi -ba 

W-W b~' 2c; b; -bi -2G. b, 

c, -2b(' b: b; -2bi b~' bi' -2a, 

c. b: b; -2b; bil b~' -2b; al 

ei -2b;' b~' b;' 2bi -b; -b; -2b, 

& b;' b" • -2b; -bi -b~ 2bi b, 

TABLE III. h. {l1(3, C) 

Ca + ic~ -as - iba a2 + ib2 
+b~ + ib~' +b~ + iW 

as + iba 
. , 

-Ca - tea -al - ib1 
+b~ + ib~' +c1 + ic~ +bf + ib~' 
-a2 - ib2 al + ibt • I 

+b~ + iW +bf + ibf' -CI - 'tel 

and six-dimensional representations as {ll( 4, R) and 
as ~()(3, 3). The correspondance between them is 

fJ" == !(b .. - bD, fJ~ = !(bk + bD (k = 1,2,3), 

and 'Yk = !Cd .. + d. - d;) (ijk cyclic here). 

The "compact generators" (those of a maximal 
compact subalgebra) are (ak' aD, or (a .. , an. In the 
four- and six-dimensional representations, respec­
tively, we get DN(.£) and ad .£ with the represent-

-

bit -2c: b~ -bi 2c. -bi 2b;' b; -2b' b. 

a. -a, 0 b. I-b, 2a, -al 2b, -b, I bi 

0 u, -ba 0 h, -a, -a,l-b, -b, b~ 

,-al 0 b, -bl 0 -aa 2a, -b3 2b3 b~ 

b. -b, 0 -a. a, 2b, -b, -2a UI hi' 

0 b, aa 0 -at -b, -b, a, a, b;' 

-b, 0 -a, a, 0 -b, 2b, 1 
a. -2a W 

a, a, -2b, b, ba 0 0 0 0 C, 
r 

a, -2a bt b, -2b 0 0 0 0 c. 

b. b. 2a, '-az -a. 0 0 0 0 c;, 

b, -2b -a l -a, 2a. 0 0 0 0 ~ 

ing matrices of (a", bk ) (we have a.l: = al: + a', 
b" = /3" + /3D. 

We obtain a subalgebra isomorphic to .£ with, 
e.g. [instead of (ak, b .. ], 

or 

(al. a2. as; '12. -f3~, f32). 

(aI' a2. aa; fJa. 1'3. -/30. 

Any two of these, having the same compact 
subalgebra [(a,,), or (am generate a ~()(3, 2) sub­
algebra with a 10th element (an a~, or exi)' We get 
D4(.£) with .£ written as (exf, a~, ex~; '12, /33, -/3D in 
the four-dimensional representation. This represen­
tation is not equivalent to DN • 

For ~1l(2, 2) = ~()(4, 2), we have given here the 
basic four- and six-dimensional representations 
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TABLE IV. Commutation relations [ll{(3, C), ideal], with C = cos 8, S - sin iI. 

I 

I I " p. p. p, p. q. q, q, q. r. 
[ 

al -q.G -q,8 l-q'G +q,8 -q,8-q,G -q.G-q,8 (P. +p. -ro)G p,G+p,8 -p,8+p.G (p. +P. -ro)8 2(qlG+q,8) 

a, q,G -q.8 -qlG -q,8 q':3-q.G -q,G+q,8 p,G-pa8 (-PI +p, -ro)C (PI -P' +ro)8 p,8+p,G 2(g,G -g,8) 

a, 2p, -2Pl 0 0 q2 -ql q. -g, 0 

bt -qI8+q,G -q,8-g,G q,G-g,8 -qI8+q.0 - (PI +p. +ro)8 -P,8+P3G -p,0-p38 (pl+p,+rO)O 2 ( -q18 +q.G) 

b, Q,8+Q30 -q18 +1<0 -qlG-q.8 -q,8-g.0 -p,8-p,G 

b, 0 0 -2p. -2p. -q. 

b'l qlC+q.8 g,G-q38 q,S+q,O q,C+q.S (p, +p< +rc)O 

b', q'J.C-q3B -11G-q.8 ql8-q,G -q,G+g,8 -p,O+p38 

b', 0 2p, 0 2p, q, 

b"1 gIS-q,C q,s+q3C -q,C+q,S QI8-q,C ( -PI -p, +ro)8 

b"2 q,8+q,C -118+q,C -qlC-q.S -q,8-q,0 p,8+P3C 
--

b"a -2ps 0 2Pl 0 -q, 

c, -(Pl+P.) -P' -po -(P.+P') 0 

c. 2p. 0 0 2Pl ql 

C'l 0 -p, P' 0 -2q. 

c'. 0 2p. -2p, 0 q. 

(Table ILb), with the basis that can be represented 
in four dimensions (in terms of the elements of 
~r(4, R) by 

al = i'Ya (or i'Ya) ; a: = -Q~ or -i'Y2; 

a2 = -Q~ (or -Q~); a~ = i{31 or -Qa; 

aa = i{3~ (or i{3~) ; a~ = Q~ or -i{3a; 

bl = 'Yz or -iQ~; b~ = {32 (or (32); 

b2 = -iQa or -{31; b~ = iQI (or iQI); 

ba = {3a or iQ~; b~ = -{3' (or -{3D; 

C2 = Q2 or i'YI; 

CI = {3~ or -{3~; 

Ca = 'Yl or -ia2 • 

If we set Pk = a' + bJ" P4 = C1 + Cz, we get <:P 
with (a.; be; p,.). In the first way, above, the PIl'S 
are represented by triangular matrices; as far as <:P 

is concerned, we can multiply all of them by any 
complex number. The second way is the canonicaf 
representation of ~u(2, 2), and in it, {lu(2, 1) is 
immediately seen as order-3-matrices. In Table ILb, 
we have given only the first way; the second can 
be constructed immediately (from Table Lb, for 

(p, -po -TO)S (pl-p.-rolO p,G-p,s 2( -q,s -q,G) 

-q. -ql -g, 0 

p,C+p38 -p,S+P'C (PI +p, +ro) S 2(q,0+q,8) 

(PI -p. -ro)G (-Pl +p, -ro)8 -p,8-p,C 2( -g,G +q,S) 

gl -q, -q. 0 

-p,s+p,C I -p,C-p,s (PI +P. -TO)C 2 ( -q,8 +1'C) 

(-p, +p, -rc)S (-PI +P. -ro)C -p,C+p,8 2(q,8+q,C) 

q, q, -q, 0 

q, q. I 0 2ro 

-q, -q. q, 0 

q. -q, 2ql 0 

q3 -q, -ql 0 

example); there we set qo = Ca and qk = b~ - a~, 
q4 = Cz - CI • (In order to get the invariants by the 
above-mentioned method, we have to "normal­
ize" the nilpotent p/s and q/s by suppressing the 
factor 2 in front of them.) We get a {lo(3, 2) sub­
algebra with (ak, C2 ; bk, b1) and a {lo(4, 1) subalgebra 
with (ak' a~; bk , Cl)' 

For {lI(3, C), we have taken the basis (ak' b" CI , ca) 

of ~1(3, R) and completed it into a basis 

of ~I(3, C) (Tables III). We get {lu(2, 1) subalgebras 
with the generators 

(aa, W, cit 2cf + c~; bl • b2 • bL bD 

or with (ai' W, cit 2c~ + ci; bz , ba, b~, b~), 

and a maximal compact subalgebra {lu(3) with 
(a., b,', ci, cD. We realize a subalgebra ~ £ as 
~{)(3, C) by (ak; bk), and three others, as ~1(2, C), 
with the base elements H -ak, W, c~i bk, b~, ck), 
which we denoted by £k (k = 1,2,3); here, we have 
set -Cz = CI + Ca, and -c~ = ci + c;. Thus, {l1(3, C) 
can be considered as "coupling", in a nontrivial 
way, three "relativistic rotators", i.e., three sub­
algebras isomorphic to £. 
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A Manifestly Covariant Description of Arbitrary 
Dynamical Variables in Relativistic Quantum Mechanics 
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The concepts of instantaneous observables and dynamical variables are analyzed and generalized 
to arbitrary spacelike hyperplanes. A formalism is developed which gives the basic equations of relati~ 
vistic quantum mechanics for dynamical variables on arbitrary hyperplanes a manifestly covariant 
form. A covariant linear transformation on the Poincare generators introduces the hyperplane gen­
erators which yield commutation relations displaying a clear separation of the kinematical and 
dynamical properties of dynamical variables. An axiomatic study of the center-of-mass position 
operator yields the uniqueness of the operator and completes the physical interpretation of the 
hyperplane generators. The Poincare invariance and hyperplane independence of the scattering 
operator is related to asymptotic conservation laws in the hyperplane formalism, and finally, a 
nonlocal, hyperplane-dependent, field theory of free spinless particles is considered. 

INTRODUCTION 

T HIS paper contains a geometrical analysis of 
the concept of a dynamical variable as it appears 

in the framework of the conventional foundations 
of relativistic quantum mechanics.1 The analysis 
is presented in four stages. First, the dominant con­
cepts of nonrelativistic quantum mechanics-ob­
servables and measurements associated with instants 
of time-are generalized to the relativistically in­
variant concepts of observables and measurements 
associated with arbitrary spacelike hyperplanes.2 

Second, the transformation equations, commutation 
relations, and Heisenberg equations of motion as­
sociated with the geometrical invariance principles3 

of relativistic quantum mechanics are written down 
and discussed for arbitrary hyperplane dynamical 
variables. A notational development is employed 
here to effect a cleancut separation between the 
dynamical equations of motion and the purely kine­
matical transformation properties of hyperplane var­
iables in a manifestly covariant manner. I believe 
this is a novel result. Third, the presence of inter­
actions, via the old-fashioned device of separating 

1 E. P. Wigner, Ann. Math. 40,149 (1939); Nuovo Cimento 
3, 517 (1956); R. Hagedorn, Nuovo Cimento Suppl. 12, 73 
(1959); A. Barut and A. S. Wightman, ibid. 14, 81 (1959)· 
~. Fabri, Nuovo Cimento 14, 1130 (1959); A. S. Wightman; 
In Dispersion Relations and Elementary Particles, C. de Witt 
and R. Omnes, Eds. (John Wiley & Sons, Inc., New York 
1960), p. 159. For a concise, up-to-date discussion see R. F: 
Streater and A. S. Wightman, peT, Spin and Statistics, and 
all. That ~W. A. Benjamin, Inc., New York, 1964), Chap. 1. 
It IS obvlOus that what I mean by the "conventional found­
ations of relativistic quantum mechanics" is the theory of 
Poincare invariance in Hilbert space. 

S The Heisenberg picture, in which the operators describe 
the evolution of the system, will be used throughout. 

8 A recent extensive treatment of the role of geometrical 
invariance principles has been given by R. M. F. Houtappel 
H. Van Dam, and E. P. Wigner, Rev. Mod. Phys. 37, 595 
(1965). 

the Poincare generators into "free" and "inter­
action" parts, is considered and the connection be­
tween symmetries and conservation laws is discussed. 
These very familiar topics are raised to display the 
novelties of the presentation which arise from the 
use of the covariant "hyperplane formalism," as 
it is called. In the course of this discussion, the 
uniqueness of the "center-of-mass" position operator 
is demonstrated.4 The fourth and last stage takes 
up the question of a field-theoretic description of the 
evolution of noninteracting physical systems within 
the "hyperplane formalism." One is led quite nat­
urally to the introduction of non local hyperplane 
dependent field operators which, in the absence of 
interactions, provides a description of free particles 
completely equivalent to the familiar description 
in tenns of local quantized free fields. 5 This equiv­
alence seeIllS to detract somewhat from the sanc­
tified position of the microcausality assumption 
which has never enjoyed a secure physical founda­
tion.6 

Throughout this paper, no new physical postulates 
are invoked, and, in this sense, the treatment is 
entirely within the framework of conventional rel-

4 The "center-of-mass" position operator as well as two 
other position operators which have received attention in the 
past have been discussed in a covariant way in G. N. Fleming, 
Phys. Rev. 137, B188 (1964). 

Ii See, for example, S. S. Schweber, An Introduction to 
Relativistic Quantum Field Theory (Row, Peterson and Com­
pany, Evanston, Illinois, 1961), Pt. 2, pp. 121-253. 

6 Microcausality is usually based on the assumption of 
the measurability of the fields. The classic discussion of this 
topic is given by N. Bohr and L. Rosenfeld, Kgl. Danske 
Videnskab. Selskab, Mat. fys. Medd. 12, No.8 (1933); 
Phys. Rev. 78, 794 (1950). A careful statement of micro­
causality is given by R. Haag and B. Schroer, J. Math. 
Phys. 3, 248 (1962). The measurability of many fields is 
undermined by superselection rules which were first considered 
by G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev. 
88, 101 (1952). 

1959 
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ativistic quantum mechanics. On the other hand, the 
simplest pseudo-local interactions7 which can be writ­
ten down in terms of the nonlocal, hyperplane­
dependent fields yield dynamical results that are 
fundamentally different from those arising out of 
local interactions of local fields. The detailed in­
vestigation of this exciting problem is under way 
and will be the subject of subsequent papers employ­
ing the hyperplane formalism developed here. 

It must be realized by now that the analysis of 
the concept of observable presented here is in no 
sense complete. I will concentrate almost exclusively 
on the question of the transformation properties of 
arbitrary dynamical variables with an eye to an­
swering kinematical questions . without invoking dy­
namical assumptions. In particular, nothing is 
said about the perplexing problem of deciding which 
self-adjoint operators with complete sets of eigen­
states are in fact "measurable" or how they are to 
be "measured."s 

Before proceeding to the main discussion, I want 
to make clear the attitude adopted here regard­
ing the notion of instantaneous measurements. This 
topic has been the subject of much discussion for 
many years, \I and the belief that the instantaneous 
measurement is a useful theoretical idealization in 
the relativistic domain is currently suffering a 
marked decrease in popUlarity. 

From the literature on the subject of time in 

7 By pseudo-local I mean that while the fields themselves 
do not obey the microcausality postulate the Hamiltonian 
density, nevertheless, involves fields at only one value of 
their space-time parameters. 

8 It has become increasingly evident in recent years (see 
Ref. 3, pp. 614, 625-627) that some of the most familiar and 
common operators pose grave problems for the relativistic 
quantum theory of measurement. Thus the projection 
operators for position observables do not commute even when 
they project onto mutually space-like regions fsee Ref. 14 
and G. N. Fleming, Phys. Rev. 139, B963 (1965»).3 The 
possibility that the hyperplane formalism may at least 
permit an invariant characterization of the result of measur­
mg two noncommuting mutually spacelike projectors is 
presently under investigation. 

'N. Bohr, Die Naturwissenschaftern 251 (1928); L. 
Landau and R. Peirl, Z. Physik 69, 56 (1931); L. Mandel­
stamm and 1. Tamm, Zh. Techn. Fiz. 9,249 (1945); V. Fock 
and N. }{rylov, ibid. 11 112 (1947); H. L. Armstrong, Am. 
J. Phys. 22,195 (1947); t. Landau and E. Lifschitz, Quantum 
M echanics-N onrelativistic Theory (Pergamon Press, Inc., 
New York, 1959), pp. 150-153; W. Heisenberg, Physics 
and Philosophy (Allen and Unwin, London, 1959), Chap. 3; 
A. Messiah, Quantum Mechanics (North-Holland Publishing 
Company, Amsterdamt 1961), Vol. I, pp. 137, 319; Y. 
Aharonov and D. Bonm, Phys. Rev. 122, 1649 (1961)' 
H. Paul, Ann. Physik 9,252 (1962); M. L. Goldberger and 
K. M. Watson, Phys. Rev. 127, 2284 (1962); E. Frick and 
F. Engelmann, Z. Physik 175, 271 (1963); 178, 551 (1964); 
Y. Aharonov, P. G. Bergmann, and 1. L. Lebowitz, Phys. 
Rev. 134, B1410 (1964); Y. Aharonov and D. Bohm, ibid. 
134, B1417 (1964); W. C. Davidon and H. Ekstein, J. Math. 
Phys. 5, 1588 (1964); H. P. Stapp, Phys. Rev. 139, B257 
(1965); B. Rankin, J. Math. Phys. 6, 1057 (1965); R. Onmes, 
Phys. Rev. 140, B1474 (1965). 

quantum mechanics, one may discern four principle 
subdivisions. First there is the division between 
internal time variables and the external time vari­
able, or parameter as it is frequently called. Second, 
associated with each of these subtopics there are 
questions of the existence of a theoretical lower limit 
to the duration required for a measurement to be 
made, or to the uncertainty accompanying any 
measurement of the time of an event. I am concerned 
here only with the external time variable which is 
the independent variable of the state vector in the 
SchrOdinger picture or of the operators in the Heisen­
berg picture. It has been known for some time that 
one can associate Hermitian operators with the 
internal times of interest such as the time delay of 
scattering theory.lo In such a circumstance the 
investigation of limitations on measurement can be 
carried out in the traditional vein of looking at 
commutators of the time operator with other ob­
servables. One does not have recourse to such techni­
ques with the external parameter, and any conjec­
ture of measurement limitations associated with it 
involves fundamental modifications of the general 
principles of quantum mechanics. 

Limitations on the duration of measurements or 
on the precision of time measurements are two very 
different kinds of limitations and either could exist 
without the other. Thus a lower limit to the length 
of time required for a measurement does not a 
priori prohibit an arbitrarily precise determination 
of the instants that the measurement began and 
ended. Conversely, a lower limit on the uncertainty 
accompanying a time measurement does not a 
priori prohibit the expectation values of the terminal 
times of a measurement from being arbitrarily close 
together. 

Any real measurement does, of course, require a. 
finite time for its execution. If the measurement 
yields a result associated with the system of interest 
at the instant the interaction with the apparatus 
began then the measurement may be called post­
dictivell and can be used to test theoretical predic­
tions of the evolution of probability distributions. 
If the measured result is characteristic of the quan­
tum state at the instant the interaction with the 
apparatus ceases, then the measurement may be 
called predictivell and can be used to prepare 
quantum mechanical states. Measuring the momenta. 
of particles by observing stopping tracks in emulsions 

10 F. T. Smith, Phys. Rev. 118, 349 (1960); 130, 394 
(1963); 131,2803 (1963). See, also, T. T. Gien, J. Math. Phys. 
6, 671 (1965). 

11 This is not the terminology of L. Landau and E. Lifschitz 
(Ref. 9, p. 5). 
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is a post-dictive measurement. Using accelerators and 
electromagnetic selecting and focusing devices to 
prepare monoenergetic particles is a predictive 
measurement. The location of a particle via its 
passage through a geiger tube connected to an 
amplifying circuit is both post-dictive and pre­
dictive. There is no evidence, at present, that the 
time intervals required for these measurements or 
the uncertainties in the times that they begin and 
end cannot be arbitrarily decreased by technological 
innovations. 

This situation could be modified. An increased 
understanding of the influence of cosmological struc­
ture on both classical apparatus and quantum sys­
tems could yield fundamental limitations on time 
measurements,12 while the discovery of an upper 
limit to the mass spectrum of fundamental particles 
could yield limitations on the duration of any meas­
urement. IS Such notions are highly speculative now 
and can be pursued only with great difficulty. On 
the other hand, taking the naive position that in­
stantaneous measurements at precisely determined 
instants are theoretical possibilities and pursuing 
this premise to the conclusions demanded by con­
sistency with special relativity should be enlighten­
ing. This is all the more likely if it is accomplished 
independently of specific dynamical postulates such 
as field theory or analytic S-matrix theory. This, 
then, defines the attitude I adopt here regarding 
measurements and observables defined at an instant. 

In Sec. (1) the transformation rules for classical 
dynamical variables are discussed in a general way 
indicating the dependence of the solution on the 
pointlike character of the variables. Quantum mech­
anical variables, which are not pointlike, are con­
sidered in Sec. (2) and the simplicity of the trans­
formation problem under the Galilean group is dis­
played. The translation of the description of quan­
tum mechanical measurements from one inertial 
frame to another in the relativistic domain is taken 
up in Sec. (3). In Sec. (4) the hyperplane solution 
of the translation and transformation problems for 
arbitrary relativistic observables is described and 
briefly criticized. In Sec. (5) the transformation 
equations for arbitrary dynamical variables under 
the Poincare group are written down and this is 
followed in Sec. (6) by the introduction of the hyper­
plane generators which simplify the transformation 

12 H. Salecker and E. P. Wigner, Phys. Rev. 109, 571 
(1958); C. A. Mead, ibid. 135, B849 (1964). 

13 One may expect the time required for a light signal to 
traverse the Compton wavelength of the most massive 
fundamental particle to be a natural lower limit to the 
duration of any physical process. 

equations and display a clean separation of the 
kinematical and dynamical aspects of the trans­
formation equations. In Sec. (7) the center-of-mass 
position operator is defined axiomatically and proved 
unique. l4 It is employed here to demonstrate a 
kinematical interpretation of the commutation rela­
tions between the free and interacting parts of the 
hyperplane generators. It also establishes the con­
nection between the two dynamical problems posed 
by the hyperplane formalism. A connection is needed 
to maintain equivalence with the conventional for­
mulation in which the determination of the time 
dependence of the dynamical variables is the only 
dynamical problem. A brief discussion of the con­
nection between the Poincare invariance of the 
scattering operator and the conservation of hyper­
plane observables occupies Sec. (8). Finally, in Sec. 
(9) the hyperplane-dependent field operator for a 
free scalar particle is introduced providing a non­
local field theory of such particles completely equiv­
alent to the traditional local field theory. The hyper­
plane field operator is essentially the creation opera­
tor for the hyperplane generalization of a Newton­
Wigner position eigenstate.14 

THE GEOMETRICAL TRANSFORMATION OF 
DYNAMICAL VARIABLES 

(1) Dynamical Variables in Classical Physics 

In classical physics we learn the fertility of de­
scribing arbitrary physical systems in terms of 
material particles having no extension and fields 
defined over the points of space at instants of time. 
This conception of the nature of physical systems 
combined with the assumption of the arbitrarily 
precise, simultaneous, measurability of arbitrary sets 
of dynamical variables simplified the theory of 
measurement in classical physics to the point of 
triviality. In particular, the relations between the 
results of measurements of one and the same funda­
mental quantity performed by observers in two 
physically equivalent reference frames is very simply 
expressed in terms of the transformation properties 
of the points of space and instants of time them­
selves. 

Thus all fundamental quantities refer to a point 
of the space-time manifold whether they are field­
like quantities evaluated at the point of interest 
or particle variables evaluated at a point on the 

~4 .The correspo,ndi:ng proof for the familiar N ewton-Wigner 
pOSItion operator IS given by T. D. Newton and E. P. Wigner, 
Rev. Mod. Phys. 21, 400 (1949), See, also, A. S. Wightman 
ibid. 34, 845 (1962); A. Galindo, "On the Uniqueness of th~ 
Position Operator for Relativistic Elementary Systems" 
(CERN Preprint, 1964). 
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trajectory or worldline of the particle. In either case 
one finds sets of quantities which, under homo­
geneous transformations of the space and time co­
ordinates, transform among themselves with a trans­
formation rule having the form, 

A~(P) = S!(T)AtJCP). (1.1) 

In this equation the A .. (a = 1, .,. , n) comprise 
the set of fundamental variables, P denotes the 
space-time point of interest, T the transformation 
of coordinates, and S! (T) the dimensionless trans­
formation coefficients for the A .. (the summation 
convention on fJ is implied). If the A .. are fieldlike 
quantities, then on the right-hand side of (1.1), P 
is replaced by (Xi, t) and on the left-hand side by 
(X'i, t'); the coordinates of the point in question as 
determined from the unprimed and primed reference 
frames, respectively. If the A .. are particle variables 
and the particles in the system are labeled by an 
index i, then on the right we replace P by (i, t) and 
on the left by (i, t'), since the spatial coordinates can­
not be known until the equations of motion are 
solved. 

The transformations T form a group and the 
coefficients S!(T) a matrix representation of the 
group in the sense that 

S!(T2T 1) = S!(T2)S~(Tl)' (1.2) 

where T2Tl is the transformation resulting from the 
successive application of Tl and then T2 • Conse­
quently, the problem of determining the possible 
transformations of dynamical quantities is related 
to the problem of determining the matrix representa­
tions of the group of coordinate transformations 
between equivalent reference frames. IS 

These considerations hold equally in the rela­
tivistic and nonrelativistic cases, and that is the 
source of the ease with which one can make the 
transition from Newtonian to classical relativistic 
mechanics. The coordinate transformation rules are 
different in the two cases, but the way in which 
the transformation properties of fundamental quan­
tities depend on the coordinate transformations is 
the same. In both cases the values of quantities 
referring to one and the same space-time point are 
related by the matrix elements of a representation 
of the transformation group. 

I have belabored these well-known matters in 
order to emphasize the contrast with quantum me­
chanics. 

15 These common terms of contemp?rary theor.etical 
physics are defined, among ot~er places, III E. P. WIgn~r, 
Group Theory and its App~icat~on to the Quantum Mechamc8 
of Atomic Spectra (AcademIC Press Inc., New York, 1959). 

(2) Nonrelativistic Quantum Mechanics 

In nonrelativistic quantum mechanics, the con­
cept of a material particle retains a fundamental 
status. The notion that such a particle has no ex­
tension in space, however, loses most of its usefulness 
if not its meaning. Thus, there are particle variables 
the measurement of which requires one to forego 
any precise knowledge of the location of the particle. 
Furthermore, the fact that the momentum of the 
particle is just such a variable, leading to the 
Heisenberg uncertainty relations, means that the 
concept of the trajectory or world-line of a particle 
plays only a limiting statistical role in quantum 
mechanics. Nor is this situation to be attributed to 
mere ignorance on our part of where the particle 
is at any given time. We learn, very early, how the 
superposition principle and the interference of proba­
bilities dooms to failure any attempt to retain such 
a semi-classical picture of reality.l6 One is rather 
forced to give up the notion that quantum me­
chanical particles have definite positions, momenta, 
or spins, etc., at any given time. Instead, one can 
transform the particle into a state in which, momen­
tarily at least, a particular variable has a definite 
value, by performing a predictive measurement of 
that variable. What a quantum mechanical particle 
does have at any given instant is an association to a 
ray of a Hilbert space and a set of Hermitian opera­
tors defined on the Hilbert space, called observables, 
which describe a statistical relation of the possible 
results of measurements performed on the particle 
to other measurements performed on other particles 
prepared in an identical manner. The word particle 
is used to describe the system because of certain 
similarities between the measurements that can be 
performed on it and those that can be performed on 
classical particles. Thus it is possible to momentarily 
localize the system in space by what is therefore 
called a position measurement. 

The only particle observables in nonrelativistic 
quantum mechanics which refer to even finite 
bounded regions R of space at a definite time are the 
so-called projection operators nCR), having possible 
values unity or zero corresponding to the system 
being confined or excluded from the region R im­
mediately after the measurement of nCR). Geiger 
counters, occupying the region R and connected 
to an amplifying circuit only momentarily, at the 
time t, provide a crude approximation to an ap­
paratus for measuring n,(R). That the position ob­
servable itself refers collectively to all of space at 

15 For a modern proof of the absence of hidden variables 
see J. M. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963). 
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a given instant is demonstrated mathematically by 
the familiar equation, 

qi(t) == i: Xi dIIt(x': X~ :::; Xi), (2.1) 

for the Cartesian components of the position operator 
in terms of the projection operators for regions 
containing all points x' for which x: :::; Xi, where 
Xi is given.17 The same fact is demonstrated phys­
ically by the necessity of using a battery of Geiger 
counters extending throughout space and sensitized 
simultaneously at the time t if one is to be sure of 
getting some result from a measurement of q(t) 
employing Geiger counters. 

Now the homogeneous transformations of the 
Galilean group leave the time invariant. Further­
more, all transformations of the Galilean group 
leave time intervals invariant. Consequently, a 
measurement performed at a definite time in one 
inertial frame looks like a measurement performed 
at a definite time when viewed from another inertial 
frame independently of whether the measurement 
refers to space, pointwise, collectively or not at all. 
It is therefore easy and natural to fit the quantum 
mechanical concept of measurement into the space­
time structure of nonrelativistic physics.IS 

(3) Relativistic Invariance in Quantum Mechanics 

Such is not the case for relativistic physics where 
the coordinate transformation group is the inhomo­
geneous Lorentz group, or Poincare group (P, which 
does not, in general, leave time intervals invariant. 
If a measurement at a definite time, referring to a 
finite region of space, or all of space, or not referring 
to space at all, is carried out in one Lorentz frame 
of reference, then the result cannot be uniquely 
associated with any definite time in another Lorentz 
frame moving relatively to the first. Therefore, 
describing the measurements of physical observables 
as occurring at a definite time is not a suitable 
procedure for formulating the transformation prop­
erties of the results of measurements. 

Two famous ways exist for solving, or rather 
bypassing, this problem. The first way imposes the 
restriction that all the observables of relativistic 
quantum mechanical systems can be expressed in 
terms of a fundamental set of field operators defined 

17 A. S. Wightman (see Ref. 14). 
18 The classic discussion of the nonrelativistic quantum 

theory of measurement is J. von Newmann, Mathemlltical 
Foundations of Quantum Mechanics, translated by R. T. 
Beyer (Princeton University Press, Princeton, New Jersey, 
1955). A recent discussion of current problems in the subject is 
given by J. M. Jauch, Helv. Phys. Acta 37, 293 (1964). 

over the manifold of space-time points.19 The trans­
formation properties of the fields can be described 
simply in the same way as for the classical case, and 
the transformation properties for arbitrary observ­
abIes are implicitly contained in the prescription for 
constructing them out of the fields. The fields them­
selves do not have to be observables although that 
was usually assumed in the early days of quantum 
field theory. In general, the observables of such a 
formalism are integrals over all space, at some time, 
of a fieldlike integrand which is some local function 
of the basic fields. If one places integrals of such local 
functions over arbitrary spacelike surfaces on the 
same footing as the instantaneous spatial integrals, 
a manifestly covariant formalism results.20 The 
transformation problem for arbitrary observables is 
then essentially solved in an explicit manner because 
the instantaneous observables transform into func­
tionals on flat spacelike surfaces. 

Unfortunately, this covariant formalism is simple 
and elegant only if all spacelike surfaces are treated 
equivalently, curved as well as flat. Also this solution 
of the kinematical problem of the transformation of 
observables depends crucially on the dynamical as­
sumption of a local field theoretic description of 
the evolution of physical systems. 

The second way of handling the problem, rather 
than imposing a restriction, relaxes a conventional 
assumption, namely, the assumption made in the 
introduction to this paper, that measurements can, 
in principle, refer to instants of time. One envisions 
a theory with observables referring to arbitrary 
bounded regions of space-time, extended in the time 
direction as well as through space.21 Such regions 
are invariant entities and the transformation rules 
can be easily formulated. It is very hard, however, 
to decide what the physically important observables 
would be in such a theory. Presumably something 
like position and momentum measurements at more 
or less definite times exists. If so, how does one gen­
eralize these observables to finite time intervals 
and what are the restrictions on the smallness of 
the time intervals, if any? In general, the ambiguities 
inherent in this approach to the theory of measure­
ment have left it essentially undeveloped except for 
the efforts of the axiomatic field theorists who, 
having already adopted the field theoretic approach, 
find it mathematically convenient to work with 

19 The detailed development of the consequences of this 
point of view, quantum field theory, is given in many books 
One of the most comprehensive is S. S. Schweber (see Ref. 5): 

20 S. Tomonaga, Progr. Theoret. Phys. (Kyoto) 1 27 
(1946); J. Schwinger, Phys. Rev. 82, 914 (1951). ' 

11 R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1965). 
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certain sets of bounded four-dimensional observa­
bles which form von Neumann rings of bounded 
operators.22 

A third approach to the problem of measurement 
is that presented by axiomatic or analytic S-matrix 
theory.23 In that theory the notion of measurements 
at finite times is replaced by the notion of measure­
ments of conserved quantities at infinite times. The 
Poincare group leaves infinite times infinite, and 
so the S-matrix theorists' conception of fundamental 
measurements is relativistically invariant. Also, the 
most interesting dynamical properties of fundamen­
tal particles are strictly conserved (in systems of 
several particles) only in the asymptotically infinite 
past and future. On the other hand, all real measure­
ments are performed at finite times, and it is under­
stood that the infinite time interval of S-matrix 
theory is a convenient idealization of the extreme 
ratio between the time intervals separating the ini­
tial and final measurements of a scattering experi­
ment and the time intervals during which the inter­
action of the participating particles takes place. 
Very interesting efforts to formulate a bona fide 
description of macroscopic finite time and space 
intervals within the formalism of S-matrix theory 
have been made but the ideas involved must at pres­
ent be regarded as very tentative.24 

Field theory, then, provides the only extant solu­
tion to the problem of the transformation of observa­
bles in relativistic quantum mechanics. It does so, 
furthermore, only when functionals on arbitrary 
spacelike surfaces are given equal billing with in­
stantaneous observables. Otherwise, the demand for 
relativistic invariance is satisfied only in the sense 
that a prescription exists, having the same form in 
each inertial frame, for constructing any given ob­
servable out of the field operators which do have 
manifestly covariant transformation properties. One 
does achieve, thereby, an equivalent description of 
physical systems in each inertial frame but the 
explicit transformation rules for most of the interest­
ing observables are undetermined. To evaluate such 
a situation requires a clear understanding of the 
precise demands which the principle of special rela­
tivity makes on arbitrary physical theories. 

A very clear and careful discussion of this problem 

22 R. Haag and B. Schroer (see Ref. 6). See Ref. 21, also. 
n H. P. Stapp, Phys. Rev. 125, 2139 (1962); 139, B257 

(1965); D. Olive, ibid. 135, B745 (1964); J. Gu~s(:m and 
J. G. Taylor, ibid. 119, 112 (1960); J. R. Taylor, tbtd. 140, 
B187 (1965); 142, 1236 (1966); J. Math. Phys. 7, 181 (1966). 

24 M. L. Goldberger and K. M. Watson, Phys. Rev. 127, 
2284 (1962); M. Froissart, M. L. Goldber~e~, and K. M. 
Watson, ibid. 131, 2820 (1963); R. Omnes, tbtd. 140, B1474 
(1965). 

occurs in a paper by Wigner written in 1955.26 In 
that paper Wigner attributes to R. Haag the follow­
ing postulates as being included in any invariance 
principle one may impose on a physical theory: 

"(a) It should be possible to translate a complete 
description of a physical system from one coordinate 
system into every equivalent coordinate system. 

(b) That the translation of a dynamically possible 
description be again dynamically possible. Expressed 
in a somewhat more simple language: a succession 
of events which appears possible to one observer 
should appear possible also to any other observer. 

(c) That the criteria for the dynamical possibility 
of complete descriptions be identical for equivalent 
observers." 

Wigner emphasizes that the concept of instan­
taneous observables referring to extended regions 
of space does not allow, in any obvious way, the 
translation required in (a) to be made since the 
t = const hyperplanes of space-time are different 
for different observers. 

Clearly, if field functionals over arbitrary space­
like hyperplanes are admitted as observables, then 
the translation can be made since instantaneous 
hyperplanes transform into spacelike hyperplanes 
under any element of the Poincare group. It is 
undesirable, however, that the introduction of hy­
perplane observables, which facilitate the solution 
of the translation problem, should occur within the 
context of the dynamical scheme of quantum field 
theory. 

In the next section, hyperplane observables are 
introduced in a completely general way without any 
commitment to a particular dynamical scheme. 

(4) Observables on Hyperplanes 

Consider an arrangement of apparatus distributed 
throughout some region of space and used to measure 
in a predictive way some dynamical variable of 
the system at the time t. If the measurement is 
nearly instantaneous, the various pieces of apparatus 
are observed to be open to interaction with the phys­
ical system of interest simultaneously at the time 
t. What does the same measurement look like from 
an inertial frame moving relative to the original 
frame? If the various pieces of apparatus are located, 
roughly speaking, at the points Xi in the original 
frame, then the times, in the new frame, at which the 
pieces are activated are 

J5 E. P. Wigner, Nuovo Cimento 3, 517 (1956). 
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while the locations of the pieces at the moments of 
activation are 

x~1. = xt. 

(4.2) 

(4.3) 

In these equations v is the velocity of the origin of 
the "moving" frame relative to the original frame 
while the superscripts II and 1- denote the pro­
jections of the vectors parallel and perpendicular 
to v, respectively. The essential point is that in the 
primed frame the various pieces of apparatus are 
activated at different times and the measurement 
does not appear to be an instantaneous one at all. 

The number of pieces of more or less localizable 
apparatus required in a measurement will differ 
greatly from one measurement to the next. Hence 
it is desirable to obtain a compact way of describing 
the possible combinations of position and time co­
ordinates in the primed frame which can result from 
apparatus used in instantaneous measurements in 
the original frame. From Eqs. (4.1)-(4.3), it follows 
that 

(1 - V2/C2)-lsct~ - (1 - V2/C2)-i(v/c)·x~ = ct (4.4) 

or, introducing the notation, 

n = (1 - V
2/c2)-lsv/c, (4.5) 

7]0 = (1 - V
2/c2)-1s = (1 + n2i, (4.6) 

we obtain 

7]oX~ - n'x' = ct (4.7) 

as the equation relating the space-time coordinates 
in the primed frame of apparatus used in an in­
stantaneous measurement in the unprimed frame. 
For fixed t, (4.7) is the equation of a two-dimensional 
plane which sweeps through the space of the primed 
frame with a normal velocity of 

U = (7]o/lnl)c > c. (4.8) 

Each piece of apparatus is activated as the plane 
sweeps over it. Since the plane is moving with a 
velocity greater than light, any two space-time 
points on the moving plane are separated by a 
spacelike interval. Consequently, the three-dimen­
sional manifold of space-time points generated by 
the moving plane is called a space-like hyperplane.26 

According to the Haag-Wigner postUlate (a), the 
physical equivalence of the two inertial frames re­
quires that the result of the measurement being 

26 J. L. Synge, Relativity, The Special Theory (North­
Holland Publishing Company, Amsterdam, 1956), Appendix 
A. 

considered is a legitimate constituent of a complete 
description of the physical system as observed from 
the primed frame. Furthermore, since the original 
reference frame could be any inertial frame, it follows 
that the activation sequence of the pieces of ap­
paratus is constrained only to satisfy an equation 
of the form 

7]"X~ = T, (4.9) 

where, 

7]0 2:: 1. (4.10) 

Any such measurement appears instantaneous in 
some inertial frame, and hence the primed observer 
must regard all such measurements on an equal 
footing. The measurements cannot all be associated 
with a definite time tf, but each one can be associated 
with a definite spacelike hyperplane (7], T). Finally, 
since the primed observer is also arbitrary, one is 
led to conclude that an appropriate concept of 
measurement in the relativistic domain and conse­
quently of observables in relativistic quantum me­
chanics is the concept of measurements and ob­
servables associated with, or defined on, arbitrary 
spacelike hyperplanes. 

An idealized example of the kind of measurement 
discussed above is provided by the measurement 
of the position x(t) of a particle via a battery of 
small Geiger counters occupying the region R within 
which the particle is already known to be confined. 
By a prearranged setting of an elaborate clock mech­
anism, the amplification circuits for the Geiger count­
ers are closed simultaneously for a short time interval 
and the position is measured. 

In a moving frame, however, the circuits appear 
to be closed in a very rapid sequence, the closing 
time for any given circuit depending upon the spatial 
location of its associated Geiger tube. The closing 
sequence proceeds among the circuits more rapidly 
than any signal could propagate and so it is clear 
to the primed observer that the sequence is a result 
of a prearranged setting of the whole battery of ap­
paratus. Notice also that in the primed frame the 
time coordinate of the result of the measurement can 
vary with repetitions of the measurement on iden­
tically prepared systems. Thus the primed observer 
sees a probability distribution in the time component 
of the position four-vector as well as the space 
components. All of this leads the primed observer 
to associate the measurement with a four-vector 
Hermitian operator xi7]; T),· where (7], T) determine 
the spacelike hyperplane along which the circuit 
closing sequence occurs. 
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The concept of a spacelike hyperplane is an in­
variant one and when, in the next section, I proceed 
to write down transformation equations for arbitrary 
hyperplane observables, it will be observables re­
ferring to one and the same hyperplane that are 
related by the equations. In other words, one is 
relating the descriptions by two observers of one 
physical quantity. The parameters (7], r) which 
describe the single hyperplane are different for the 
two observers and under the Poincare transformation 

x~ = A/x. + A,,; (4.11) 

the hyperplane parameters transform according to 

r' = r + 7]"'A". 

(4.12) 

(4.13) 

Note that 7]" is changed only by homogeneous 
Lorentz transformations while r is changed only by 
translations. I call 7]" the timelike normal unit vector 
or simply normal vector for the hyperplane and r 
the "invariant" parameter of the hyperplane. 

The reader may wish to object to the earlier 
discussion on the ground that in the primed frame 
the measuring apparatus is moving, and it is reason­
able to require that the apparatus defining an ob­
servable in a given frame be at rest in that frame. 
Whether such a requirement is reasonable or not, 
it seems likely that the same results could, in fact, 
be obtained in the primed frame with the use of 
stationary apparatus. To the extent that the Geiger 
counters in the cited example yield results dependent 
on the relative velocities of the counters and the 
particle one cannot regard the counters as providing 
an ideal measurement of the position of the particle. 
In general, an ideal hyperplane measurement em­
ploys apparatus which yields results dependent on 
where the apparatus is at the time of activation but 
independent of the motion of the apparatus. It 
is assumed that in principle such apparatus exists. 
This assumption is already a tacit one in nonrela­
tivistic quantum mechanics where observers in dis­
tinct Galilean inertial frames are expected to be able, 
in principle, to duplicate each others' measurements 
with apparatus stationary in their respective frames. 

A second objection that can be raised is that, after 
all, the original problem of relating the instantaneous 
observables in two different inertial frames has not 
been solved. This is correct, but what has been 
made clear, I believe, is that this original problem 
has nothing to do with relativistic invariance. In­
stantaneous observables in two inertial frames refer 
in general to different sets of hyperplanes. The 

theory of relativity requires only the direct transla­
tion of the results of measurements of one and the 
same observable. The problem of relating instan­
taneous observables in two frames reduces to the 
problem of relating instantaneous observables in 
one frame to hyperplane observables in the same 
frame, but on hyperplanes which appear instan­
taneous in the second frame. This problem is es­
sentially dynamical since it requires the calculation 
of 

aA(7], r)/o7]" 

for a hyperplane observable A(7], r). 
Finally, one may regard the example of the ideal­

ized position measurement and even the more gen­
eral discussion preceding it to be too specific or 
unrealistic to permit the extension, of the conclusions 
reached, to arbitrary observables. However, the 
entire problem of learning how to translate the de­
scription of observables from one frame to another 
appears to be that of finding an invariant geometrical 
construct26 to which the observables refer. The only 
invariant geometrical construct which can be as­
sociated with arbitrary observables defined in one 
frame at a definite time, and without any further 
a priori reference to geometrical entities, is the set 
of all those space-time points which have the given 
time coordinate in the given frame, i.e., a spacelike 
hyperplane. Furthermore, the set of all spacelike 
hyperplanes is the smallest set of geometrical entities 
containing the instantaneous hyperplanes of a given 
inertial frame and being invariant under the active 
interpretation of the Poincare group. In this sense 
the generalization of the concept of observable that 
is proposed here is the simplest one which is rela­
tivistically invariant. 

To the reader who has found these lengthy dis­
cussions of frequently elementary topics tiring, my 
apologies. My only justification is the desire to leave 
no stone unturned in the attempt to make the gen­
eral concept of hyperplane observables physically 
clear. 

THE HYPERPLANE FORMALISM 

(5) The Transformation Equations for 
Hyperplane Operators 

The discussion is simplified if I temporarily 
refer only to the expectation values of the hyperplane 
operators. The transformation properties of the 
quantum mechanical operators are completely deter­
mined by the transformation properties of their 
expectation values in arbitrary states. Furthermore, 
the discussion is applicable to classical physics as 
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well, when expressed in terms of expectation values. 
Let A(1], r) then denote the expectation value 

of a single dynamical variable on the hyperplane 
characterized by (1], r) in the original (unprimed) 
reference frame. Under an infinitesimal homogeneous 
transformation, 

x~ = x. + 5w,.'x .. 5w: = -5w/" (5.1) 

the description of the same hyperplane changes to 
(r/, T), where 

1]~ == 1]. + 51]. = 1]. + 5w: 1]. 

and the expectation value becomes 

(5.2) 

where 

r' = r + 1]. 5al" (5.10) 

In this case the infinitesimals 5al' have the dimension 
of length, and so the T: must be regarded as es­
sentially new quantities. They are, of course, new 
tensors. Thus from 

x~' = a/ex. + 5b.) = X'I' + a/ 5b .. 

we have 

A:,' = S! (a)(A/I + T/ 5b.) 

S! (a)A/I + Tal" a/ 5b •. 

A'(1]', r) = A(1], r) + H·'(1], r) 5w.,. (5.3) Consequently, 

Since the infinitesimal coefficients 5wl" are dimension­
less, the dimensions of HI" and A must be the same. 
This fact motivates one to look for sets of quantities, 

such that 

and 

A~(1]', r) 

where 

Aa(1], T) (0: = 1, ... ,n), 

(5.4) 

H a 1"(1] , r) = C a"·/I A/I(1] , T), (5.5) 

the C ./'/1 being dimensionless numerical coefficients. 
Such sets of quantities, called tensors,27 are relatively 
easy to find and permit the formulation of equations 
which are form invariant under Lorentz transforma­
tions. For finite homogeneous transformations 

x~ = a/x., 

they satisfy 

A~(1]', r) = S/(a)A/I(1], r), (5.6) 

where the S/ are the matrix elements of a finite­
dimensional linear representation of the homogene­
ous Lorentz group. The infinitesimal elements of 
the representation are 

S/(g + 5w) = 5/ + C ,/./1 5wl'" (5.7) 

Under infinitesimal translations 

x~ = x. + 5a., (5.8) 

the tensors satisfy 

A~(1], r') = A,,(1], r) + T ".(1], r) 5a,u (5.9) 
----

27 The restriction to tensors holds, of course, only for 
observables. For arbitrary dynamical variables on hyper­
planes, spinors must also be admitted. This does not modify 
the equations in any way. 

T"I"a: 5b. = S/(a)T/ 5b •. 

Since 5b. is arbitrary and 

a/a\ = g\, 
this yields 

T }., = S/(a)a\T/, (5.11) 

and the Tal' are therefore tensors. The transforma­
tion of the A a's under finite translations can, in gen­
eral, be very complicated, and the matter is not 
pursued further here. In cases of practical physical 
interest, the result is usually simple. 

From the foregoing equations one can now obtain 
general expressions for the commutation relations 
of arbitrary operators A,,(1], r) with the generators 
M., and PI' of the unitary representations of the 
Poincare group2S in the quantum mechanical Hilbert 
space. I work exclusively in the Heisenberg picture 
in which the concepts of observables and measure­
ment are foremost. The Heisenberg picture is de­
fined by two conditions: 

(i) The operators corresponding to dynamical vari­
ables carry the dependence on the hyperplane param­
eters (1], r) and therefore describe the evolution of 
the physical system. 

(ii) Under a Poincare transformation {a':, a.} of 
the coordinate frame of reference the state vectors 
and operators describing the system transform ac­
cording to 

11$t) -+ U(w:; a,,) Ilf) == 11$t'), 

where 

(5.12) 

(5.13) 

U(w,.'; a.) == exp [(i/h)pxax] exp [ - (i/h)MXP!w~p] 

(5.14) 
28 E. P. Wigner, Ann. Math. 40, 149 (1939). 
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is the unitary operator which induces the transforma­
tion in Hilbert space. 

For an arbitrary state 11f) and infinitesimal a" == ob,., 
it then follows that 

N'I A,,(1/', r') 11f') = S/(g + w)NI Ap(1/, T) 11f) 

+ S/(g + w)(g',. + w· .. )(lfl T/(1/, T) 11f) ob •. (5.15) 

The arbitrariness of I~) permits (5.15) to be 
written as an operator equation,29 

U(w; ob)-lA,,(1/', T')U(W; ob) 

= S/(u + w){AP(1/, r) 

+ (g/ + w· .. )TP"(1/, T) ob.}, (5.16) 

to first order in ob •. 
Letting WI" = 0 and writing 

U(O; ob) = exp [(i/h)PA obA] 

~ 1+ (i/h)PA obA (5.17) 

yields 

A,,(1/, T + 1/ ob) - A,,(1/, T) == oA,,~;, T) 1/1. obA 

= ~ [PA, A,,(1/, T)] obA + T/(1/, T) obA 

or 

[PA, A,,(1/, T)] 

'~{T AC ) A oA,,(1/, r)} = 'tn ,,1/, T - 1/ aT • (5.18) 

On the other hand, setting ob. = 0 and making 
w/ = ow/ infinitesimal yields 

U(ow; 0) ~ I - (i/h)MAP!owAP (5.19) 

and 

A,,(1/ + 1/ Ow, r) - A,,(1/, r) 

= _~ [MAP A ( )] oWxp 
h '" 1/, T 2 

+ C';:P AP(1/, T) oWAP' (5.20) 

Since the owAp are antisymmetric in A and p, it 
follows that the variation 01/" = OW"A1/" automatically 
satisfies the constraint 

(5.21) 

imposed by the fixed norm of 1/". Consequently, 

A,,(J + 1/ oW, T) - A,,(1/, T) 

(5.22) 

29 F. Riesz and B. Sz.-Nagy, Functional Analysis (Fredrick 
Ungar Publishing Company, New York, 1955), pp. 200-202. 

may be used in (5.20). The OWXPI however, cannot 
be regarded as independent variations until the 
coefficients of oWAP are made manifestly antisym­
metric in " and p. Once that is done, the infinitesimal 
parameters may be removed to yield the commuta­
tion relations 

[MAP, A,,(1/, T)] = ih{(C/AIl - C/pll)AIl(1/, T) 

+ (1/P aA,,(1/, T) _ 1/1. aA,,(1/, T»)}. (5.23) 
01/1. 01/p 

The commutation relation for translations (5.18) 
is the generalization to the hyperplane formalism 
of the conventional Heisenberg equations of motion, 
and the sense in which it describes the dynamical 
evolution of the system is well known. Not so 
familiar, although emphasized in the past by Dirac,30 
is the fact that the commutation relations with the 
homogeneous generators of the Poincare group may 
also be complicated by dynamical considerations 
and, conversely, provide part of the dynamical de­
scription of the system. Thus in the conventional 
"instant" form30 of relativistic quantum mechanics, 
the generators M;;(i, j = 1, 2, 3) refer to spatial 
rotations at a given time, and their commutators 
with instantaneous operators have the same form 
whether or not interactions are present. The com­
mutators with the M io, however, which describe 
the results of pure Lorentz transformations depend 
crucially on the presence and nature of interactions. 
The latter commutation relations are as hard to 
"solve," in the presence of interactions, as the 
Heisenberg equations of motion. In the hyperplane 
formalism, this complication is displayed by the 
appearance, on the right-hand side of (5.23), of 
the partial derivatives, 

aA,,/a1/A' 

It is precisely these derivatives that determine the 
relationship in a single reference frame, between 
corresponding dynamical variables defined on differ­
ently oriented hyperplanes, and it is in this sense 
that the question of relating instantaneous dynamical 
variables in two different frames is primarily, if not 
entirely, a problem in dynamics. 

(6) The Hyperplane Generators and Dynamical 
Equations 

In 1949 Dirac30 presented a rather general in­
vestigation of several forms that could be used for 
the description of relativistic dynamics. Two of the 

30 P. A. M. Dirac, Rev. Mod. Phys. 21, 392 (1949); 34, 
592 (1962). 
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three forms discussed by Dirac are, in fact, special 
cases occurring within the hyperplane formalism. 
Thus Dirac's instant form is the conventional de­
scription in terms of instantaneous hyperplanes with 

'I)" = (1,0). 

The front form of relativistic dynamics, however, 
is also a (limiting) case of the hyperplane formalism. 
In the front form dynamical variables are described 
on a two-dimensional plane surface, or front, moving 
with the velocity of light in the direction of the 
normal to the surface. The space-time points lying 
on such a moving front comprise a limit for space­
like hyperplanes with timelike normal unit vectors 
approaching the limit, 

'I)" == ('1)0, n) ---7 [(1 + A2)i, An], (6.1) 
A-"" 

for a front moving in the direction of the spatial 
unit vector n. The point form of dynamics described 
by Dirac has no simple relation to the hyperplane 
formalism. 

Dirac showed how the structure of the ten funda­
mental quantities, the Poincare generators, varied 
in complexity with the choice of a form of dynamical 
description. Thus in the instant form the "spatial 
translators" Pi and "rotators" J i are simple combi­
nations of the basic variables of the system, whether 
or not interactions are present. The "time translator" 
Po and the "accelerators" M;o become complicated 
in the presence of interactions and describe the 
dynamical evolution of the system. In the front form 
with the front moving along the positive 3-axis, 
the simple generators are 

Pi' (i = 1,2), 

M;o - M i3 , (i = 1,2), M 30 ; 

and the complicated ones are 

M;o + M i3 , (i = 1,2). 

The fact that there are seven simple generators 
and only three complicated ones in the front form 
as opposed to the instant form in which there are 
six and four, respectively, reflects the singular limit­
ing nature of the front form. Had the front been 
moving with a speed greater than that of light, it 
would have connected space-time points on a bona 
fide spacelike hyperplane with finite 'I)" and M30 
would then also be complicated. The invariance of 
the speed of light simplifies M30 for Dirac's front 
form. 

Now in both forms of dynamics, those generators 
which leave the hyperplanes of interest invariant 

are simple while those generators which change the 
hyperplane become complicated in the presence of 
interactions. One may ask whether a similar separa­
tion into simple and complicated generators of the 
Poincare group may be carried out for the arbitrary 
spacelike hyperplanes of the hyperplane formalism. 
If such can be done, then the construction of the 
generators for specific systems should be simplified, 
as should the problem of solving the dynamical 
equations once the construction is carried out. 

I begin by giving a name to the quantity 

'I)"P,,==H. (6.2) 

This operator is an invariant for a given hyperplane, 
and it reduces to Po for the reference frame in which 
the hyperplane ('I), r) appears instantaneous. It 
occurs frequently in the subsequent discussion and 
plays a role analogous to both the mass and the 
Hamiltonian of nonrelativistic quantum mechanics. 
On the basis of this analogy and the relativistic 
relation 

E = Mc2 

for energies defined at a definite time, I call H / c 
the invariant hyperplane mass of the system or 
simply the mass. It is, of course, to be distin­
guished from the rest mass c-1 (P"P,Ji, to which it is 
equal only for instantaneous hyperplanes in the 
rest frame. It is clear from the definition of H that 
it acts as the generator of translations in the direc­
tion of 'I)", normal to the hyperplane on which it is 
defined. Consequently, H does not leave the hyper­
plane invariant and can be expected to be compli­
cated in the presence of interactions. 

The translators which leave the hyperplanes ('I), r) 
invariant and therefore are not modified by inter­
actions are the 

(6.3) 

The constraint 

(6.4) 

satisfied by K" is an expression of the fact that K" 
leaves the hyperplane invariant and also maintains 
the number of independent translators at four. 

The generators of homogeneous transformations 
M". may be separated into simple and complicated 
parts by noting that the simple parts must reduce 
to the rotators J i in those frames where 'I)" = (1,0). 
Such generators are provided by the constrained 
four-vector 

(6.5) 
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rtJ~=O, (6.6) 

which leaves the hyperplane, on which it is defined, 
invariant. The remaining generators are suggested 
by the identity 

(6.7) 

and I define 

(6.8) 

where again 

(6.9) 

It is to be expected that N~ does not leave the hyper­
plane invariant but reorients it (changes fl,,) and is 
therefore complicated by interactions. 

The conventional generators P '" M ". satisfy the 
familiar commutation relations 

[PI" P.] = 0, [Mit., PAl = ih{g,,,P,. - g~"p.l, 

and 

[M"., MAP] = ihfg.AMp" - g,pMA~ 

+ gl'pM)., - gl'}.Mp,}. 

From these relations and the definitions (6.2, 3, 5,8), 
it is straightforward to derive the equations 

[K~, K.I = 0, (6.10) 

[K", H] = 0, (6.11) 

[J~, H] = 0, (6.12) 

[J", K.I = ihE"vOIjlKOIfltJ, (6.13) 

[J", J,l = ihE"vafJJ"r/, (6.14) 

[J~, N.I = ihE~.a{jNafl{j, (6.15) 

[NM N.J = -ihEItV"fJJOIflfJ, (6.16) 

[Kit, N.] = ih(g". - 1/~1/v)H, (6.17) 

[N", H] = ihK". (6.18) 

The formal similarity between these relations and 
those for the instant form generators P, H = Po, ], 
and N is striking. It is not, however, surprising since 
these hyperplane generators reduce to the instant 
generators On instantaneous hyperplanes. 

By taking the commutators of the hyperplane 
generators with arbitrary hyperplane operators, one 
verifies that the desired separation into simple and 
complicated generators has indeed been effected. 
Applying the definitions of the hyperplane gen­
erators to (5.18) and (5.23) yields 

[H, AaJ = ih{T/fl,. - aA,./ar} , (6.19) 

and 

[KM Aal = ih(g". - 1/,,1/.)T':, 

[JII , AaJ = ihE"PA,,(C/>-fJ A/J1/"(, 

[N", Aal = ih{(C/,,1I - C/pII)1/pA fJ 

+ (g'" - 1/"1/') aAa/a1/T 

(6.20) 

(6.21) 

(6.22) 

The way A a behaves under small translations (deter­
mined by the Ta"), and the way Aa behaves under 
"rotations" (determined by the C a "'/J) is not depend­
ent on the presence or nature of interactions. Con­
sequently, (6.20) and (6.21) express the kinematical 
properties of Aa alone while the dynamical evolution 
of the system is accounted for by (6.19) and (6.22). 

The derivatives oA "101/,, which appear frequently 
in the preceding discussion, have not been Unam­
biguously defined. The difficulty is a consequence of 
the interdependence of the 1/1' by virtue of the con­
straint equation (4.10) or (5.21). Thus, the defining 
equation for hyperplane derivatives is 

(6.23) 

and from (5.21) it is clear that any term proportional 
to 1/v may be added to aA"lo1/v without influencing 
(6.23). To determine this derivative uniquely, I 
impose the constraint 

(6.24) 

The recipe for calculating the derivative is then: 

(i) calculate the derivative as though all the 1/. 

were independent; 
(ii) project out, via the tensor (gjl, - 1/,,1/.), the 

part of the derivative orthogonal to 1/,. 

The consistency of (i) and (ii) is guaranteed by 
the idempotent property of the tensor (g", - 11,,1/,). 
Thus 

(0,," - 111'11")(Ob - '1M.) = 0". - 11,,11,· (6.25) 

The hyperplane translators provide a simple ex­
ample of the difficulty one may encounter if the 
1/. are regarded as independent when taking the 
derivative. If such were the case then 

and 

Consequently, 

o = o"/K,,lofl. = K' + 1/"(oK"lo1/v) 
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which is absurd. Employing the recipe yields 

aT/~/ aT/> = (g,: - T/~T/'), 

aH/oT/, = K', 

aK~/aT/, = -(g/ - T/~TJV)H - TJ~K', 

and 

aTJ'K, = (g" _ T/>TJ')K).. 
aT/. 

(6.26) 

(6.27) 

(6.28) 

- TJ'(g)..> - TJ·TJ)..)H - K' == O. (6.29) 

Finally, notice that the constraint (6.24) enables 
one to simplify (6.22) slightly to 

[N P
, AaJ 

= ih{(CaP~1I - Ca~PllhpAIl + aAa/aTJ~I. 
(7) The Center of Mass and Interactions 

(6.30) 

In the previous section a transformation of the 
conventional Poincare generators was found leading 
to the hyperplane generators. These latter effect a 
clean separation between those commutation rela­
tions which display the purely kinematical behavior 
of dynamical variables under Poincare transforma­
tions, which leave the hyperplane parameters un­
changed, and those which include contributions from 
the dynamical evolution of the system. It is phys­
ically clear that the dynamical problems posed by 
the derivatives aAa/aT and aA a/a7]. appearing in 
(6.19) and (6.30), respectively, cannot be entirely 
unrelated. In the first place, if they were unrelated, 
the hyperplane formalism would contain much more 
physical structure than conventional relativistic 
quantum mechanics. The hyperplane formalism, 
however, is nothing more than a reformulation of the 
general principles of relativistic quantum mechanics 
which has the merit of being manifestly covariant. 
In the second place, a small change in the hyperplane 
parameter 7], has a much greater effect on those 
portions of the hyperplane far removed from the 
point X~ (0) = 7]pT than it does on those portions near 
the point (see Fig. 1). Consequently, the observables 
associated with a physical system more or less con­
fined to a region far removed from X" (0) = ·7]"T 
suffer a comparatively large change from the small 
variation 07] •. This change can, to some extent, be 
counterbalanced by a corresponding change in aT. 
This change is clearly larger the greater the distance 
of the system from X" (0). It would be very desirable 
to have a precise statement of this relationship 
between dependence on 7]. and T, and it is obvious 
that some description of the "position" of the system 

world tube of center of moss 
x 

"wove pocket" 

FIG. 1. Space-time diagram displaying the geometrical 
relation between 07J", OT, and QP(7J, T). As Q" gets smaller, so 
does IlT for fixed 1l7J". 

relative to X" (0) is needed to obtain the desired rela­
tionship. In this connection it proves convenient 
to introduce the notion of the center of the mass, or, 
more precisely, the center of the invariant hyper­
plane mass H / c. 

Consider the manifold of state vectors describing 
the possible states of a single massive stable particle. 
This vector space is an irreducible representation 
space for the Poincare group/8 i.e., every vector in 
the space can be reached from any given vector in 
the space (up to a numerical factor) via a Poincare 
transformation. From this property it follows that 
any single particle observable defined in the space 
must be expressible in terms of the Poincare gen­
erators and multiples of the identity operator. Con­
sequently, the possibility of introducing the concept 
of a center-of-mass position observable depends on 
the possibility of constructing a Hermitian operator 
function Qp(7], T) of the Poincare generators which 
satisfies all the requirements one may legitimately 
impose on a center-of-mass position operator. Once 
the expression for Qp as a function of the generators 
has been obtained for a single stable particle, the 
same expression is used for an arbitrary closed 
system. This is required since the center-of-mass 
operator, which describes the system as a whole, 
must always have the same commutators with the 
generators for the entire system. 
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Let 14>1) and 14>2) denote arbitrary state vectors 
from the state spaces of two single particle systems. 
If these states are normalizable then the incoming 
direct product state, 

in 

14>1> 4>2 in) = 14>1) ® 14>2), (7.1) 

is well defined.s1 This state describes a system which 
in the asymptotically infinite past consists of two 
noninteracting particles in the single particle states 
14>1) and 14>2)' The asymptotically free nature of the 
system requires that, for any Poincare transforma­
tion corresponding to the unitary operator U, 

in 

U 14>1, 4>2 in) = {U 14>1)} ® {U 14>2)} (7.2) 

holds.32 This equation in turn demands that the 
generators satisfy 

in 

the concept of a center-of-mass position operator 
and is an obvious generalization of the nonrela­
tivistic relation in which H is replaced by the total 
mass of the system. 

Under an arbitrary translation of the coordinate 
system along the hyperplane, the operator QI' changes 
by the addition of the translation vector. Thus 

exp [-(i/h)K). oa)..]QI' exp [(i/h)K>' oa)..] 

= QI' + (y/ - 'YJp.'YJ>') oaA' (7.8) 
Hence, 

[Kp., Q,l = ih(gp., - 'YJp.'YJ.). (7.9) 

Taking the commutator of K, with (7.7) and sub­
stituting (6.10), (6.11), (6.13), (6.17), and (7.9) into 
the resulting equation yields 

H(yp., - '1l1''YJ.) = Cp.\'hfiKa'YJfi + d}'(Yb - 1J>.1J.)H. 

in 

The operators appearing in the foregoing equation 
are independent, except for the constraint (6.4), 

(7.3) and therefore the coefficients must satisfy 

and (g/ - dp.}.)(g)... - 'YJ)..'YJ.) = 0 
in 

M p.. 14>11 4>2 in) = f M p.' 14>1)} ® 14>2) 
and 

in 
Cp.)..E,}.afi1JP = o. 

(7.4) The general solution of these equations are 

In other words, the hyperplane generators H, Kp., JI" 
and N I' are additive for noninteracting composite 
systems. The physical interpretation of H, KI" and 
J I' as hyperplane mass, momentum, and angular 
momentum leads one to expect this additive prop­
erty for these operators. These considerations are 
important since the first condition to be demanded 
of the center-of-mass position operator is that the 
product of Hand Qp. also be additive on the state 
(7.1). Specifically, using the notation 

A:B == !(AB + BA), (7.5) 

the additive property is 
in 

H:QI' 14>11 4>2 in) = {H:QI' 14>1)} ® 14>2) 
in 

It follows immediately from (7.6) that H:QI' must 
be a linear function of the hyperplane generators 

H:Qp. = ap.H + bp.'K. + C/J, + d/N.. (7.7) 

The additive postulate (7.6) contains the essence of 
31 R Haag Kgl. Danske. Videnskab. Selskab, Mat. fys. 

Medd. '29, N~. 12 (1955); Nuovo Cimento Supp!. 14, 131 
(1959). W' h 

all See, for example, R. F. Streater and A. S. Ig tman 
(Ref. 1, pp. 24-27). 

(7.10) 

and 
(7.11) 

where hI' and Ip. are arbitrary. Substituting (7.10) 
and (7.11) back into (7.7) yields 

(7.12) 

Under rotations of the coordinate system within 
the hyperplane, Qp. must behave as a hyperplane four­
vector, i.e., 

[J" Ql'l = ihE'l'a{3Qa
1JfJ. (7.13) 

Taking the commutator of (7.12) with J. and again 
making the appropriate substitutions yields first 

(7.14) 

and then, from substitution of (7.12) into the left­
hand side of (7.14), 

'" flH + ba}. flK - b}. flK a 
E.p.afla 1J E.p.a{3 1J }. - p. E.}.afll1 • (7.15) 

By virtue of the constraint (6.4) no generality is 
lost in choosing b/ to satisfy bl"'YJ. = O. With this 
choice (7.15) yields 



                                                                                                                                    

COVARIANT RELATIVISTIC QUANTUM MECHANICS 1973 

and 

Em'Il'fJIl{g~l'b'\ - g", "b/} = O. 

The solution of the first equation is 

(7.16) 

but the second one is more involved. Employing 
identities similar to the pair (6.5) and (6.7) for 
antisymmetric tensors, yields 

g~"b'\ - g".,.b,,7 + g\bl''' - g"l'b\ 

= g7I'b\'fJ.11" - 11A11/Xbl'r - 'fJ1'11/Xb\ 

- g\b\11.'fJ" + 11.,.117b/ + 111A11"b"A. 

Contracting on " and /L, one obtains 

4b'\ - g".,.b + bA" - b'\ 

= 211"b\11. - lIA11"b + 'fJ).b. "11' + b'\, 
where 

b == b/. 

Hence, 

2b:}. + b)." = (g"A - 11"11>.)b 

+ 211"11,bP

A + 11).11'b.". (7.17) 

To go further in the determination of al' and 
b/, it is necessary to invoke the constraint 

1IIAQI' = 0, (7.18) 

which is a consequence of the physical interpretation 
·of QI' as describing the position of the center of mass 
relative to the point XIA (0) = 11IAT. The space-time 
interval being described lies in the hyperplane, and 
therefore (7.18) must hold. Applying this to (7.12) 
yields 

11"al' = 0 and rtb,." = O. 

These results in turn reduce (7.16) to 

.and (7.17) to 

b,." = (ib)(g,." - 111'11) == (g/ - 111'11)0". 

The expression (7.12), then, can now be replaced 
by 

(7.19) 

Finally, CI can be determined up to an additive 
constant by the requirement that the total hyper­
'plane momentum KI' be contained in the center-of­
:mass motion, Le., 

H:iJQ,,./iJ,, = K". (7.20) 

Since H, KI" and NI' are independent of r, this yields 

CI = r + 0"0' 

The constant Clo cannot be determined. It can be 
changed by a unitary transformation 

e(i/-fr)IIt.v •• 

which corresponds on the one hand to a change in the 
origin of the T parameter, and on the other hand to 
the fact that the physical interpretation of NI' has 
not yet been fixed. The choice 0"0 = 0 determines N .. 
as the moment of the hyperplane mass at the "hy­
perplane time" r = O. Therefore, 

H:QI' = TKI' + NI" (7.21) 

From (7.9), (7.20) and (6.19), (6.20), it follows that 

[QI" H] = iliKiH. (7.22) 

This last commutator can be used to solve (7.21) 
for Ql'l the result being, 

Q" = f rKI' + NI'} :H-1
• (7.23) 

The postulates (7.6), (7.9), (7.13), (7.18), and 
(7.20) along with the choice 0"0 = 0 have uniquely 
determined the center-of-mass position operator. 
If there are other, independent postulates that must 
be imposed on physical grounds, it is unlikely that 
(7.23) will satisfy them. In such a case one would 
have to conclude that a physically acceptable center­
of-mass position operator does not exist. Further 
on in this section I discuss some of the alternative 
postulates that have been adopted by other authors 
writing about relativistic position operators. For 
the moment, however, I return to the original 
motivation for introducing the center-of-mass posi­
tion operator; the desire to find relations between 
the hyperplane derivatives of arbitrary dynamical 
variables. 

Taking the commutator of (7.21) with A" and 
using (6.19), (6.20), and (6.30) yields 

~~p" = ~:[QIA' A,,] + (0,,1'/ - Oap/hP All 

- r(g, .. - 11p11.)T,: + QI':{Ta''fJ' - iJ!a}. (7.24) 

It appears, then, that the kinematical transformation 
properties of A a and the commutator of A" and QI' 
completely determine the derivatives iJA,,/o'fJ" once 
the derivative iJA,,/or is given. Note, in passing, 
that (7.24) is consistent with 

1/" iJA,,/iJrt = o. 
If interaction terms are added to the hyperplane 
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generators Hand N p , then the demand that the 
free generators and the total generators satisfy the 
same commutator algebra among themselves leads 
to commutation relations between the interaction 
terms and the free generators.30 In the conventional 
formulations of relativistic quantum mechanics, the 
physical interpretation of those commutation rela­
tions which are linear in the interaction terms has 
been clear. Accordingly, they have been the com­
mutation relations which were easy to satisfy when 
constructing interaction terms. The physical inter­
pretation of the nonlinear relations, however, has 
been obscure and the relations difficult to satisfy.a3 
The center-of-mass position operator seems to pro­
vide easy access to a natural physical interpretation 
of the nonlinear relations, as will now be demon­
strated. 

The relationship between the full- and free-hy­
perplane generators is assumed to be 

KjJ = KjJ(O), (7.25) 

J p = JjJ(O), (7.26) 

H = H(O) + V, (7.27) 

and 
NjJ = NjJ(O) + UjJ, (7.28) 

where the superscript (0) denotes the free generators. 
Since (6.10)-(6.18) must hold for both the free and 
full generators, it follows that the "potentials" V 
and UjJ must satisfy 

[K,.<o>, V] = 0, (7.29) 

[J/O
), V] = 0, 

[KjJ(O), U,] = ih(gjJ, - 1/,,1/,) V, 

[J" (0), U,] = ihEjJ, aPUa1/P, 

(7.30) 

(7.31) 

(7.32) 

(7.33) 

[N/O), U,] + [UjJI N, (0)] + [Up, U,] = O. (7.34) 

From (7.25), (7.26), Eqs. (7.29)-(7.32) are simply 
statements of the hyperplane translational and rota­
tional properties of V and UP. V is invariant under 
such transformations while U, is a vector which 
under translation is modified by 

exp [-(ijh)K),a).]UjJ exp [(ijh)K).a).] 

(7.35) 

As they stand, the meaning of the remaining rela-

8S L. L. Foldy [phys. Rev. 122,275 (1961)] has analyzed a 
pertur,?a~ive solution of these nonlinear rela~ions. for a 
relatiVIstIC system of a fixed number of partICles ill the 
conventional "instant" formalism. 

tions (7.33), (7.34) is not so clear. From (7.21), 
however, 

(7.36) 

and 

U" = H :QjJ - H(O) :QjJ (0) = V :Q" + H(O) :AQjJ, (7.37) 

where 

(7.38) 

Substituting these equations into (7.33) yields after 
several algebraic manipulations 

[H:QjJ, H] - [H(O) :QjJ(O) , H(O)] = 0. (7.39) 

Therefore if (7.22) is given for the free system, 
(7.39), in conjunction with (7.25), demands that 
(7.22) also hold for the interacting system. In other 
words, (7.33) is the requirement, albeit in disguised 
form, that the center-oj-mass motion continue to carry 
the total linear momentum when the interactions are 
turned on. If (7.34) is rewritten as 

[NjJ, N,] - [N/O) , N,<O)] = 0 

and (7.21), (7.36) substituted into the left-hand 
operator of each commutator, then use of (7.31) 
yields 

[H :QjJ, N,] - [H (0) :Q,.<o>, N ,<0)] 

= ih(gjJp - 1/,,1/,) V. (7.40) 

This equation describes the change in the behavior 
of the center-of-mass motion, or the moment of the 
hyperplane mass distribution, under pure Lorentz 
transformations when the interaction is turned on. 
A closer analogy to the interpretation of (7.39), how­
ever, is provided by looking at the hyperplane 
derivatives. Thus (7.39) may be written 

aH:QjJ = [aH(O) :Qe (O)J(O) 

aT aT ' (7.41) 

while (7.40) becomes 

a~~~jJ = [aH(:~~jJ (0) TO) 

- (gjJ, - 1/1'1/,) V - 1/jJU,. (7.42) 

Finally, it is interesting to use the center-of-mass 
position operator to effect a partition of the hyper­
plane angular momentum J" into an "orbital" con­
tribution from the center-of-mass motion and the 
remainder term representing the internal angular 
momentum relative to the center of mass. The 
partition is effected by 

J" = -EjJap"(Qa:KP1/"( + ~jJ (7.43) 

in close analogy with the nonrelativistic expression. 
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The internal angular momentum 2:p is translationally 
invariant, 

[Kp , 2:,] = [H, 2:,] = 0, 

and the further partition 

2:p == Spn + (Mc/H)S/, 

where 
Mc == I (rpp)l I , 

S~u == KpK~2:A(KPKp)-l, 
and 

S/ == (H/Mc)[2:p - K pKA2:A(KPK p)-I] 

(7.44) 

(7.45) 

(7.46) 

(7.47) 

(7.48) 

yields the translationally invariant spin vector Sp 
sa tisfying34 

[Sp, S.] = iliEp,a{!sa,r/. (7.49) 

Many people have studied position variables for 
relativistic systems in the past. Although the position 
variables treated have often been called the "center 
of mass" of the physical system, they have rarely 
satisfied the additive postulate (7.6) or any simple 
generalization of it. On the other hand, the analogus 
of (7.9), (7.13), and (7.20) have been almost univer­
sally invoked. Since the properties assumed here 
uniquely determine the center of mass, it is necessary 
to justify the exclusion of the more conventional 
assumptions which have replaced the additive postu­
late in other works. 

By far the most frequent assumption is that of 
locality/4.35 i.e., 

[Qp, Q,] = o. (7.50) 

This assumption can be formulated in classical 
physics via Poisson brackets, and it shares there, 
with quantum mechanics, the advantage of great 
mathematical convenience. Its physical significance 
in quantum mechanics is, however, much greater 
than in classical physics owing to the quantum 
theory of measurement. Thus in classical physics 
(7.50) permits the use of the QI' as generalized co­
ordinates, while in quantum mechanics it permits 
the Qp to possess a complete set of simultaneous 
eigenstates. In quantum mechanics the existence of 
a complete set of simultaneous eigenstates for Hermi­
tian operators means that the operators can all 
be measured precisely on the same hyperplane, 
whereas such measurability is assumed in classical 
physics regardless of whether (7.50) is satisfied. 

34 The Casimir operators of the Poincare group are 
H' + K Kp and (H2 + K K~) S,S' and for a massive irreduc­
ible rep;esentation of "spin" 8, S,S- = - ,,2 8(8 + 1). In 
general S. does not exist for massless representati?ns. 

36 G. N. Fleming (see Refs. 4 and 8) contams further 
references on this topic. 

The center-of-mass position operator is not local. 
A straightforward but tedious calculation based 
on (7.23) yields 

[QI" Q,] 

= -(ili/H2)EI',ap[sa U + (Mc/H)saJ.]r/. (7.51) 

This result does not prohibit one, categorically, from 
performing precise measurements of all the compo­
nents of the center of mass on a given hyperplane. 
It does, however, restrict such results to measure­
ments performed on a class of states which, for a 
spinning particle, contains contributions from arbi­
trarily high hyperplane mass or energy. On the 
other hand, (7.51) does demand that the statistical 
distributions of eigenvalues of any two components 
of Qp in a state of finite expectation value for Hare 
constrained by a lower limit on the product of their 
rms deviations in the usual way. The lower limit, 
furthermore, depends on the expectation value of H. 

It seems to me that none of these considerations 
clash with the essential characteristics of a quantum 
mechanical position operator. The essential char­
acteristics being certain transformation properties 
under translations and rotations and the description 
of the average motion of the system by the expecta­
tion value of the operator. 

If one does employ the locality postulate instead 
of the additive property in the search for a position 
operator, then it is well known that the result is 
unique for elementary systems.14 In the hyperplane 
formalism the physical interpretation of the local 
position operator Qp is most strongly suggested by 
the equation 

(7.52) 

The local operator Qp, however, does not possess 
any simple combinatorial property even for non­
interacting composite systems. 

More recently, a postulate concerning the behavior 
under pure Lorentz transformations has been in­
voked as an essential characteristic of a relativistic 
position variable.36

-
3s This postulate, which has 

36 D. G. Currie, J. Math. Phys. 4, 1470 (1963); "A New 
Class of Invariance TransformatIOns in Classical Hamiltonian 
Particle Dynamics," Northeastern University preprint (1965); 
Phys. Rev. 142, 817 (1966); D. G. Currie and E. J. Saletan, 
J. Math. Phys. 7, 967 (1966). I wish to thank Professor 
Currie for sending me copies of his papers prior to publication. 

37 P. Havas and J. Plebanski, Bull. Am. Phys. Soc. 5, 433 
(1961); H. Van Dam and E. P. Wigner, Phys. Rev. 138, B1576 
(1965); 142, 138 (1966). These papers have pioneered a 
reinvestigation of the notion that particle interactions must 
proceed via "signals" with speeds not exceeding that of Iig~t. 

38 E. H. Kener, J. Math. Phys. 6, 1218 (1965); R. N. Hill, 
"Instantaneous Action-at-a-Distance In Classical Relativ­
istic Mechanics," University of Delaware preprint (1966). I 
wish to thank Professor Hill for sending me a copy of his 
paper prior to publication. 
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been discussed most carefully by Currie and called 
by him the strong world-line condition, is the require­
ment that the position vectors x(t) and x'(t'), de­
scribing the position from two inertial frames, trace 
out the same absolute world line. In quantum 
mechanics the demand is made on the expectation 
values of the position operator. Neither the center­
of-mass operator nor the local operator Q" satisfy 
the strong world-line condition. 

In the instant form of relativistic mechanics the 
strong world-line condition can only be formulated 
as a comparison of instantaneous position coordi­
nates determined in two inertial frames. The exist­
ence of frame dependent world lines, as such, seems 
very unnatural, and in this circumstance the strong 
world-line condition is very compelling. The hyper­
plane formalism, however, provides an alternative 
interpretation. The distinct world lines for instan­
taneous positions in various frames are identical to 
the distinct world lines for hyperplane position vari­
ables on variously oriented (Le., different 711' values) 
hyperplanes in one frame of reference. Such a mani­
fold of distinct world lines in one frame indicates 
that the physical system in question has a finite 
extension. Since, in classical physics the position 
vectors associated with extended systems are the 
result of some averaging process carried out over 
the system, it should not be surprising that the 
world line traced out by the position vector should 
depend on the orientation of the hyperplanes over 
which the averaging process is carried out. There­
fore, it is only when one can regard the physical 
system as consisting of a point particle with no spatial 
extension that the strong world-line condition can 
be justified a priori. 

That is, of course, precisely the kind of system 
that Currie and others have been addressing them­
selves to in the classical case and their conclusions 
can hardly be challenged there. The application of 
the world-line condition to quantum mechanical 
particles, however, can not be so easily justified. 
Material particles are defined in fundamentally dif­
ferent ways in relativistic classical and quantum 
physics. In the classical case they are defined as 
systems without spatial extension, this being the 
primary property distinguishing them from fields, 
the other basic ingrediant of classical physical sys­
tems. As such, a theorem of Moller prevents classical 
point particles from having any spin.a9 The elemen­
tary particles of quantum mechanics, on the other 

39 C. Moller, Commun. Dublin Inst. Adv. Studies A No.5 
(1949); see, also, The Theory of Relativity (Clarendon Press, 
Oxford, England, 1952), p. 173. 

hand, are defined in terms of a rather abstract prop­
erty of the linear manifold of their physical 
states,14 .28 •• 0 and this definition accomodates the 
notion of spinning particles very naturally. Hence, 
the spatial extension of elementary particles in rela­
tivistic quantum mechanics is a problem to be in­
vestigated and not decided via a priori assumptions. 

I have discussed elsewhere, in more detail, the 
case for the concept of the spatially extended ele­
mentary particle.8 

(8) The Poincare Invariance of the Scattering 
Operator and Conservation Laws 

It is very problematical at present whether the 
same dynamical variables that are convenient to 
use in a complete description of systems of free par­
ticles are useful or even meaningful in the description 
of a relativistic quantum mechanical system under­
going interactions.41 A strong conviction among 
many physicists that this is not the case has resulted 
in the so-called scattering operator assuming a prom­
inent position in the theoretical analysis of rela­
tivistic particle interactions.·2 Without dwelling on 
the justification of the conviction or the present 
status of S-matrix theory compared to field theory, 
I would like to describe briefly here the manner 
in which the scattering operator enters into the 
hyperplane formalism and the relation between the 
Poincare invariance of the scattering operator and 
conservation laws in the formalism. 

Let the symbol a stand for a complete description 
of an instantaneous state of a system of free particles 
in the conventional formulation of relativistic quan­
tum mechanics. The Heisenberg picture state vector 

la, t) 

then describes a system which at the time t is in the 
instantaneous state a. Thus, although a Heisenberg 
state vector refers to the entire evolution of a phys­
ical system, the characterization of that evolution 
in terms referring to a complete set of instantaneous 
dynamical variables requires the specification of 

40 Two interesting discussions of the physical meaning and 
mathematical definition of single particle states in relativistic 
quantum mechanics is given by B. Schroer, Acta Phys. 
Austriaca 17, 72 (1963); H. Ekstein, Commun. Math. Phys. 
1,6 (1965). I find it hard to evaluate Ekstein's no-interaction 
theorem because the physical interpretation of his basic 
postulate (see p. 10) is not nearly as clear as the stron~ world­
line condition. Nevertheless, although direct-interactlOn par­
ticle theories are not my primary concern here, it seems 
to me that Ekstein's postulate is at variance with the notions 
that have been advanced here. Thus Ekstein seems to deny 
the possibility of dynamical content in the derivative 
oA('1, T)/O'1P• 

41 G. F. Chew, Physics 1, 77 (1964). 
4.2 The literature is voluminous. See, for example, Phys. 

Rev. 140, 7AB, Sec. 65, AB28 (1965). 
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the time at which the characterization applies. Now, 
since an arbitrary spacelike hyperplane appears in­
stantaneous in some frame, the descriptions a can 
easily be generalized to refer to arbitrary hyper­
planes, and I use the same symbol to denote the 
generalized description. Thus the meaning of the 
symbol 

la; "7, 7") 

as a Heisenberg state vector for a free system is 
clear. 

In order to characterize Heisenberg state vectors 
for fully interacting systems, it is customary to make 
the dynamical assumption that in the asymptotically 
infinite future and past timelike directions the system 
approaches free behavior.31 Making the assumption 
here one can write 

la; 71, 7"(in» 

as the symbol for that Heisenberg state which, in 
the infinite past timelike directions, approaches a 
free state which if there were no interactions would 
assume the hyperplane state a on the hyperplane 
("7, 7"). Similarly, 

ra; 71, T(out» 

denotes the Heisenberg state that approaches, in 
the infinite timelike future, a free state which in the 
absence of interactions would assume the hyperplane 
state a on the hyperplane (71, 7"). 

The superposition principle applied to the free 
hyperplane states a then tells one that the (in) and 
(out) states are related by a linear transformation 
8("72, 7"2; "71, TI), independent of a, such that 

ra; "72, T2(in) 

== 8(712, T2; "71, TI) ra; "7ITI(OUt). (8.1) 

On the other hand, relativistic invariance demands 
that if, under the proper inhomogeneous transforma­
tion 1, 

U(l) ra; "7, T(in) = ra'; 71', T'(in», (8.2) 

then 

U(l) la; 71, T(OUt» = la'; 71', T'(Out» , (8.3) 

where the primes denote the description of the 
hyperplane state from the transformed frame. From 
the preceding equation it follows that 

U(1)-18("7/, T/; 711', Tt') U(l) 

= 8("72, T2; 711, TI). (8.4) 

This equation cannot immediately lead to commuta-

tion relations with the hyperplane generators be­
cause the hyperplane generators require a single 
value of 71~ for their definition. To get around this, 
note that (8.2), (8.3) lead to 

ih(d/d"7fJ.) la; "7, T(in, out) 

= N~ la; "7, T(in, out», (8.5) 

so that 

la; "72' T(in, out» = p{ exp ( -~ t' N,,(71) d71")} 

X la; "71' T(in, out», (8.6) 

where the P symbol plays the role of an ordering 
operator in the mUltiple integrals of the expansion 
of the exponent. The ordering is somewhat more 
involved here than in the conventional time ordering 
of the Dyson P-symbol since the ordering parameter 
is a four-vector. The problem can, of course, be 
reduced to the usual one by introducing a continuous 
one-parameter family "7"(p) of timelike unit four­
vectors such that 

T/,(O) = "71", 

The ordering operator then refers to p in the usual 
way. Writing the ordered exponential operator in 
(8.6) as 

T("72; 711) 

and ignoring here the mathematical problem of the 
path independence in "7" space of T(712; 711), yields 
with (8.1) 

8(712, T2; 711, 7"1) = T("72; "71)8(711, T2; 71I TI)' (8.7) 

From (8.4) it follows that the commutation rela­
tions of the hyperplane generators with 

8(711, T2; 711' TI) == 8(711; T2, Tl) (8.8) 
are 

[K",8] = 0, (8.9) 

[J",8] = 0, (8.10) 
[H,8] = -ih{(a8/aTI) + (a8/dT2»), (8.11) 

[N", 8] = i1i(a8/arJ"). (8.12) 

The first two equations assert the asymptotic con­
servation of hyperplane momentum and angular 
momentum, a consequence of the translational and 
rotational invariance of 8. The third equation can 
be simplified by using (8.2), (8.3) again in the form 

-i1i(a/aT) la; rJ, T(in, out» 

= H la; "7, T(in, out», (8.13) 
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which eventually leads to 

8(1]; r2, r1) = e(i/1rlH(r.-T.)8(1/; 0) 

== e(i/1rlH (r.-rtl 8(1]). 

Substituting (8.14) into (8.11) yields 

[H(1/). 8(11)] = 0, 

and in (8.12) leads to 

[NIl (1/), 8(1/)] = ih a8(11)!iN', 

where 
[NI" e(i/*JH(r.-r,)] = ih(ajart)e(i!MlI(T.-T,) 

(8.14) 

(8.15) 

(8.16) 

K ( ) (i/*)H(ra-'') 
= - I'r2 - r1 e 

has been used. Equation (8.15) asserts the asymp­
totic conservation of the hyperplane mass, and its 
derivation demonstrates the dependence of this re­
sult on the r-translational invariance of 8(1/; r2, r1)' 

If (7.21) is used to rewrite Nil in (8.16), then 
(8.9), (8.10), (8.15) allow (8.16) to be replaced by 

H:[Q", 8] = ih(a8!a1/I1), (8.17) 

and the asymptotic conservation of the center-of­
mass motion is related to the hyperplane orienta­
tion independence of 8. The proof of this independ­
ence involves the assumption that any (in) or (out) 
state may be described in terms of free hyperplane 
states on any hyperplane. In other words, if 

la; 11, rein, out» == I If), 
then for any (7]', r') there exists (3 such that 

1{3; 1/', r'(in, out» = 11f)· 

This postulate is related to the aspect of relativistic 
invariance which demands that if one observer can 
describe a system in terms of (1/, r) hyperplane states 
than a second observer, whose (1], r) hyperplanes 
are (11', r') hyperplanes for the first observer, must 
also be able to employ that mode of description. This 
plus the translatability of a given description yields 
the postulate. The postulate in turn yields 

la; 1/, rein»~ = 1{3; r/, r'(in» 

and 

la; T/, r(out» = 1{3; 1]', r'(out». 

But since 

8(T/) la; T/, r(out» = la; 1], r(in» 

= !,B; 11', r'(in» = 8(1]') 1{3; 1]', r'(Out», 

it must be that 

8(1/) = 8(.,,') (8.18) 

and 

[Q", 8] = O. (8.19) 

Finally, since the norm of a free hyperplane state 
does not depend on when that state is approached, 
it must be true that 

(a; 11, rein) la; 1], rein»~ = (aj 1/, r(out) la; 1], r(out» 

for arbitrary a. Hence 

(8.20) 

and the scattering operator 8 is unitary. 

(9) Hyperplane Field Theory of Spinless Particles 

In this section I would like to discuss a field-theo­
retic mode of description which appears quite natural 
in the hyperplane formalism. The description differs 
in several respects from what is to be called con­
ventional local quantum field theory or c.l.q.f.t.s 

Whether the differences can be significant for the 
formulation of dynamical theories is a question 
that is not pursued at length here. Accordingly, 
I restrict the discussion to the hyperplane field­
theoretic description of free spinless particles. Within 
that limited domain the major difference is that the 
hyperplane field operators do not satisfy the micro­
causality condition which is a basic property of 
c.l.q.f.t.6 Nevertheless, the physical content of the 
description of free spinless particles is identical with 
that provided by c.l.q.f.t. 

To ensure the truth of the last statement, I begin 
by considering the creation and destructio~ op­
erators for momentum eigenstates of such partIcles 

,V(p, t); ~(p, t), 

where the time dependence (trivial in the case of 
free particles) is included to emphasize the essentially 
noncovariant character of these operators. Whether 
interactions are present or not, these operators sat­
isfy the commutation relations43 

[P, <P(p, t)] = -p<P(p, t) (9.1) 

and 

[H, <P(p, t)] = -ih(ajat)~(p, t), (9.2) 

where P and H are the conventional total momentum 
and energy operators. In the absence of interactions, 
(9.2) is equivalent to 

[H, <P(p, t)J = _C(P2 + m2c2)t<P(p, t), (9.3) 

.3 If interactions are present, of course, then the ~ass 
spectrum of the state iP+(p, t) 10> is not t~at of a srngle 
stable particle. See H. Lehmann, Nuovo Clmento 11, 342 
(1954); P. J. Peebles, Phys. Rev. 128, 1412 (1962). 
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so that 

<iJ(p, t) = <iJ(p) exp [-(ijh)(P2 + m2e2)tet). (9.4) 

In accordance with the philosophy behind the 
hyperplane formalism, the instantaneous destruction 
operator <iJ(p, t) must be replaced by a destruction 
operator associated with a given hyperplane (71, T). 
Furthermore, the description of the momentum p 
that is removed from the state by the action of 
<iJ(p, t) must be replaced by a four-vector variable 
k" denoting the hyperplane momentum removed 
from the state. The resulting hyperplane destruction 
operator may be written 

<iJ(k; 71, T). 

The fact that the hyperplane momentum operator 
satisfies the constraint equation (6.4) places an 
awkward limitation on the domain of definition of 
the variable k". It is more convenient for calculations 
to enlarge the domain of definition to the entire 
four-dimensional k-space and impose the constraint 
equation 

on the destruction operator. The ambiguity thereby 
introduced into the result of applying 1> to a state 
vector is removed by the commutation relations 

[K", <iJ(k; "1, T)] = -q,,<iJ(k; 71, T), 

[H, <iJ(k; 1/, T)] = -ili(iJjiJT)<iJ(k; 71, T) 

= _(m2e2 
- l)lci>(k; 71, T), 

where 

The limit 

(9.6) 

(9.7) 

(9.8) 

lim <iJ(k; "1, T) = ci>(k, t) (9.9) 
'1)'0-1 

T-C' 
is consistent with these definitions. 

In c.l.q.f.t. the space-time field operators would 
now be introduced via the three-dimensional m­
stantaneous Fourier transform 

(9.10) 

and relativistic invariance of the theory is guaranteed 
by the requirement that cI>(x, t) transform like a 
scalar 

cI>'(x', t') = cI>(x, t). (9.11) 

This requirement (9.11) then implicitly determines 
the transformation properties of <iJ(p, t). In partic­
ular, when no interactions are present, the invari­
ance of the differential element d3 pj2po plus (9.4) 
yields the scalar transformation rule 

ci>(p')' = ci>(p), 

which usually provokes the manifestly covariant 
notation, 

- - 2 22! cI>(p) == <P(p,,); Po = (p + me) . 

In the hyperplane formalism, <iJ(k; 71, T) is defined 
at the outset to satisfy 

ci>'(k'; 71', T') = ci>(k; 1/, T), (9.12) 

and the transformation to a space-time field operator 
can be effected via the generalization (from non­
relativistic quantum field theory) 

(9.13) 

rather than 

d3p --t (mejpo) d3p 

as in c.l.q.f.t. Using (9.13) one obtains 

cI>(x; 71, T) = (21rh)-1 J d4k o(1/k) 

X {<iJ(k; 71, T)e-
Wfrlh + <iJ+(k; "1, T)e

Wfrl k%1. (9.14) 

and the resulting constraint 

(9.15) 

keeps the number of independent variables from pro­
liferating unjustifiably. 

Combining (9.6), (9.7), and (9.14) yields the 
Heisenberg equations of motion 

[K", cI>(x; 1/, T») = -ili(iJjiJx")cI>(x; 71, T), (9.16) 

[H, cI>(x; 1/, T)] = -ili(iJjiJT)cI>(X; 1], T). (9.17) 

Furthermore, the scalar transformation property 

<J>'(x'; 1]', T') = cI>(x; 71, T), (9.18) 

which follows from (9.12) and (9.14), yields the 
commutators 

[J", cI>(x; 71, T)] 

= -iliE"a{J-yX"(iJjiJx{J)cI>(x; 71, ThY (9.19) 

and 

[N", cI>(x; 71, T)] 

= ih{(71X)(iJjiJx") + (iJjiJ71")}cI>(X; 1/, T). (9.20) 
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Assuming the equal hyperplane commutation rela­
tions, for free fields,44 

[~(k'; 71, T), ~(k; 71, T)] = 0, 

o(7Jk - 7Jk')f~(k'; 71, r), ~+(k; 71, r)] 

= o4(k - k') 

yield 

[~(-)( ,. ') ~(-)(. )] - 0 
'¥ x, 71, T , '¥ X, 71, T - , 

[<I>(-)(x'; 71, r'), <I>(+)(x; 71, r)] 

where 

<t>c-)(x; 71, r) 

= C(x - x'. T - r'; 71). 

= (211"h)-f f d'k o(7Jk)~(k; 71, T)e- Ci/*)""'. 

<I>c+)(x; 71, T) = {<I>(-)(x; 71, T)} +, 

and 

C(x - x'; r - T'; 71) 

(9.21) 

(9.22) 

(9.23) 

(9.24) 

(9.25) 

(9.26) 

is a Newton-Wigner position eigenstate generalized 
to the hyperplane (71, T), and the nonlocal behavior 
of these states is well known. 1, The position operator 
appearing in (7.51) satisfies 

(1,,(71. r) Ix; 71, T) = [x" - 7J,,(7JX)] Ix; 71, r). (9.32) 

Thus the field <I>(x; 71, r) has a more direct physical 
interpretation than the c.l.q.f.t. operator <I>(x) since 
the former is a linear combination of creation and 
annihilation operators for position eigenstates. 

The commutation relations (9.16), (9.17), and 
(9.19) are easily "solved" by choosing46 

K" = f d4
x o(7Jx)X,,(x; 1], T), (9.33) 

(9.34) 

and 

(9.35) 

where 

X,,(x; 71, r) = !ih<I>c+)(x; 1], T) = (211"h)-a f d'k o(7Jk)eCi/*)[h(r-r')+kC"'-""JI, 

h = (m2c2 
- e)i. (9.27) X (a-/ax")<I>c-,(x; 1], r) (9.36) 

The function C is the space-time propagator for 
the free field in the sense that 

f d4x' o(7JX')C(x - x'. r - T'; 7J)<I>c+)(x'; 71, T') 

- ~(+)(. ) 
- '¥ x, 71, r . (9.28) 

This function displays the nonlocality of the field 
since 

C(x, T; 71) ~ 0 (9.29) 

for 

r2 + fx - 7J(7JX)]2 < o. (9.30) 

In fact, the state 

<I>c+)(x; 71, T) 10) = Ix; 71, r) (9.31) 
44 This set of fundamental commutation relations is 

equivalent to the canonical quantization scheme only in the 
case of free fields. Furthermore, even for free fields the 
space-time field, 4>(x; '1) • .,.), does not satisfy canonical com­
mutation relations such as li('1)x - '1)X') [4>(x'; '1), .,.), (ala.,.) 
4>(x; '1), .,.)] = ih li4(x - x'). This is probably the greatest 
drawback to the use of such fields in the description of 
interacting systems, since one does not have a canonical scheme 
for equal hyperplane commutation relations to invoke. On 
the other hand, such canonical schemes have almost dropped 
out of the picture in the modern approach to quantum field 
theory. Their residue, in the form of the microcausality 
postulate, would be replaced here by the equal hyperplane 
commutation relation [4>(x'; '1), .,.), 4>(x; '1), .,.)] = 0 for 
x" - '1),,('1)x) ~ x'" - '1),,('1)X'). 

and 

x(x; 71, r) = !ih<I>c+)(x; 1], r) 

X (a-/aT)<I>(->(x; 71, T). (9.37) 

These hyperplane generator densities satisfy, 
consequence of the field equation, 

asa 

[ 
a2 a a m

2
c
2] 

aT2 + ax" ax" + 7 <I>(x; 1]. T) = 0, (9.38) 

the analog of the local conservation equation for 
the stress-energy-momentum tensor of c.l.q.f.t. 

ax/aT = -ax,,/ax/lo' 

Accordingly, it is tempting to write 

- TXixj 71, T)}, 

(9.39) 

(9.40) 

pursuing the analogy further. The justification of 
this last equation (which is valid) would take me too 
far afield of my desire to present a short survey of 
the elements of the hyperplane field theory of free 
spinless particles. Suffice it to say that the recon-

4/; Equations (9.33)-(9.35) also "solve" the commutation 
relations (6.10)-(6.14), 
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ciliation of (9.40) with (9.20) involves the applica­
tion of (7.24) to the hyperplane field operator 

0<1> H 0<1> 0<1> 
or/' = ih:[QM <1>] - r ox" - QP:or . (9.41) 

The fact that this section began with the gen­
eralization to arbitrary hyperplanes of the familiar 
momentum space creation and destruction operators 
for spinless particles guarantees that the resulting 
hyperplane field theory has the same physical con­
tent as c.l.q.f.t. of free particles. If interactions are 
introduced, however, the choice of a local function 
of the field operators for the current operator j 
appearing in 

( o~ 0 0 m
2
c

2
) • 

or2 + -a;;p ox" + -,;: <I>(x; '/1, r) = l(X; 11, r) (9.42) 

does not yield dynamical results equivalent to 
those obtained from assuming local interactions in 
c.l.q.f.t.4.6 In short, for a scalar field, the dynamics of 

(9.43) 

may be expected to be very different from that of 

in c.l.q.f.t. Such differences are to be studied else­
where. 

SUMMARY AND CONCLUSION 

I have presented a formulation of some of the 
basic concepts and principles of conventional rela­
tivistic quantum mechanics in a manifestly covariant 
manner. The underlying physical idea of the entire 
development is that only by treating observables or 
dynamical variables on arbitrary spacelike hyper­
planes equivalently can one achieve full consistency 
with the requirements of special relativity. The 
resulting hyperplane formalism is a minimal gen-

(8 The nonlocal character of the hyperplane field operators 
should not be taken as an implication that the theories 
obtained from (9.42), (9.43) say, would be more convergent 
than conventional field theories. The free field propagator 
(9.27) still has singularities on the light cone, and the absence 
of the (l/po) factor in the definition (9.14) of <I>(x; '1/, T) gives 
the space-time field an even larger contribution from the 
high energy region than in c.l.q.f.t. 

eralization of the conventional "instant" formalism, 
since the class of spacelike hyperplanes has no 
proper subclass which is invariant under the Poincare 
group. The introduction of the hyperplane genera­
tors clarifies the relation between the dynamical and 
kinematical properties of dynamical variables in 
the relativistic domain. The axiomatic study of the 
center-of-mass position operator crystalizes the 
physical interpretation of the generator N" as well 
as shedding light on some of the commutation rela­
tions between the free and interacting parts of the 
generators. The asymptotic conservation laws as­
sociated with the Poincare invariance of the scat­
tering operator was considered and led to the relation 
between the law of center-of-mass motion and the 
independence of S on 11w Finally, a nonlocal hyper­
plane-dependent field theory of free spinless particles 
was displayed which suggests interesting avenues of 
research in the study of dynamical models of in­
teracting particles. 

In the near future I hope to present a thorough 
treatment of the hyperplane field theory of free 
particles of arbitrary spin as well as considering 
some very perplexing problems in the (really non­
existent) relativistic quantum theory of measure­
ment. More distant are studies of a fully covariant 
model field theory with persistent single-particle 
states/7 covariant helicity amplitudes/8 and the 
formulation of "phenomenological" causality'V and 
the proof of dispersion relations within the frame­
work of hyperplane field theory. 
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Recently developed methods of asymptotic analysis are applied to the problem of Cerenkov radi­
ation. The mathematical description of this physical phenomenon is given by the integro-differential 
system of equations for the electromagnetic field in a dispersive medium. The parameter l\ is introduced 
into these equations, where l\ is a characteristic frequency of the medium. It is for large l\ that the 
asymptotic expansion of the electromagnetic field is sought. Isotropic, uniaxial crystalline and gy­
rotropic media are treated in detailed. The source function which appears in the field equations is 
taken to be quite general, e.g., it may be used to represent the current associated with any moving 
"multipole" source. By applying the method of stationary phase to an integral representation of the 
solution, the leading term of the asymptotic expansion of the electromagnetic field is obtained. More 
precisely, a parametric representation of the expansion is found in which certain space-time curves 
called "rays" playa key role. An expression for the total energy of the radiation is then determined. 

INTRODUCTION 

I N some of the previously published works on 
Cerenkov radiation, including the original work 

of Frank and Tamm,' asymptotic methods have 
been used to obtain results. These methods, how­
ever, have not been employed in a systematic way. 
For the most part, they involve the use of known 
asymptotic expansions of special functions that ap­
pear in the analysis. In this paper, we present 
a complete and systematic asymptotic theory which 
enables us to obtain approximate solutions to a 
wide variety of problems that arise in the study of 
Cerenkov radiation. 

In this paper, the problem of Cerenkov radiation 
in infinite homogeneous media is considered. Iso­
tropic, uniaxial crystalline, and gyro tropic media are 
treated in detail. In future papers inhomogeneous 
media and interface problems are to be treated. It is 
found that the results of the present paper are es­
sential in the asymptotic analysis of these more 
difficult problems. 

Our mathematical description of Cerenkov radia­
tion is based on the time-dependent form of Max­
well's equations for "dispersive media." In this case, 
the constituitive equation takes the form of a con­
volution integral. Thus, we are led to consider the 
asymptotic solution of an integro-differential system 
of equations. The methods to be employed have been 

* This research was supported by the Office of Naval 
Research under Contract NONR 285(48). Reproduction in 
whole or in part is permitted for any purpose of the United 
States Government. 

t This paper is based on part of R. Handelsman's Doctoral 
thesis, The Asymptotic Theory of Cerenkov Radiation, sub­
mitted to New York University, (1965). 

t Present address: Division of Applied Mathematics, Brown 
University, Providence, Rhode Island. 

1 1. M. Frank and Ig. Tamm, Compt. rend. acado sci. 
U.R.S.S. 14, 109 (1937). 

developed2 for a more general system of equations. 
What distinguishes Cerenkov radiation from other 
electromagnetic phenomena is the type of source 
function that appears in the field equations. As is 
well known, Cerenkov radiation can only occur when 
the source is moving. It is shown in Sec. 2 that the 
type of source function considered in this paper is 
quite general. In fact, we find that it may be used 
to represent the current associated with any multi­
pole source moving along an arbitrary trajectory. 
Moreover, the source function is allowed to have an 
"oscillatory factor" so that the Cerenkov-Doppler 
effect may be treated. 

As is pointed out in Sec. 2, the large expansion 
parameter A is a characteristic frequency of the 
medium. The true meaning of our asymptotic ex­
pansion is better understood when an equivalent 
dimensionless parameter Ao is found. If dimensionless 
variables are introduced throughout, we find that 
Ao = Aa/c, where "a" is a characteristic dimension 
of the problem and c is the speed of light in free 
space. We can conclude that the correct interpreta­
tion of our expansion is that it is valid for 1 « Ao. 
Since, in this paper, we deal with infinite homogene­
ous media, "a" can be taken to be the distance from 
the source trajectory to the point in space at which 
the solution is to be obtained. 

From results given in Ref. 2, an integral repre­
sentation of the Fourier type is obtained for the 
electromagnetic field which is valid for both iso­
tropic and anisotropic media. By applying the 
method of stationary phase in several dimensions 
to this integral, parametric representations for the 
leading terms of the asymptotic expansions of the 
fields are found. In these representations, certain 

2 R. M. Lewis, Arch. Rat!. Mech. Ana!. 20, 3 (1965). 
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straight lines called "rays" playa central role. Once 
the fields have been determined, an expression for 
what we call the "average asymptotic energy" is 
obtained. We emphasize the fact that all our results 
are valid for a wide class of moving sources. When­
ever possible, we specialize these results to sources 
which have been treated by other authors for the 
purpose of comparison. In all cases, the comparison 
yields perfect agreement. 

CERENKOV RADIATION IN INFINITE 
HOMOGENEOUS MEDIA 

1. The Electromagnetic Equations for Dispersive Media 
and the Fourier Integral Representation of the Solution 

In Gaussian units, Maxwell's equations take the 
form 

D, - cV xH = -471"J, B, + cV xE = 0, (1.1) 

V·D=471"p, V·B=O. (1.2) 

Here, D, B, E, H, and J are t-dependent 3-vectors 
and X = (Xl' X2, xa). The source functions pet, X) 
and J(t, X) must satisfy the continuity equation 

p, + V·J = O. (1.3) 

It follows from (1) and (3) that 

a/at(V·D - 471"p) = 0 and a/at(V ·B) = O. (1.4) 

Therefore, if Eqs. (2) are satisfied at any time t, they 
are satisfied for all time. 

We assume that the source and fields are identi­
cally zero for t < 0, i.e., 

pet, X) == J(t, X) == H(t, X) == E(t, X) 

== B(t, X) == D(t, X) == 0; t < O. (1.5) 

Eq. (1.5) implies that Eqs. (1.2) are satisfied for 
t < 0 and hence are satisfied for all t. 

Dispersive media are characterized by the fact 
that D(t, X) does not depend on the value of E(t, X) 
at time t alone as in nondispersive media, but rather 
depends on the values of E(t, X) at earlier times as 
well (see p. 248 of Ref. 3). There is a similar depend­
ence of B(t, X) on H(t, X). These relationships are 
most simply expressed by the constituitive equation 

vet, X) = 1'" 5'(r)u(t - r, X) dr. (1.6) 

In (1.6), we have introduced the column vectors 
u and v having 6 components defined by 

u = [E, HJ = (El' E z , Ea, H l , H 2 , H a), 
(1.7) 

v = [D, BJ = (D1' D 2 , Da, B1, B2 , Ba). 
a L. D. Landau and E. M. Lifshitz, Electrodynamics of 

Continuous Media (Pergamon Press, Inc., New York, 1960). 

[In what follows other column vectors a with 6 
components are defined by an ordered pair of two 3-
vectors. Thus a = [A, BJ = (A 1 , A 2 , Aa, B 1, B2 , Ba).J 
5'(t) is a 6 X 6 matrix which is a real function of 
time. In matrix block notation 5'(t) takes the form 

5'(t) = [Fl(t) 0]. 
o Fit) 

(1.8) 

Here, Fl(t) and F 2 (t) are real 3 X 3 matrices. 
Furthermore, we assume that the causality condition 

5'(t) == 0 for t < 0 (1.9) 

is satisfied. 
We now define the matrix e(w) to be the Fourier 

transform of 5'(t). That is, 

5'(t) = 21 f'" e-i~'e(w) dw. 
71" _'" 

(1.10) 

In Gaussian units, e(w) is dimensionless and there­
fore must be a function of the dimensionless variable 
w = w/\ where X is a characteristic frequency of 
the medium. (For example, in an isotropic plasma 
we may take X to be the plasma frequency.) As a 
result, we may write 

e(w) = Sew). (1.11) 

Then, setting w = AW in (1.10), we obtain 

5'(t) = ~ f'" e-'A""S(w) dw. 
271" _'" 

(1.12) 

We assume that the matrix Sew) is Hermitian for 
real w and independent of X. Physically, this implies 
we are neglecting the dissipative effects of the 
medium. The effects of "weak dissipation" is to be 
treated in a subsequent paper. 

It is convenient to write (1.1) in matrix form. 
We introduce the antisymmetric matrix (Z) cor­
responding to any 3-vector Z, given by 

(Z) (1.13) 

Then, if W is an arbitrary 3-vector, (Z)W = Z )( W. 
We also define the three 6 X 6 matrices, A \ A 2, A 3 

by 

± k.A' = [0 -C(K)] , 
.-1 c(K) 0 

(1.14) 

where K = (k1' k2' ka). The matrix Al is obtained 
by setting kl = 1 and k2 = ks = 0 in (1.14). A2 and 
A 3 are determined in a similar manner. We note 
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that the matrices A' are real and symmetric. Using 
(1.14), (1.1) can be written in the compact form 

avfiJt + A'can/ax,) = f. (1.15) 

(The summation convention with respect to re­
peated indices from 1 to 3 is used.) Here, f is the 
column vector with components, -411"(J1 , J 2 , J a, 
0, 0, 0). Equation (1.5), when written in terms of 
u(t, X) and vet, X) implies the "initial conditions," 

u(t, X) == vet, X) == 0 for t < O. (1.16) 

An integral representation for the solution of 
the integro-differential system (1.6), (1.15) with 
"initial conditions" (1.16), can be obtained using 
Fourier transform techniques. This has been done 
in Ref. 2. In order to describe the result obtained 
there, it is necessary to give some preliminary defini­
tions. We define the inner product of any two column 
vectors x and y having 6 components by 

6 

(x, y) = E xdh, (1.17) 
;-1 

where the bar denotes complex conjugate. Further­
more, we introduce the Hermitian matrix 

G(w, K) = k.A' - w8(w) (1.18) 

and the corresponding dispersion relation, 

det G(w, K) = O. (1.19) 

We denote the real solutions of the dispersion relation 
by w = h(K) [We should index the functions h(K). 
However, not doing so simplifies the notation and 
need not cause any confusion.] and the linearly 
independent null eigenvectors of G(h, K) by riCK); 
j = 1, ... , q. That is, 

G(h, K)ri = 0; j = 1,2, ... , q. (1.20) 

Thus, q is the "nullity" of the singular matrix 
G(h, K). (We see that for isotropic media q = 2, 
while for anisotropic media q = 1.) The vectors 
r;(K), which of course depend on the root w = h(K) 
of (1.19), are orthonormalized by the condition 

i. j = 1, ." , q. (1.21) 

Here, Oi; is the Kronecker delta. The Hermitian 
matrixAO[wJ = d/dw[w8(w)J is assumed to be positive 
definite and therefore it is always possible to ac­
~mplish the orthonormalization. 

An integral representation of the solution u is 
given by Eq. (4.3.6) of Ref. 2, which yields 

u(t, X) = (2~r i: dK i: dZ { dT 

X E exp {iA[k,(x. - z.) - wet - T)H 
.,-1> 

• 
X E (f[7", Z], r')ri; t> O. (1.22) 

;-1 

Equation (1.22) is the exact integral representation 
of u only if all the roots of (1.19) are real. If any 
roots lie in the lower half of the w plane, (1.22) is 
an asymptotic equation for A ~ co. It is assumed 
that no roots lie in the upper half-plane or, that if 
any do, their contributions to the solution can be 
neglected. 

Until now we have said nothing about the nature 
of the source function fCt, X). Our concern here is 
with the moving sources. The current J(t, X) cor­
responding to a particle with charge e moving along 
the trajectory X = yet) is given by 

J(t, X) = eY(t) 0[X - yet)] 

= eYCt) O[XI - YICt)] 5[X2 - Y2(t)] 

X 0[X3 - Ya(t)]. (1.23) 

For greater generality, we consider source functions 
of the form 

f(t, X; A) = Adg{ t, A[X - Y(t)]}. (1.24) 

Here d is a real number and get, X) is taken to be 
real and to have, for each value of t, compact sup­
port in X. [f(X) has ltcompact support" if it vanishes 
outside a bounded region called the IIsupport" of f.] 
We note that for large A the support of f(t, Xi A) 
shrinks to the point X = Yet). Therefore, (1.24) 
can be used to represent a source which is nonzero 
only in a small neighborhood of the moving point 
X = yet). Remembering that J(t, X) represents the 
first three components of f(t, X), it is easy to see 
that (1.23) is a special case of (1.24). In fact, using 
the relation M(AX) = 5(x), (1.23) becomes 

J(t, X) = eY(t)A3 5{A[XI - Yl(t)]} 

(1.25) 

In a similar manner, we can show that (1.24) in­
cludes all moving "multipole" sources. That is, all 
sources whose corresponding current terms J are 
given by linear combinations of partial derivatives 
of the three-dimensionalo-function. 

A further generalization of the moving source 
is obtained by introducing an oscillatory factor 
cos [Aq(t)]. Then, f has the form 

f(t, X; A) = Adg{t. A[X - yet)]} cos [Ag(l)]. (1.26) 
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Such a source describes an oscillatory current non­
zero only in a small neighborhood of the moving 
point X = Yet). Equation (1.26) can also be used 
to express the current associated with a particle of 
fixed charge, moving with a small oscillation super­
imposed on a smooth trajectory. For such a source, 
(1.23) holds with 

yet) = Yo(t) + [M(t)/X] sin [Xq(t)], 

yet) = Yo(t) + M(t)q(t) cos [Xq(t)] + O(l/X). 

Since 

o[X - yet)] = o[X - Yo(t)] + O(l/X), 

(1.23) becomes 

J(t, X; X) = e{Yo(t) + M(t)q(t) cos [Xq(t)]} 

(1.27) 

(1.28) 

X o[X - Yo(t)] + O(1/X). (1.29) 

Equation (1.29) shows that the current is asymptotic 
to a sum of two terms, one of which has an oscil­
latory factor, as in (1.26), while the other does not. 

If in Eq. (1.22), we take f to be given by (1.26) 
and make the change of variables, q. = X[z. -
Y.(T)], we obtain 

X
d 

foo l' u(t, X) = (2'lIl -00 dK 0 dT 

X .L: exp {iX[k.(x. - Y.) - w(t - T)]} 
",~h 

• 
X .L: (g[ T, K], ri)ri cos [Xq(t)], (1.30) 

i-I 

where 

geT, K) = i: exp (-ik.q.)g(T, Q) dQ; 
(1.31) 

Q = (ql, q2, qa). 

It is important to note that the function geT, K) is 
independent of X. We use this fact when the asymp­
totic expansion of (1.30) for large X is obtained. 

2. The Asymptotic Expansion for Isotropic Media 

Isotropic media are characterized by the fact that 
the matrix e(w) has the form 

sew) = [e(w)! 0 J. (2.1) 
o p.(w)! 

Here e(w) and p.(w) are scalars and! is the 3 X 3 
unit matrix. It is readily seen from Eqs. (2.1) and 
(l.l8) that the dispersion relation (1.19) implies 

where 

k = (k.k.)i = IKI, 

mew) = Iw I/c[e(w)p.(w)]l = Iw I/c[n(w)]. (2.3) 

In (2.3), new) = [e(w)p.(w)Jl is the index of refraction 
of the medium. We let w = h(k) represent those 
real-valued functions for which 

k = m[h(k)]. (2.4) 

We now introduce A = (aI, a2, aa), the unit vector 
in the direction of K. Thus, 

K = kA. (2.5) 

Furthermore, we let Nand B be any two real unit 
vectors such that N, Band sgn [m'lA form a right­
handed orthonormal set. The null vectors ri; j = 
1, ... , q, defined by Eqs. (1.20) and (1.21) can be 
easily determined. We find that q equals two, and 
that 

rl = [(r/e)lB, (r/p.)iN], (2.6) 

r2 = [(r/e)iN, -(r/p.)iB]. (2.7) 

(N and B are determined up to a rotation which 
leaves all our results invariant.) The function r(w) 
appearing in (6) and (7) is determined by the ortho­
normality condition (1.21), which yields 

r(w) = e(w)J.I.(w) (2 8) 
e(d/dw)(wp.) + J.I.(d/dw)(we) . 

It can be seen from the definition of e(w) given in 
Sec. 1 that s( -w) = Sew). Therefore, e(w) and 
J.I.(w) are even functions of w. Equation (2.3) then 
shows that mew) is even in w. Thus, if w = h(k) is a 
root of the dispersion relation, w = -h(k) is also a 
root. We now define the functions u+(t, X) and 
u_(t, X) by the right side of (1.30), except that for 
u±(t, X) we sum only over the (positive/negative) 
roots w = h(k). Then, assuming we may neglect 
the contribution from the zero root (see Ref. 2, 
Sec. 7.1), 

u(t, X) = u+(t, X) + u_(t, X). (2.9) 

Equation (1.18) shows that G( -h, -K) = 
-G(h, K). Since g is a real quantity, it follows from 
(1.31) that geT, -K) = geT, K). Using these two 
facts, it can be shown [by replacing K by -K and 
h(k) by -h(k) in the representation of u+(t, X)] 
that u+(t, X) = u_(t, X). It therefore follows from 
(2.9) that u(t, X) is real and is given by 

u(t, X) = u+ + u+ = 2 Re [u+(t, X)]. (2.10) 

k = m(w) , (2.2) As a result, we may replace cos [Xq (T )] by exp {i"Aq ( T) } 
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in (1.30), if the real part of the integral is taken. That 
is, 

Ad {fa> l' u(t, X) = (27rY Re _a> dK 0 dT t; exp [iAI/>] 

X t (g[T, K], r'lK])r;[K]} , (2.11) 

where 

I/> = k,[x, - Y.(T)] - (t - T)h(k) + q(T). (2.12) 

We point out that when representation (2.11) is 
used Eq. (2.10) holds only if q(T) == O. 

We now apply the method of stationary phase 
in several dimensions (see Appendix II of Ref. 4 
for a description of the method of stationary phase 
in several dimensions) to obtain the asymptotic 
expansion (for A ~ co) of the integral (2.11). The 
"phase function" 1/>, corresponding to a particular 
root w = h(k), is given by Eq. (2.12). I/> is stationary 
at those points (T, K), such that 

al/>/ak. = x. - y,(T) - (t - T) ah/ak. = 0; 

I' = 1,2, 3 (2.13) 
and 

al/>/aT = -k,Y.(T) + h(k) + (j(T) = O. (2.14) 

We introduce G = (gl, 02, g3), the group velocity 
vector and 0 = (0,0.); the group speed, where 

g, = ah/ak. = h'(k)(k./k) = h'(k)a.; 

I' = 1,2,3. (2.15) 

Then, if T is the unit vector in the direction of G, 

G = gT, (2.16) 
where 

g = [h'(k)] and T = sgn [h'(k)]A. (2.17) 

We see from (2.17) that G is either in the direction 
of K or -K. The ambiguity is resolved by the sign 
of h'(k). Equations (2.13), (2.14), and (2.15) show 
that, at the stationary points, 

X = yeT) + (t - T)G; t ~ T (2.18) 

and 
[K.Y(T)] = h(k) + (j(T). (2.19) 

If v (T ) = IY (r) I is the source speed and () is the 
angle between G and yeT), Eqs. (2.17) and (2.19) 
yield 

cos () = sgn [h'(k)]l[h(k) + (j(T)]/kv(T)}. (2.20) 

When (j(T) = 0, (2.20) becomes the well-known 
"Cerenkov condition" and () becomes the "Cerenkov 

• R. M. Lewis, Asymptotic Methods Jor the Solutiun oj 
Dispersive Hyperbolic Equations, Research Rept. EM-197 
New York University, (1964). 

angle." When (j(T) ~ 0, (2.20) is usually referred 
to as the "Cerenkov-Doppler condition." 

For fixed (t, X), the stationary points (T, K) must 
be obtained by solving (2.18) and (2.19) which are, 
in general, transcendental equations. To avoid this 
difficulty, we take a different but equivalent point 
of view. We consider Eq. (2.18) as defining, for 
fixed (T, K), a locus in (t, X) space. This locus is a 
straight line which we call a ray. In (2.18), the 
quantity T represents the time of emission of the 
ray from the source trajectory. Since Eq. (2.19) is 
a relation between the four quantities T, k., only 
three of them are independent. Therefore, as T and 
K vary, Eq. (2.18) represents a three-parameter 
family of rays. Zero, one, or more rays may pass 
through a given point (t, X). The asymptotic ex­
pansion of u at this point, as determined by the 
method of stationary phase, is obtained by summing 
the contributions corresponding to those rays. 

The value 8 of the phase at the stationary point is 
determined by Eqs. (2.12), (2.15), and (2.18). They 
yield 

8 = [kh'(k) - h(k)] + q(T). (2.21) 

Then, using formula (12) in Appendix II of Ref. 4, 
we obtain 

Ad-2 [ 2 

u(t, X) ""' 211" Re t; ~ (Idet (I/>.~)I)-t 

X (g, rj)r j 
exp {iA[(t - T) 

X (kh' - w) + q(T)] + :: sig (I/>.~)} ] ' (2.22) 

as the asymptotic expansion of (2.11). For each ray 
(2.18) which passes through (t, X), the appropriate 
term in the sum (2.22) represents the corresponding 
contribution to the expansion. In (2.22), (I/>,~) is the 
matrix of second derivatives of I/> with respect to 
T and k., and sig (I/>,~) denotes the signature of this 
matrix. By choosing a coordinate system in which 
A = (0, 0, 1), the elements of (I/>,~) simplify greatly. 
In this system 

-(t-T)h" 

o 

0 

(h' -Yl) 

o 
h' 

-(t-T) -
k 

0 

-Y2 

o 

o 

h' 
-(t-T) - -Ya k 

-Ya (q-kYl) 

(2.23) 
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The fact that A = (1, 0, 0) implies 

and 

til(r) = (f.A) = sgn [h'(k)Jv(r) cos (J, 

y~ + y! = v2(r) sin2 8 

iit(r) = (Y ·A). 

Using (2.24) and (2.25), we obtain 

(2.24) 

(2.25) 

[ h'J2{ . det (cf>./l) = (t - r) k (t - r)[k(y ·A) - q]h" 

(2.26) 

We note that (2.26) has been expressed in a form 
independent of our special choice of the coordinate 
system. 

Equations (2.18), (2.20), (2.22), and (2.26) yield 
a parametric representation of the first term of the 
asymptotic expansion of u(t, X), which is valid 
only when det (cf>./l) ~ 0. Those points (t, X), cor­
responding to parameter values for which det (cf>./i) = 
0, form a locus (called a "caustic") in (t, X) space. 
To obtain the asymptotic expansion of u(t, X) valid 
at caustic points, a more detailed analysis is re­
quired. An interesting effect may occur when 
Y == q(t) == 0. In this case, there may be a caustic 
surface similar to a "Mach cone" along which the 
solution u is more intense. This cone proceeds into 
the medium with the source. The reader is referred to 
Appendix II for an analysis of this effect. 

It was pointed out above that only three of the 
four quantities k., r are independent. Actually, 
three functions of k. and r may be selected as in­
dependent parameters. To determine the most con­
venient set of independent parameters, we introduce 
along the trajectory X = Y(r), the orthonormal set 
T*, N*, B* consisting of the tangent, principal normal, 
and binormal vectors. If the trajectory is a straight 
line, N* and B* can be any two unit vectors such 
that T, N*, B* form an orthonormal set and B* = 
T* . N* . We now define 'Y to be the angle which the 
projection of T into the N*, B* plane makes with 
N*, as measured in a counterclockwise direction 
from N*. Then, we have 

T = sgn [h'(k)]A = cos 8T* 

+ sin 8 cos 'YN* + sin 8 sin 'YB*. (2.27) 

Equations (2.5) and (2.27) show that K dtlpends on 
8, r, k, and 'Y. We see from (2.20) that 8 can be elim­
inated in favor of k and r. Equation (2.3) shows 
that k in turn may be eliminated in favor of w. (It 
is advantageous to make this replacement because 

mew) is a single-valued function, whereas its inverse 
is, in general, multiple-valued.) We see therefore 
t.hat r, w, and 'Y may always be selected as independ­
ent parameters. 

For any root w = h(k), we have w = h[m(w)]. 
Implicit differentiation of this relation with respect 
to w yields 

h'(k) = _1_ and h"(k) - -m"(w). (2.28) 
m'(w) - [m'(w)]s 

Inserting Eqs. (2.2) and (2.28) into (2.20), we obtain 

, [w + q(r)] 
cos (J = sgn [m (w)] v(r)m(w) . (2.29) 

The ray equations (2.18) are now given by 

X = Y(r) + [(t - r)/lm'(w)!JT(r, w, 'Y), (2.30) 

where T is expressed in terms of r, w, and'Y through 
(2.27) and (2.29). 

The parameters P = (r, w, 'Y) lie in a certain 
parameter 8pace (P which is determined below. For 
any fixed value of t, Eq. (2.30) defines a transforma­
tion from P-space to X-space. The Jacobian jet; P) 
of this ray tran8formation is defined by 

jet; P) = a(xl , X2, xs)/a(r, w, 'Y). (2.31) 

Equation (AI22) in Appendix I yields the relation 

1 
jet; P) 1- mew) [m'(w) [ (2.32) 

det (cf>./l) - vCr) , 

where, as seen from Eqs. (2.26) and (2.28), 

det (cf>./l) = (tm-:/y{(t - r)[(y·A)m - q] (::;s 
+ r 1 - (w ~ 1t] (:;~ _ (~, _ w ~ 1y}. 

(2.33) 

Furthermore, (2.28) and (2.32) show that Eq. (2.22) 
can be written in the form 

u r-.J Re [Z(t; P) exp [i}.s(t; P)] ] 

[ 
d(P) . ] 

= Re [jet; p)[l exp ['/,\8(t; P)] , (2.34) 

where 

8(t; P) = (t - r)(m/m' - w) + q(r) (2.35) 

and 

)..d-Z [m 1m' I]! 
d(P) = Ij(t; P) Ii z(t; P) = 21r V 

X exp [~i sig (cf>./l) ] ~ (g, ri)ri. (2.36) 
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In (2.36), geT, K) and r"(K) are expressed in terms 
of P through Eqs. (2.2), (2.5), (2.27), and (2.29). 
We note that no sum over the roots of the dispersion 
relation appears in (2.34). This simplification is a 
direct consequence of the single-valuedness of mew). 

It remains to determine the domain of the inde­
pendent parameters P in our parametric representa­
tion (2.30), (2.34). We claim that this domain is 
defined by the inequalities 

0:-:; T, 

1 :-:; {v(T)m(w)/Cw + tj(T)W\ 

o ::; l' < 211'. 

(2.37) 

(2.38) 

(2.39) 

Condition (2.:37) is obvious. The requirement that, 
for real K, Eq. (2.19) be satisfied implies that fJ 
is a real angle. Therefore, condition (2.38) follows 
immediately from (2.29). If we restrict () to lie be­
tween 0 and 11", we can allow l' to vary between 0 
and 211". For fixed l' ;::: 0, each value of w satisfying 
(2.38), defines a hyper-cone of rays in space-time. 
The hyper-cone is generated as l' varies from 0 to 211". 

In the special case q(T) == 0, we make use of 
relation (2.10). Equation (2.34) still holds except 
now we take 

t, 

T. 

TO 

T, 

0 
----X.l 

(0) 

Xa 
"0 

(b) 

FIG. l(a). A space-time diagram of the rays. For e!!,ch C!f 
the three times of emission 'TIl 'T2, and 'T" those rays 'lYhic!: lie 
in the Xl, X, plane are dep1cte4. (b). T~e proJectIon l~to 
space of the hyper-cone of rays In space-tIme corresponding 
to the values 'T = 1"1 and CIJ = CIJi. [Note that Figs. l(a) and l(b) 
are not drawn to the same Bcale.] 

Xd - 2 

d(P) = - (m Im'l/v)! 
11" 

(2.40) 

and add the restriction 0 < w to the definition of 
the domain of P. If we set (:J(T) = V(T)/C and note 
Eq. (2.3), condition (2.38) becomes 

(:J2(T)n2(w) ;::: 1. (2.41) 

It follows from (2.41) that, for given values of l' and 
w. the source speed V(T) must be greater than the 
corresponding phase speed c/n(w) , for Cerenkov 
radiation to occur. 

To conclude this section, we discuss two ray 
diagrams. We consider first a space-time picture of 
the rays. For simplicity we assume that q(T) == 0 
and that the source velocity is uniform in the di­
rection of the positive Xl axis. Because of the azi­
muthal symmetry of the problem, only those rays 
which lie in one plane passing through the source 
trajectory need be considered. Let that plane be 
the Xli Xa plane. (That is, we consider only those 
rays which correspond either to l' = !11" or to l' = t.) 

In Fig. l(a) the vertical axis is the time axis. The 
source trajectory is a straight line in the (Xl' t) 
plane passing through the origin and making an 
angle '" with the Xl axis. It is easy to see that '" = 
cot-lv, where v is the source speed. In general, for 
fixed time of emission T, there is a conoidal surface 
of rays generated as w varies in the range (:In(w) ;::: 1. 
A similar surface is produced at each point along 
the source trajectory. Of coUrse the actual con­
figuration in any given problem depends on the 
function mew) associated with that problem. Here, 
for definiteness, we set p.(w) == 1 and take E(W) to 
be of the form 

E(W) = 1 + p2/(r2 - ( 2
). (2.42) 

[Theoretical derivations of the dielectric permea­
bility for isotropic media with a single I 'resonance 
frequency" given in Ref. 5 lead to functions E(W} 
of this form.] Then, if {:J2p2 ::; (1 - (:J2)r2, Cerenkov 
radiation can occur only in the range 

(2.43) 

Using the functions E(W) and 1-'(00) defined above, we 
have depicted in Fig. lea) three ray surfaces cor­
responding to three distinct times of emission. For 
each time of emission T, these surfaces are depicted 
for T ::; t ::; t1• (The reader is referred to Appendix 

a A. Sommerfeld "Optics" in Lectures on Theoretical 
Physics (Academic Press Inc., New York, 1964), Vo!' IV. 
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II for a discussion of the significance of the v-shaped 
figure appearing in this diagram.) 

The projection into X-space of the hyper-cone of 
rays in space-time, which corresponds to the values 
'1' = '1'1 and W = WI, is represented in Fig. l(b). 
Actually, only that portion of the projection defined 
by '1'1 ~ t ~ tl is shown. The two rays which lie 
in the (Xl, X3) plane in this diagram also appear in 
Fig. l(a). These rays are represented by dashed 
lines in both diagrams. The vertex angle Ell of the 
cone in Fig. 1 (b) is defined by 

Ell = 2 COS-I [!3n(wI)rl . (2.44) 

The length l of the generators of the cone is deter­
mined from the ray Eqs. (2.30). We see that 

l = (tl - '1'l)/m'(wI). (2.45) 

Associated with each W lying in the range (2.43), 
there is an analogous cone defined by Eqs. (2.44) 
and (2.45) with WI replaced by w. Moreover, it can 
be shown that, as w varies throughout this range, 
these cones fill out a 3-dimensional region in X-space. 

3. The Energy of Cerenkov Radiation for Isotropic Media 

We define the "average asymptotic energy den­
sity" wet, X) by 

wet, X) = [1611" Ij(t; P) Irl(d[pJ, A ° d[PD, (3.1) 

where Ij(t; P)I is obtained from Eqs. (2.32) and 
(2.33), and d[P] is given by (2.36). In (3.1), the 
following convention is used. The right side of (1) 
is summed over all rays which pass through the 
point (t, X); [i.e., over all values of P = ('1', W, -y) 
which, for fixed (t, X), satisfy (2.30)]. It is shown 
in Ref. 2, Appendix B that 

W, + V·(8) = 0, (3.2) 

where (8) is the average over a small time interval 
of the "Poynting vector," 8 = (c/411") E·H. Equa­
tion (3.2) is the well-known equation of energy 
conservation and justifies the designation of wet, X) 
as the average asymptotic energy density. 

Let W(Tl' t) be the total energy, measured at time 
t > '1'1, radiated from the source as it traverses the 
portion of trajectory defined by 0 ~ '1' ~ '1'1. Then, 

- J - _1 J (d, AOd) W(TlJ t) - w(t, X) dX - 1& Ijl dX. (3.3) 

The integrand in the last term of (3.3) is to be sum­
med over all values of P such that the corresponding 
ray passes through (t, X) and 0 ~ '1' ~ '1'1. Alter­
natively, this sum can be replaced by a single integral 
over an appropriate domain in a "multiple X-space," 

consisting of K replicas of physical X-space. Here 
K is the maximum number of rays that pass through 
any point X at time t. The ray-transformation (2.30) 
maps the parameter space <P in a 1-1 manner on this 
multiple X space (whereas the transformation is 
multiple valued for physical X space). The change of 
variables from X to P leads to the simple result, 

W(TI' t) = W(TI) = 1~ 1. (d, AOd) dP. (3.4) 

Here, dP = d'1'dwd-y and <PI is the domain in param­
eter space defined by the inequalities (2.37)-(2.39) 
with the additional restriction '1' ~ '1'1. We note that 
(3.4) is independent of t, an expression of the fact 
that energy is conserved. 

From Eq. (2.36) and the orthonormality condition 
(1.21), we obtain 

'\ 2 (d-2) () I ' ( ) I 2 

(d, AOd) = ~4 2 m\w (~\W L: l(g,ri )12
• (3.5) 

11" v '1' i-I 

By inserting (3.5) into (3.4) and noting the definition 
of <PI given above, we have 

>.2(d-2) r2r r' 
W(Tl) = 6411"3 10 d-y 10 dT 

X f dw mew) Im'(w) I t I(g, riW. (3.6) 
« .. +,;)/ ... )'';1 VeT) i-I 

In the case q(T) = 0, <PI is defined by inequalities 
(2.37)-(2.39) with the additional restrictions '1' ~ '1'1 

and 0 < w. Equations (1.21), (2.40), and (3.4) 
show that 

We observe that jet; P) does not appear in the 
integrals (3.6) and (3.7), whereas it does appear in 
the expression for the fields. Equations (2.32) and 
(2.33) show that jet; P) is a very complicated expres­
sion. Therefore, we can conclude that the degree 
of computational difficulty required to obtain the 
energy results is significantly less than that required 
to obtain the fields. 

4. Examples for Isotropic Media 

In this section we consider separately the Cerenkov 
radiation due to a uniformly moving charged par­
ticle and due to a uniformly moving dipole. In 
both cases the function q(T) is taken to be zero. 
Since the source velocity vector is constant in 
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these problems, we are free to select our spatial 
axes so that the positive Xl axis coincides with the 
trajectory. Thus, if X. is the unit vector in the 
direction of the positive x. axis (v = 1, 2, 3), we 
may set 

yeT) = VTXl , N* = X2 , and B* = Xa. (4.1) 

Furthermore, we may choose B to be perpendicular 
to Xl as well as to T. Then, Eqs. (4.1) and (2.27) 
show that we may take 

A = sgn [m'(w)](cos O,sin Ocos,}"sin Osin '}') , (4.2) 

B = (O,sin,}" -cos,},), (4.3) 

and 

N = (sin 0, -cos 0 cos,}" -cos Osin,},), (4.4) 

where 

cos 0 = sgn [m'(w)l!j3(T)n(w), w> O. (4.5) 

The null vectors rl and r2 are determined by in­
serting (4.3) and (4.4) into Eqs. (2.6) and (2.7) 
respectively. 

A. Uniformly Moving Charged Particle 

For this source, the first three components of 
Adg{t, A[X - yet)]}, aside from a factor of -47r, 
are given by Eq. (1.25). We see that d = 3 and 

geT, Q) = -47rev 5(ql) 5(q2) 5 (qa) [Xl , 0]. (4.6) 

Equation (1.31) then yields 

geT, K) = -47rev[Xl, 0] (4.7) 

and therefore 

(g, rl) = 0 and (g, r~ = -41rev(r/e)! sin O. (4.8) 

The asymptotic expansion of u is given paramet­
rically by (2.34), (2.40), and (2.30). These equations 
along with (4.8) yield 

(t X) - [E H] (-4 '\)[vr(w)m(w) Im'(w)!]! 
u, - , rv e/\ feW) Ij(t; P) I 

X sin 8 cos [AS + i7r sig (lP,p)]r (4.9) 

and 

x = yeT) + [(t - T)lm'(w)JA. (4.10) 

In (4.9), jet; P) and S are obtained by setting q(T) = 
o in (2.33) and (2.35) respectively. The signature of 
the matrix (lP.p) can be determined from (2.23). 

We define fleX) to be the plane which passes 
through the XI axis and the point (X). For any ray 
through (X), the vector N lies in fleX) and the vector 
B is normal to fleX). Thus, Eqs. (2.7) and (4.9) 
show that whenever the fields are nonzero at (X), 

E(t, X) lies in fleX) and H(t, X) is normal to fleX). 
The energy W(Tl) is given by Eq. (3.7). It can be 

shown from (2.3) and (2.8) that, for w > 0, 

mew) Im'(w) I r(w) = w !Jt(w) I. (4.11) 
e(w) 2c2 

We recall that w is related to the frequency w by 
w = WIA. Then, inserting Eqs. (4.8) and (4.11) into 
(3.7) and using (1.11), we obtain, after performing 
the T and'}' integrations, 

W(Tl) = e
2
V;1 1 w l,acw) I (1 - R2:~) dw. (4.12) 
c fl";;?. tJ cJt 

w>o 

If ,aCw) == 1, (4.12) agrees with the result obtained 
by Tamm6

• We point out here that Tamm's result 
is exact whereas (4.12) is asymptotic. The agreement 
can be explained by the following argument. We note 
that (4.12) holds for all time t > TI, and in particular 
for t = co. Equation (4.10) shows that at t = co, 

x; + x! = co. Therefore, in Ao = Aal c, a = co and, 
in that case, we expect our asymptotic expansion to 
be exact. 

B. Uniformly Moving Dipole 

For this source the current J(t, X) is given by 

J(t, X) = -[cV xM(t, X) + (818t)F(t, X)]. (4.13) 

Here, M is the magnetic moment vector and F is 
the electric moment vector. We consider the special 
case of a moving magnetic dipole, where 

M(t, X) = moX2 5(xl - vt) 5(X2) 5(xa). (4.14) 

The magnetic moment induces an electric moment 
as seen in the rest frame of the observer, given by 

F(t, X) = (molc/l xX2 5[X - yet)] 

= moBXa 5(Xl - vt) 5(X2) 5(xa). (4.15) 

(See Ginzburg and Eidman7 for a discussion of this 
source.) It can be shown from Eqs. (4.13)-(4.15) 
that, in the representation of the source by the 
function A dg {t, A[X - Y (t) J}, we should set d = 4 
and 

geT, Q) = 41rcmo{ 5'(ql) 5(q2) 5(qa)(1 - (32)[Xa, 0] 

- o'(qa) 5(ql) O(q2) [Xl' OJ}. (4.16) 

Equation (1.31) then yields 

g( T, K) = 41rimoc 

X {kl (1 - ~2)[X3'O] - ka[X1!O]}. (4.17) 
----

6 Ig. Tamm, Zh. Teor. Fiz. S.S.S.R. 1, 439 (1939). 
'V. L. Ginzburg and V. la. Eidman, Zh. Eksperim. i 

Teor. Fiz. 35, 1508 (1958) [English transl.: Soviet Phys.­
JETP 8, 1055 (1959)]. 
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The quantities kl and ka are expressed in terms of 
T, w, 'Y through Eqs. (2.3), (4.2), and (4.5). We obtain 

kl = w/v and ka = [wn(w)/c] sin 'Y 

X (1 - 1/j3V)l sgn [m'(w»). (4.18) 

The null vectors rl and r2 are as in Sec. 4.A and 
therefore 

(g,rl) = 4?rimow(r/E)l(j3 - 1/j3) cOS'Y 

and (4.19) 

(g, r2) = 4?rimow(S/E)l(l/n - n) 

X sin 'Y sgn [m'(w)]. 

Thus, we obtain 

(t X) '" 4 ... ,[mew) Im'(w) I r(w) Ji 
U , mol\ E(W) jj(t; P) I v w 

X {(j3 - 1/(3) cos'Y rl + sgn [m'(w)] 

X (l/n - n) sin -yr2} sin [As + p. sig (</>.,8)]. (4.20) 

The rays are given by Eq. (4.10). 
The energy W(Tl) is obtained by inserting Eqs. 

(4.11) and (4.19) into (3.6). Mter setting w = ~/A 

and performing the T and'Y integrations, the result is 

W( Tl) = m~TI 1 IS>S /MIS» I 
2c v ,8'n'~l 

~>o 

X [(rt - ~r + (j3 - ~rJ dtJ. (4.21) 

If we set p,(IS» == 1, (4.21) agrees with the result 
obtained by Ginzburg and Eidman in Ref. 8. 

5. The Asymptotic Expansion for Crystalline Media 

In this section we assume that the medium is a 
uniaxial crystal. The crystal axis is taken to be the 
Xa axis. If we set the magnetic permeability #L{W) 
equal to 1, the matrix Sew) takes the form 

Sew) = [~l(W) ~J ; SleW) = [EI~W) El~W) ~]. (5.1) 

o 0 E2(W) 

In this case, the dispersion relation (1.19) yields 
the two equations 

ko = mo(w) = (/wl/c) [El(W)]i , (5.2) 

k. = m.(w, ks) = [w> + ki.(1 - ~)]l. (5.3) 

The subscripts 0 and e are used because the solutions 
corresponding to ko and k. are commonly referred to 

as "ordinary" and "extraordinary" respectively. In 
(5.3), ka• = k.aa• 

If las/ ¢ 1, there exists one null-eigenvector of 
the dispersion matrix G corresponding to each of 
the quantities ko and k •. We denote these vectors by 

ro = [RIO' R2o] and r. = [Rio' Rz.]. (5.4) 

If we set no .• = cko .• /lw/, it can be shown that the 
3-vectors R.o, R •• take the form 

RIO = riA-xxs , R 20 = rtnoAx{AxXa); (5.5) 
i ~ 

RIo = r.(n./EI)[A x(A xXa) 

+ (1 - Et/Ez)(1 - a~)X3], 

Rz• = r!Xa x A. (5.6) 

The quantities ro and r. are determined by condition 
(1.21) which yields 

r;1 = (1 - ai>[! (WEI) + EI J, (5.7) 

r;l = (1 - ai){ 1 + n:[:~ :w (WEI) 

+ (1 - a~L!L ( )]} 
2 .:1 \ WE2 • E2 uW 

(5.8) 

If lasl = 1, the expressions for ro and r. given above 
are not valid. In this case ko = k. and there exist 
two linearly independent null-vectors of G in the 
forms 

1 A -Ita 2 A A 

r = [N,.oJ, r = [B, -NJ, (5.9) 

where N·:8 = N 'Xa = :8,X3 = O. The vectors 
Nand :8 are determined only up to an arbitrary 
rotation about the xC axis. When laal = 1, we are 
not able to carry out the stationary phase evaluation 
of the integral representation of u. Therefore, when 
we obtain the asymptotic expansion of u, we must 
exclude this case from consideration. Thus, all rays 
corresponding to parameter values for which A = 
(0, 0, ± 1) will be omitted. The energy results, 
however, will not be affected because, at any time 
t, the solutions corresponding to the omitted rays 
contribute negligibly to the radiated energy. 

The integral representation of the solution is given 
by Eq. (1.30) when the source function f is given 
by (1.26). Arguments similar to those used for iso­
tropic media show that the solution is real. Let w = 
ho(k) represent those real functions for which k = 
mo[hoJ, and let w = h.(k, ka) represent those real 
functions for which k = m.[h., k3J. Then, it can be 
shown that the integral representation takes the 
form 

u(t, X) = uo(t, X) + u.(t, X), (5.10) 
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where 

uo .• = (2:)a Re [1.: dK L dT 

X .. f .. exp [iXcpo .• ](g, ro .• )ro .• } 

Here, the functions CPo •• are given by 

(5.11) 

of the asymptotic expansion of Uo(t,X) is given by 

Uo '" Re [[jo~:~~)]l exp [iAso(t; P)] ] ; 
(5.19) 

CPo .• = k,[x. - y,(T)] - (t - T)ho .• + q(T). (5.12) and 

In the special case q(T) == 0, the relation u = 
2 Re [u+] holds, u+ is obtained by restricting w to 
be positive in (5.11). 

The computational difficulty involved in carrying 
out the stationary phase evaluation of (5.11) is 
significantly reduced if we take the source trajectory 
to be a straight line. Thus, we set 

(5.13) 

where 

T* = (~l' 0, ~2); (~~ + ~~) = 1. (5.14) 

There is no loss of generality in the assumption 
yeT) lies in the Xl, xa plane. This can always be 
accomplished by a rotation of the spatial axes about 
the crystal axis. Our results are invariant under such 
a rotation. 

Let us consider first the asymptotic expansion of 
the integral representation of uo(t, X). The stationary 
phase analysis of this term is essentially the same as 
the analysis given in Sec. 2 for isotropic media. 
Therefore, only the results will be given here. For 
anisotropic media, it is more convenient to define 
8 to be the angle between the vectors A and T*, 
rather than, as in the case of isotropic media, the 
angle between T and T*. We have 

(5.15) 

We may select, 

N* = (~2' 0, -~l) and B* = (0,1,0). (5.16) 

Then, if 'Y is the angle formed by the projection of 
Ao into the (N*, B*) plane and N* (as measured in a 
counterclockwise direction from N*), we obtain 

Ao = cos 80T* + sin 80 cos 'YN* 

+ sin 80 sin 'YB*. (5.17) 

The Cerenkov-Doppler relation yields 

cos 80 = [[w + q(T)]/mo(w)v(T)], 

V(T) = IY(T) I. (5.18) 

The parametric representation of the first term 

t ~ T. (5.20) 

In (5.19), so(t; P) is given by Eq. (2.35) and ioCt; P), 
the Jacobian of the ray transformation (5.20), is 
obtained from Eqs. (2.32) and (2.33). Of course 
mew) is to be replaced by mo(w) in these equations. 
The matrix (cp~{J) is the matrix of second derivatives 
of the phase function CPo with respect to k. and T. 

Sig (cp~{J) denotes the signature of this matrix. 
We denote by <Po the domain of the independent 

parameters P = (T, W, 'Y)' It is defined by inequalities 
(2.37)-(2.39) with mew) replaced by mo(w). When 
q(T) == 0, we make use of the relation U o = 2 Re [uo+]' 
In this case, (5.19) holds with do multiplied by a 
factor of 2, and the restriction 0 < w is added to the 
definition of <Po. 

We now consider the asymptotic analysis of u •. 
We set 

K. = m.(w, ka)A., (5.21) 

where 

A. = cos 8.T* + sin 8. cos 'YN* 

+ sin 8. sin 'YB* . (5.22) 

The stationary condition Bcp./ aT = 0, yields the 
Cerenkov-Doppler relation 

cos 8 = [ w + q(T) J = 'I/(T, w) ; 
• v( T)m.(w, ka) m.(w, ka) (5.23) 

( ) 
w + q(T) 

'1/ T, W = V(T) • 

The stationary conditions acp./Bk. = 0; II = 1, 2, 3, 
yield the equations for the rays, which, noting the 
relations 

become 

X. - yeT) = (t - T)G. 

(t - T) [ (E2)& ] . = (m.).. A. + IXa. ~ - 1 Aa , t ~ T. (5.25) 
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Equation (5.25) shows that, in this case, the group 
velocity vector G, is not in the direction of the wave 
vector K,. This is a characteristic of anisotropic 
media. 

Before completing the stationary-phase evalua­
tion, we show how to express the vector A. in terms 
of P = (.,., w, ,,). It follows from (5.22) that, to 
accomplish this, we need only express 8, in terms of 
P. Equations (5.16) and (5.22) yield 

aa. = ~2 cos 8. - ~l sin (J. COS". (5.26) 

Equations (5.3), (5.23), and (5.26) can be used to 
determine tan 8,. The result is 

tan 8, = [1 - (1 - EzlEln~ cos2 "r1 

X ((~ - 1 )~l~2 cos l' 

± {[I - (1 - ~)~~ cos
2 
l' ] 

X [::;; - 1 + ~~( 1 - ~) ] 

+ ~~~~( 1 - ~y cos
2
,,}). (5.27) 

In the treatment of isotropic media, we restricted 
8 to lie between 0 and 11" and allowed l' to vary be­
tween 0 and 211". It is more convenient here to re­
strict " to lie between 0 and 11" and allow (J, to lie 
between 0 and 211". For a given value of P, Eq. 
(5.27) yields two values of tan 8 •. We see from (5.23) 
that sgn [cos (J.] = sgn [w + q(.,.)J. Thus, for a given 
value of P, two angles which we call (J! are defined. 
We introduce the following notation. Whenever the 
symbol [ 1+ appears, the quantity within the brackets 
is to be evaluated with 8. set equal to 8:. The 
symbol [ 1- is defined in a similar way. 

Once 8, is determined m. is expressed in terms of 
P through Eq. (5.23). We see from (5.23) and (5.27) 
that.,. is introduced into m. only through the quan­
tity '11. Therefore, we may write 

(5.28) 

Equation (AI.37) of Appendix I shows that 

I j.(li P) I = 'Into I(mle) .. !. (5.29) 
det (4):Il) VeT) 

Here, (4):Il) is the matrix of second derivatives of 
4>. with respect to k. and .,., and i.(t; P) = 
det (dX.ldP) is the Jacobian of the ray transforma­
tion (5.25). The stationary-phase formula yields 

"'" [d.(P) 
u.(t, X) '" ~ Re Ii.eti P)lt 

X exp [~M.(ti P)] 1, 
where 

d.(P) = }..d-2 [mh I(mle)", IJt 
211" v 

X exp [!wi sig (4):Il)](g, r.)r. 

and 

8,(ti P) = (:.) .. [1 + a:.(~ - 1) - wJ 
X (t - T) + geT). 

(5.30) 

(5.31) 

(5.32) . 

The computations required to determine j.(t; P) are 
difficult and the resulting expression is complicated. 
Because the Jacobian itself is not needed for the 
energy results, we omit its calculation here. 

We denote by <p. the domain of the independent 
parameters P. This domain is defined by the in­
equalities 

0:::; T, 

o :::; " < 11", 

o :::; l~i~~(1 - E2/El)2 cos2 
" 

+ [1 - ~~ cos2,,(1 - E2/El)] 

(5.33) 

(5.34) 

X [(J,lE2V2/C2(W + q)2 -1 +~~(1- E2/El)])' (5.35) 

The requirement that the angles 8; be real is ex­
pressed by condition (5.35). When q(T) == 0, we 
make use of the relation u. = 2 Re [u.+l. Equation 
(5.30) holds with d. multiplied by a factor of 2 and 
the restriction 0 < w is added to the definition of <p •• 

We remind the reader that we must exclude from 
consideration all rays corresponding to values of 
P for which Ao .• = (0, 0, ± 1). Equation (5.26) 
shows that la3.1 = 1 only when l' = 0, sin 8. = 
±~l' cos (J, = =F~2' (-y = 11" does not lie in the domain 
<p •• ) 

6. The Energy of Cerenkov Radiation for 
Crystalline Media 

I? this section an expression for Wh), the energy 
radIated from the source as it traverses the portion 
of trajectory defined by 0 :::; T :::; T1I is obtained. The 
derivation of this expression is similar to the deriva­
tion .of the energy results given in Sec. 3 for isotropic 
medla and therefore most of the computations are 
omitted here. It can be shown that 

W(Tl) = Wo(Tl) + W.(Tl), (6.1) 
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where and 

(6.2) (g, r.) = _41revr!n.[aleaa. ~l + (a~. - 1) ~2]' (7.3) 
El E2 

and Equations (5.14) and (5.16) show that, for both 
(6.3) Ao and A., 

Here, the domains of integration (\>10 and (\>1, are 
respectively the domains (\>0 and (\>, defined in Sec. 
5, with the added restriction T ::::; Tl' 

When the expression for do(P) given by (5.19) is 
inserted into Eq. (6.2), we obtain 

Wo(Tl) = h
6

2

(4
d

-:) 1 mo(w) (1~~(w)ll(g,ro)12 dP. (6.4) 
11" CJ>.. v T 

Similarly, inserting (5.31) into (6.3), we have 

h2 (d-2) 

W.(Tl) = 6411"3 

X L f [mh l(mle)"ll(g,r.)12
] dP. (6.5) 

* <9 11 v ::t: 

If geT) == 0, the domains (\>10 and (\>10 are further 
restricted by the condition w > 0 and the right sides 
of Eqs. (6.4) and (6.5) are mUltiplied by a factor 
of 4. 

7. Example for Crystalline Media 

In this section we apply the results of the previous 
two sections to the case of a moving charged particle. 
For such a source q(T) = 0, d = 3, and the function 
geT, K) is given by 

geT, K) = -411"ev(T)[T*,0]; T* = (~l' 0, ~2)' (7.1) 

From Eqs. (7.1), (5.5), and (5.6) we obtain 

al = ~l cos 8 + ~2 sin 8 cos 'Y, 

a2 = sin 8 sin 'Y, 

aa = ~2 cos 8 - ~1 sin 8 cos 'Y . 

Equations (5.2) and (5.18) yield 

cos 80 = {,8(T)[El(W)]!j-l; w > o. 

(7.4) 

(7.5) 

(7.6) 

(7.7) 

The values of tan 8! are obtained by setting q(T) 
equal to zero in (5.27). 

The asymptotic expansions of the fields U o and 
u. are determined by inserting Eqs. (7.2) and (7.3) 
into (5.19) and (5.31), respectively. The energies 
Wo and W. are given by (6.4) and (6.5) respectively. 
It can be shown that 

mo Im~1 to = w/2c2(1 - a~o) (7.8) 

and 

mle !(mle).,! r. = w[2c2(1 - a:.)r1 

X !E2[1 + cos 'YM1 - EdEl)(COt 8.~2 - ~l cos 'Y)r11. 

(7.9) 

Inserting (7.2) and (7.3) into Eqs. (6.4) and (6.5) 
and noting relations (7.8) and (7.9), we obtain 

(7.10) 

(7.2) and 

The expressions for Wo and W. simplify when the 
particle's motion is uniform and is either parallel 
or perpendicular to the crystal axis. 

A. Parallel Motion (~1 = 0) 

We denote the energies of the radiation in this 
case by W~ and W!. Equation (7.10) yields 

It can be shown that 

W!(Tl) 

(7.11) 

(7.14) 

In (7.14), we have reintroduced the frequency w 
through the relation w = hW. 

WUTl) = O. (7.12) B. Perpendicular Motion (h = 1) 

From Eq. (5.27), we obtain 

tan 8; = ±[(E2/El)(,82E1 - 1)]1. 

Here, we denote the energies by W~ and W~. 
Inserting Eqs. (7.5), (7.6), and (7.7) into (7.10), we 

(7.13) obtain 
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(7.15) 

(7.16) 

It can then be shown that 

11 W cos2 'Y 1(~2~2 - 1) I dW d'Y 
X ~2 Isin2 'Y~l + ~2 cos2 'YIIEI~2 sin2 'Y +~COS2 'YI' 

(7.17) 

The domain of integration in (7.17) is defined by 

O < ~I (~2E2 - 1) . 0 < 0 < 
2 2, _ 'V < ?r,' W. 

- El sin 'Y + E2 cos 'Y ' 

In this section, we have obtained an expression 
for the energy of the Cerenkov radiation which 
occurs when a charged particle moves along a straight 
line trajectory in a uniaxial crystal. We have seen 
that this energy depends on the angle that the source 
trajectory makes with the crystal axis. In the special 
cases of uniform parallel and perpendicular motion, 
the results are given by Eqs. (7.12), (7.14), (7.15), 
and (7.17). These results agree with those given in 
Ref. 8. (The azimuthal angle cp in Ref. 8 is the com­
plement of our azimuthal angle 'Y.) 

8. The Asymptotic Expansion for Optically Active Media 

In this section we assume that the matrix 8(w) 
has the form 

8(~) ~ [8.~") ~J; 8.(") ~ [~. -~ ••• :} 

The fact that 8(w) is Hermitian implies that the 
quantity E.("'), called the "gyration parameter," 
is real. It follows from the definition of 8(w) given 
in Sec. 1 that 8( -w) = 8(w), and therefore E.( -w) = 
- E.(W). A matrix 8(w) of this form represents what 
is called an optically active or gyrotropic medium 
with the optic axis the Xa axis. 

The dispersion relation (1.19) yields the equation 

8 J. V. Jelly, Cerenkov Radiation and Its Applications 
(Pergamon Press, Inc., New York, 1959). 

2 2 
+ W E. [c2W _ k~) - W2 E2] = O. (8.2) 

El 

Equation (8.2) can be solved for e. The result is 

k~ .• = m~ .• (w, ka) 

- 4[ ElE2 + (El - E2) c:~~ 

- EI~2 (c2k~ + W
2
E2) JY)· (8.3) 

We denote by ro .• = [RIO ." R2o .• ] the null-eigen­
vectors of the dispersion matrix G corresponding to 
the quantities ko .•. If we set no .• = cko .• /lwl and 
assume laal ~ I, the vectors R.o .• take the form 

t 2) A. ~ RIO .• = so .• [(EI - no .• A + vo .• aaXa + '/,E.A)( Aa], (8.4) 
; A. A 

R2o .• = no .• so .• (vo .• aaA xXa + tE.A xA xXa). (8.5) 

Here, 

(8.6) 

The normalization factors So .• are determined by 
condition (1.21) and are given by 

S~.l. = (1 - a~){ (WEI)",[E~ + (El - n~ .• )2] 

[(wE2)",a:(1 - a~)n~ .• v~ .• ]E;2 

- 2 (WE.) ",E.(EI - n~ .• ) + n~ .• (a~v~ .• + E:)}. (8.7) 

When laal = I, n~ .• = El ± E. and the vectors 
rD .• take the forms, 

A iA. A iA 
X {[Xl, (El + E.) X2] + t[X2, -(El + E.) Xl]} (8.8) 

and 

r. = {2[(WEI)'" - W(E.)., + El]rt 

X {[X2' -(El - E.)lXI] + i[XI, (El - E.)iX2]}. (8.9) 

In this section, we take the source function f(t, X) 
to be of the form (1.26), where the source trajectory 
is given by Eqs. (5.13) and (5.14). Let W = ho .• (k, ka) 
represent those real functions for which ko•• = 
m(ho •• , kg). It can be shown that 

u(t, X) = uo(t, X) + u.(t, X), (8.10) 



                                                                                                                                    

1996 R. HANDELSMAN AND R. M. LEWIS 

where the integral representations of Uo " are given 
by Eqs. (5.10) and (5.11). Of course the null-vectors 
fa ,. and functions w = ho " corresponding to gyro­
tropic media must be inserted into these equations. 

The parametric representations of the first terms 
of the asymptotic expansions of Uo and u. are given 
by 

uo .• (t, X) rv Re [Wo .• (t; P}] ,-tdo .• (P) 

X exp [iXso .• (tj P)]J, P = (T, w, 'Y); (8.11) 

Xd
- a 

do .• (P) = 27!' [mlo •• l(mlo .• ) .. I!v]f 

X exp [Pi sig (¢~p')](g, ro .• )ro,., (8.12) 

and 

Xo .• - yeT) = (t - T)Go •• = (t - T)!(mo .• )., 

X [Ao .• - (mo .• h.Xa], t ~ T. (8.13) 

In (8.11), 

(t· P\ - [~ - (mO,.)k. - J 
80.. , I - (m) (m) aao.. w 

O,e Q) Off: W 

X (t - T) + q(T), (8.14) 

;0,. = det (dXo •• !clP) and (tP~p') is the matrix of 
second derivatives of tPo., [defined by Eq. (5.12)] 
with respect to k. and T. 

We may write 

Ko .• = mQ.A .• ; Ao., = cos Oo •• T* 

parallel motion (~l = 0) and perpendicular motion 
(~1 = 1), the equation reduces to a biquadratic 
which can be easily solved. We therefore restrict 
our considerations to these two cases. 

A. Parallel Motion 

It follows from Eqs. (8.16) and (S.17) that in 
this case k30 .• = fJ(T, w). By inserting this relation 
into Eq. (8.3), the quantities mIG •• are immediately 
obtained. The Cerenkov-Doppler relation (8.16) 
then yields the values of cos O~ ••• (Here, the super­
script II denotes parallel motion.) If El == E2 == to, 

(8.3) yields the simple result, 

2 w 2 2 2 ECfJ 2 [ (4 2 2)1J mlo,. = 2EC2 2E - E. ± E. E. + ~ . (8.18) 

We restrict oL to lie between 0 and 7!', and allow 
'Y to vary between 0 and 27!'. The domains <pL of 
the independent parameters are defined by the in­
equalities 

o ::; T, 

o ::; cos2 oL ::; 1, 

o ::; 'Y < 27!'. 

B. Perpendicular Motion 

(8.19) 

(8.20) 

(8.21) 

Here, it is more convenient to solve for tan20c:' ••• 
It can be shown that tan20; .. are the roots of the 
biquadratic equation 

+ sin 0o •• cos 'YN* + sin 0o., sin 'YB*, (8.15) (Sin2 'Y + ; cos2 'Y) tan' 0 

where T*, N*, and B* are defined by Eqs. (5.14) 
and (5.16). The Cerenkov-Doppler relation yields 

cos 00 •• = fJ!mo .• ; fJ(r, w) = [w + lj(T)]!V(T). (8.16) 

It can be shown that T is introduced into mo •• only 
through the function fJ(T, w), and therefore we may 
set mo •• (w, ka) = mlO .• (fJ, w, 'Y). This defines the 
square-root term in Eq. (8.12). 

All quantities that appear in Eqs. (8.11)-(8.14) 
must be expressed in terms of the independent 
parameters P. To accomplish this, we need only 
obtain the functions mlO ". Once this is done, cos 00 •• 

is determined through the Cerenkov-Doppler rela­
tion, and hence Ko " can be expressed in terms of 
P. From Eqs. (8.15), (5.14), and (5.16), we obtain 

aao .• = cos OO •• ~2 - sin 00 •• cos ~I' (8.17) 

Equations (8.2), (8.16), and (8.17) can, in principle, 
be used to determine the quantities miG,.· This, 
however, necessitates the solving of an algebraic 
equation of fourth degree. In the special cases of 

+ [W2~2:~2 'Y _ ~:;; _ 1) 

- (;2;! - 1)(sin
2

'Y + ~ cos
2 

'Y) ] tan' 0 

+ [(W:E! _ 1)(~:E~ _ E!~22 - 1)J = O. (8.22) 
C 11 C fJ elc fJ 

When EI == E2 == E, (8.22) yields 

t 2 01. _ (W2E _ 1) _ w
2e; sin

2 
'Y ± WE, 

an 0 •• - c2 2 2 2 2 2c 
fJ eC 11 fJE 

X [
Waf! sin4 'Y + 4 (w2

e 1) 2 Ji 
22 f: 22- cOS'Y. 

CfJ CfJ 
(8.23) 

The domains <p;,. are defined by inequalities (8.19)­
(8.21) with oL replaced by O~ ••• 

If q(T) == 0, it can be shown that the relations 
Uo •• = 2 Re [uo •• +] hold, where UO •H are obtained 
by restricting w to be positive. Therefore, in this 
case, we add the restriction 0 < w to the definitions 
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of (I>~.. and (I>~ •• , and multiply the corresponding 
quantities do .• by a factor of 2. 

9. The Energy of Cerenkov Radiation for Optically 
Active Media 

It can be shown that W(Tl), the energy radiated 
from the source as it traverses the portion of tra­
jectory defined by 0 ::; T ::; Tl, is given by 

W(Tl) = Wo(Tl) + W.h), (9.1) 

where 

W ( ) - X
2

{d-2) f m lO •• /(mlo .• ) .. / 
0 .• Tl - 64 a V 

7r (P10 •• 

(9.2) 

Here, (1)10.. are the domains of the independent 
parameters with the added restriction T ::; T l • 

Furthermore, the relation 

mlo .• /(mlO .• ) .. / ro .• 
W[E2 - n~ .• + n~ .• (a30 .• )2(1 - E2/El)] 

2C2E![1 - (aao .• )2],co .• 

holds, where 

X (1 - E2/El) - 2n~ .• - E!/El 

(9.3) 

In this section we have obtained a general expres­
sion for the energy of the radiation which occurs 
in a gyro tropic medium. The results given by Eqs. 
(9.5) and (9.6) for the special case treated above 
agree with those given in Ref. 8. 

APPENDIX I. DETERMINATION OF li(t P)/det (cp.,s)1 

In this section, we compare the two functions 
jet; P) and det (rf>.p) for both isotropic and anisotropic 
media. Here, jet; P) is the Jacobian of the ray trans­
formation, and (4).p) is the matrix of second deriva­
tives of the phase function 

rf> = k.[x. - Y.(T)] - (t - T)h(K) + q(T) (ALI) 

with respect to the k.'s and T. The elements of (rf>.,s) 
are 

(AI.2) 

The ray equations and the "Cerenkov condition" 
are obtained by setting orf>/ok. = 0 and Orf>/OT = 0, 
respectively. Thus 

x. = Y.(T) + (t - T) ohjak., II = 1, 2, 3 (AL3) + ~l cos 7[(1 - E2/El)(El - 'I'J~ •• ) - E!/El] 

X (~, cot 80 •• - ~l cos 7)} . (9.4) and 

We now apply the results given above to obtain 
the energy of the Cerenkov radiation which occurs 
when a charged particle moves uniformly through 
a gyro tropic medium. We restrict our considerations 
to the cases ~l = 0 and ~l = 1. Moreover, we assume 
that El == E2 == E. For the source under consideration 
q(T) = 0, d = 3 and g is given by Eq. (7.1). The 
inner products (g, ro .• ) are obtained from Eqs. 
(7.1), (804), and (8.5). Then, by using (9.3) and (904), 
it can be shown that 

(9.5) 

and 

W.l () e2VTl 1 -I (1 1 ) o • Tl = --, ... W - ---r 
• 4'l1'c OSoo.'S ••• Sl f3E 

O<~ 

k;fJ. = h + q. (AI.4) 

Differentiating Eqs. (AI.3) and (AlA) with respect 
to kp, we obtain 

ox. ( ) o2h [ . oh ] OT 
ok,s = t - T ok. ok,s + Y. - ok. okp 

and 

£I.. - [oh/ok(J - li.] [(K. f) - q] ¢ O. 
ok,s - [(K. Y) - q]' 

(AI.5) 

(AI.6) 

Equations (AI.2), (AI.5), and (AI.6) show that 

ox. o2rf> o2rf> o2rf> j o2rf> 
ok,s = - ok. ok(J + ok. OT ok(J OT OT2

' 

We may write jet; P) as the product 

jet; P) = jl(t; P)jLC(P) , 

where 

and 

(AI.7) 

(AI.8) 

(AI.9) 
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It can be easily shown from (AI.7) that simple deter­
minant operations yield 

(ALIO) 

Therefore, to obtain the ratio of jet; P) to det (<Pv~), 
we need only determine jK(P), 

A. I 8otropic Media 

In this case k = mew) and Eqs. (2.5) and (2.27) 
yield 

K = m(w)A = sgn [m'(w)]m(w)(cos 6T* 

+ sin (J cos 'YN* + sin (J sin 'YB*) , (A loll) 

where 

, [w + g(T)J 
cos (J = sgn [m (w)] m(w)v(r) . (ALI2) 

The Jacobian jK(P) can be expanded as a scalar 
triple product. That is, 

jK(P) = K'Y' (K", x K.). 

Equation (ALll) yields 

K'Y = m(w)A'Y = m(w)(T* xA), 

K", = m'(w)A + m(w)A"" 

KT = m(w)A,. 

(ALI3) 

(ALl4) 

CAI.15) 

(AI. 16) 

B. Anisotropic Media 

We assume here that the source trajectory is 
a straight line so that T*, N*, and B* may be taken 
independent of r. In anisotropic media k = m( r, w, 'Y). 
Furthermore, it is convenient to define (J as the angle 
between A and T*. Therefore, Eqs. (ALll) and 
(AL12) hold with mew) replaced by m(r, w, 'Y) and 
sgn [m'(w)] set equal to 1. We then have 

K'Y = m'YA + mA",! = m'lA + m(T* xA), (AI.23) 

K. = mA + mA., (AI.24) 

K., = m",A + mA.,. (AI.25) 

Inserting (AL23) into (ALI3), we obtain 

jK = m'YA· (K. x K",) 

+ m(T* x A) • (K. x K",) . (AI.26) 

Because T*, N*, and B* are independent of r, A., 
and AT are in the same direction. Equations (AL24) 
and (AL25) then show that A'(K .. X K.) = 0 
and therefore (AL17) holds with mew) replaced by 
mer, w, 'Y)' Furthermore, Eqs. (ALll), (AL24), and 
(AL25) yield the relations 

(A·K.) = m., 

(A·K",) = m"" 

(T*.K",) = (m cos (J)", 

(T*·K.) = (m cos (J) •• 

(AI.27) 

(AI.28) 

(AI.29) 

(AL30) 
Inserting (ALI4) into (ALI3), we obtain 

jK = m(w)[(T* xA).(K. xK",)] 

= m(w)[(T*.K.)(A.K.,) - (T*·K",)(A·K.)]. 
We define the quantity 7](r, w) = m cos (J = [(w + 

(ALI7) q)/v]. Using (ALI2), Eqs. (AL29) and (AL30) be-

To obtain (T*·K.), we differentiate (AlA) with 
respect to r. This yields 

(T*·K.) = -[(K.f) - q]/v. (ALI8) 

It is easily seen from Eq. (ALll) that (A·A,,) = O. 
Furthermore, if we make use of the Fr8net formulas 
(see Ref. 2, p. 87), we find that A·A. = O. Thus, 

(A·K",) = m'(w) , (AI.19) 

(A·K.) = o. (AI.20) 

come 

(T*. K",) = 7]", = l/v (AL31) 

and 

(T*·K.) = 7]. = [q - (f.K)]/v. (AL32) 

We note that r is introduced into meT, w, 'Y) 
through the quantity 7](r, w). Therefore, we may 
write 

(AL33) 

Inserting Eqs. (AI.I8)-(AL20) into (AL17), we From (AL33), we have 
obtain ) 

m", = (ml)~7]", + (ml '" = (ml)~/v + (ml)", (AL34) 

(AL21) 

Finally, from Eqs. (AI.8) , (ALlO), and (AI.21) we 
have 

! 
jCt; P) I = mew) Im'(w)1. 

det (4).~) vCr) 
(AI.22) 

and 

mr = (ml)~7]r = (mlMq - (f.K)rl
• (AI.35) 

Inserting (AL27), (AL28), (AL3I), and (AL32) into 
(ALI7), we obtain 

jK = [ml(ml)",v-1](q - (f.K)]. (AL36) 
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Finally, Eqs. (AI.8) , (AI. 10), and (AI.36) yield 

I 
jet; P) I = m1 j(m1)"j. (AI.37) 

det (4).p) v 

APPENDIX II. CAUSTICS IN ISOTROPIC MEDIA 

Those points (t, X), corresponding [through Eq. 
(2.30)] to parameter values P = (T, w, 1') for which 
jet; P) (the Jacobian of the ray transformation) 
vanishes, form a locus in space-time called a caustic. 
It is of interest to discuss the geometry of these 
caustics, because, as we shall see, the fields at caustic 
points are more intense (higher order in A) than the 
fields at ordinary points. 

We assume that q(r) == 0 and that yeT) = VTXI , 

where v is a constant. Equations (1.32) and (2.32) 
yield 

J·(t., P) - (t - r)~ [m"m 2(1 _ ~) 
- vmm' (m')2 v m2v2 

- (~, -~Jl (AIl.l) 

We see that jet; P) vanishes when t = T, an expres­
sion of the fact that the source trajectory itself is 
a caustic line. Our concern here is with caustics 
away from the trajectory. The factor within the 
brackets in Eq. (AII.I) is a function of w only. Sup­
pose there exists a value of w, say Wo, for which this 
factor vanishes, and such that (3n(wo) ::::: 1. Then, 
any ray corresponding to parameter values P = 
(r, Wo, 1') lies on a caustic surface for all time t > T. 

To investigate the geometry of this caustic sur­
face, we must consider the space-time picture of 
the rays. Figure l(a) is a typical space-time diagram 
restricted to two spatial dimensions. We see from 
this diagram that there is a v-shaped envelope of 
the ray surfaces formed whose vertex lies on the 
source trajectory. It can be shown that this envelope 
is generated by precisely those rays which correspond 
to w = Wo and is therefore the caustic under con­
sideration. 

To obtain the space picture of the caustic at time 
t l , we need only determine the intersection of the 
plane t = tl and the envelope. It is easy to see that 
the intersection is the boundary of the v-shaped 
figure which appears in Fig. l(a). The third spatial 
dimension of the caustic is obtained by rotating 
this v-shaped boundary about the Xl axis. The result 
is the surface of the cone depicted in Fig. 2. This 

X3 

FIG. 2. Space picture of caustic surface at time t = tl' 

cone proceeds into the medium in the Xl direction 
and with the source speed v. It can be shown that 
the vertex angle q, is given by 

q, = 2 tan- l {[v2m2(wo)/w~ - lr i 

X [1 - v2m(wo)m'(wo)/wo]}. (AII.2) 

To obtain the asymptotic expansion valid at 
the caustic, a more detailed stationary phase anal­
ysis than that given in Sec. 2 is required. The result 
is given parametrically by 

A d-U/6r(1)m(m,)3/2 
u(t, X) ,-..,.J (211')3/2(t _ T)5/6(3 jm"j)1/2(jd/)I/8 

X ± (g, ri)ri cos [A(m, - w) 
,-1 m 

X (t - r) + p(sgn m" - 2)] (AII.3) 

and 

X = yeT) + (t - r)A/m', (AlI.4) 

where 

= !!£ (mfw _ )[ml"m
l 

(mlw _ )2 
d" 1 b( ")2 I m m m m 

(AII.5) 

In Eqs. (AII.3)-(AII.5), w is to be set equal to woo 
Comparison of (AIl.3) with Eq. (2.36) shows that 

the solution at the caustic is indeed of higher order 
in A than the solution away from the caustic. In 
fact, we see that at caustic points the solution be-
h l'k' d-ll/6 h t d' . aves 1 e 1\ , W ereas a or mary pomts the 
solution behaves like Ad

-
2

• 
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Complex Temperatures and Phase Transitions* 
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The thermodynamic limit is considered for complex temperatures, and a picture of a phase transi­
tion, similar to the Yang-Lee picture, is proposed. For certain cases a representation of the partition 
function as an infinite product is obtained. Some simple models are considered. 

I. INTRODUCTION 

I N this paper we wish to propose a picture of 
phase transitions, which is similar to the Yang­

Lee1
•
2 picture except that we deal with complex 

temperatures rather than with complex fugacity. 
The reasons one might want to consider complex 
temperatures are analogous to those for complex 
fugacity. One expects the free energy of a thermo­
dynamic system to be a nonanalytic function of the 
temperature in the neighborhood of a point of phase 
transition. This is particularly noticeable in what 
is apparently a logarithmic singularity in the specific 
heat of fluids as a function of temperature in the 
neighborhood of the critical point.3 Since the free 
energy is an analytic function of the temperature 
for finite systems, this singularity must be connected 
with the thermodynamic limit. The hope is that 
one can form a simple picture of the way that the 
singularities occur, and more optimistically, some­
thing about their analytic properties, by considering 
the thermodynamic limit for complex temperatures. 
To this end we have essentially duplicated part of 
the Yang-Lee theory for complex temperatures. 
In Sec. II we prove, for a general class of systems, 
a theorem analogous to the second Y ang-Lee the­
orem. l We treat both the canonical and the grand 
canonical ensemble, and in the grand canonical 
case both the temperature and the fugacity are 
complex numbers. Although we do not consider 
quantum systems, these results may follow by sim­
ilar arguments for such systems, provided one makes 
allowances for the singular behavior of the free­
particle partition function for hosons. In Sec. III 
we consider some applications to simple systems. 

The results of this paper will also be used in a 
following paper, where the thermodynamic equiv­
alence of a rather general class of ensembles is con­
sidered. 

• This work was supported in part by the United States 
Atomic Energy Commission. 

1 C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 (1952). 
l T. D. Lee and C. N. Yang, Phys. Rev. 87, 410 (1952). 
• M. E. Fisher, Phys. Rev. 136, A1599 (1964). 

II. SOME GENERAL RESULTS 

We consider classical N-particle systems with 
Hamiltonian 

H = I:f.l p~/2m + UN(rl ••• TN)' (1) 

Define, for any complex z in the open left half-plane, 

Z(z, N, 0) = r;}z) fa e· .. NC ..... 
rN

) dr1 ••• drN, (2) 

where we assume UN hounded from below so that 
the integrand is finite for Re z < O. 

(3) 

o is the spatial domain over which each T, varies. 
We want to put sufficient restrictions on the system 
so that the thermodynamic limit exists for z real 
and negative. This problem has been treated recently 
and comprehensively by Ruelle4 and Fisher.s One 
goes to the thermodynamic limit by choosing a 
sequence of numbers Nt and a sufficiently regular 
sequence of domains OJ with volume V j such that 
N j -? co, V j -? (X), N j V;l -? l/v. With sufficient 
conditions on UN(fl ••• TN) and on the sequence 
of domains one can show that 

lim Nil In Z(z, N j , OJ) = fez, v) (4) 
i-I» 

for z real and negative. Since v will be fixed in this 
paper, we omit it from now on. It is also known 
that fez) is a continuous convex downward function 
on the negative real axis. This ensures that the 
specific heat is positive whenever it exists. 

For the exact conditions on the uN(rl •.. fN) 

and on the sequence 0;, we refer to Refs. 4 and 5. 
We state, however, one condition on UN which we 
need. There exists a K > 0 such that 

uN(rl ... rN) ~ -NK (5) 

for all fl '" fN and all N. Such potentials are called 
stable. In addition we need sufficient continuity 
on the part of uN(rj ... rN) to ensure that (2) is an 

t D. Ruelle, Relv. Phys. Acta 36 183 (1963). 
& M. E. Fiaher, Arch. Ratl. Mech. Anal. 17, 410 (1964) . 
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analytic function of z in the open left half-plane. 
A sufficient condition, although not the most gen­
eral, which seems to include most UN of interest 
is that UN be of the form ..... 

uN(rt ••• rN) = RN(rt ••• rN) + SN(rl ••• rN), (6) 

where 

{
+ (X) if (rl ••• rN)EAN, RN(rt ... rN) = 

o otherwise, 

where AN is some measurable subset of RaN (the 
space of r l ••• rN)' We require SN{rl ••• rN) to be 
continuous, but not necessarily finite. Roughly, RN 
contains the hard-core parts of the interaction and 
SN contains everything else. We prove in Appendix I 
that, under this assumption, Zj(z) = Z(z, N j , 0;) 
is analytic in z for Re z < O. Clearly, Z;(z) > 0 
for z real and negative, hence Nit In Z;{z) is analytic 
in some neighborhood of the negative real axis, and 
therefore the free energy per particle is an analytic 
function of the (real) temperature for any finite 
system. The main results of this section are theorems 
which are analogous to the second Y ang-Lee the­
orem.1 

Theorem I: Let R be any bounded region of 
the open left-half z plane, and suppose R contains 
a segment of the real axis and no zeros of Zj(z) 
for any j. Then lim; ... ., Nil In Z;(z) = fez) exists 
everywhere in Rand fez) is analytic. 

Proof: The proof of this theorem depends, as 
usual, on an application of the Vitali convergence 
theorem which, in one of its forms, asserts that, if a 
uniformly bounded sequence of functions, each of 
which is analytic in a region, converges to a limit 
on a set of points which has an accumulation point 
in the region, then the sequence converges uniformly 
everywhere in the region and the limit function is 
analytic.6 

We first consider the upper bound on Z;(z) gen­
erated by the stability condition (5). If Re z < 0 
we have 

\Z;(z) I = IA(z)l-
aN

; I r e·UN(r •••• rNl dr
t 

... drN\ 
Nil Jo; 

~ I ACz) I-aN; 1 I >UN(r. '''rNl I d d e r t ••• rN 
N;! 01 

IA(z) I-aNI 1 e{RezluN(r. '''rNl dr
l 

••• drN 

N! 01 

~ IA(z) I-aNI V~le-(R •• lNIK (7) 
Ni!' . 

----
a O. Caratheodory, Theory of Functions (Chelsea Publishing 

Company, New York, 1954), Vol. 1. 

Now, to get a uniformly bounded sequence, we define 

Ti(Z) = (Zi(z)Nj !/Vf l )I/NI. (8) 

Since Z;(z) ;;z!! 0 in the region R by assumption, 
Tj(z) can be chosen to be analytic everywhere in 
R for all j. From (7) we get a uniform upper bound 
on Tj(z) of 

(9) 

which is finite for any bounded region of the open 
left-half z plane. We now show that T;(z) converges 
when z is real and negative. For any z in R, we can 
take the logarithm of (8), since Tj(z) ;;z!! 0; hence 

In Tj(z) = Nil In Zj(z) + Nil In N~I. (10) 
V/ 

By Stirling's approximation, 

N! = A(N)NN+!e-N
, where ell/12 < A(N) < e 

for all N. Hence, 

Nil In NjlViNI = Nil In A(N;) 

+ (!)Ni1InNi - 1 + In NiV71. 
Then 

lim Nil In N;!ViNI 
j-.t» 

= In (l/v) - 1 = -Inv - 1. (11) 

Therefore, if the limits in (10) exist, we must have 

lim In T;(z) = lim Nil In Zj(z) - In v-I. (12) 
1-+00 i-a) 

But the limit on the right is known to exist for z 
real and negative, hence, so must the limit on the 
left. By the continuity of the exponential function, 
then lim;_ .. T;(z) exists for z real and negative. 
If we set Z= -{J, O<{J< (X) , and put lim;_", Tj(-{J) = 
t( -{J), then from (12) and (4) we have 

t( -{J) = v-1ef(-/ll-l. (13) 

Now, by the Vitali theorem, 

lim T;(z) = t(z) (14) 
i-+a> 

everywhere in Rand t(z) is analytic in R. Further­
more, by a theorem due to Hurwitz/ since Ti(Z) ;;z!! 0 
in R for all j, we must have either l(z) ;;z!! 0 for 
any z in R or t(z) identically zero in R. Hence, by 
continuity of the logarithm lim; ...... In Ti(z) = In t(z) 
everywhere in R. From (12) 

lim Nil In Zj(z) = fez) = In t(z) + In v + 1 (15) 
j ...... 

for all z in R. The convergence is uniform and the 
limit fez) is analytic in R. 
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The zeros of Zj(z) must be a set of isolated points, 
otherwise Zj(z) would vanish everywhere. The hope 
is, of course, that these zeros lie on definite curves 
in the z plane, and become more dense on these 
curves as j ~ 0:>. One hopes these curves cross the 
negative real axis at only a few points, or not at all, 
depending on the specific volume and the nature 
of the system. If this is the case, then fez) is analytic 
on the negative real axis, except at the points of 
crossing which are then the points of phase transi­
tion. We mean by a phase transition here a sin­
gtllarity in the temperature behavior of the free 
energy rather than a singularity in the density 
behavior of the free energy. Since the specific heat 
is proportional to the second temperature derivative 
of the free energy, there can be no singularity in the 
specific heat except the neighborhood of the zeros 
of Zj(z). This is certainly a possible picture of the 
way things happen, however, it is not proven in 
general. The above theorem in itself does not pre­
clude the possibility of the zeros of Zj(z) becoming 
everywhere dense in the open left-hand plane, in 
which case it would be impossible to say anything 
about the analytic properties of fez) from the the­
orem. It seems difficult to deduce anything in gen­
eral about the zeros of Z,(z) from general properties 
of uN(rl ... rN) and barring this one is reduced to 
examining particular systems which may be simple. 
We take this up in the next section. 

We now examine what can be said for the grand 
canonical ensemble. Set 

Qi(Z, w) = E:.o Z(z, n, Qi)[A3(z)w)", (16) 

where z and ware complex and Re z < O. We want 
to prove that the series represents a function, which 
is separately analytic in z and w for all wand for 
all z such that Re z < O. Let us look at the seqeuence 
of partial sums (for fixed j) 

S .. (z, w) = E::'.o Z(z, n, Q,)[A3
(z)w]". (17) 

We show that this sequence converges uniformly 
in any bounded region of the four-dimensional (z, w) 
space for which Re z < O. Let A be such a region 
and take any E > O. Then from the upper bound (7) 
we have 

IS .. +p(z, w) - Sm(z, w) I 
12:::'.+::+1 Z(z, n, Qj ) [A

3
(z)wr I 

V "I I" -(R • • )nK <_ ,",m+v j we. (18) 
~ n-m+l n! 

Let 

I I V -(Re .)K 
a= max W ,e . 

( •. w)EA 

Clearly a < 0:> if A is a bounded region. Now 
choose m so large that 

,",A.m+v AI ' < ~A."+1 a n. E for all p. 

This can be done because series 2::.0 anjn! con­
verges. Then, for all (z, w) E A, and for all p 

IS .. +v(z, w) - Sm(z, w) I < E. (19) 

By the Cauchy criterion S .. (z, w) converges uni­
formly in both variables, in the region A. But, 
holding either variable fixed, Sm(z, w) is analytic 
in the other; hence, the limit Q,(z, w) is analytic 
in each variable separately so long as Rez < O. 
By Hartog's theorem, Qj(z, w) is analytic in both 
variables. It is clear from (18) that 

IQj(z,w)l:::; exp[Vi Iwle-<R.')K]. (20) 

Theorem II: Let w be a fixed real positive num­
ber and let R be any bounded region of the open 
left-half z plane, containing a segment of the real 
axis and no zeros of Qj(z, w) for any j. Then 
limj ... ", ViI In Qj(z, w) = '/r(z, w) exists everywhere 
in R and the limit is an analytic function of z in R. 

Proof: Set Ti(z, w) = [Qi(Z, w)]V;-'. Tj(z, w) 
is a nonzero analytic function of z in R for all j. 
By (20) the sequence is uniformly bounded, 

IT,(z, w)/ :::; exp [Iwl e-<R .. )ID]. (21) 

Furthermore, 

lim In Tj(z, w) = lim ViI In Qi(Z, w) = '/r(z, w) (22) 
i-tc» i-ta:1 

whenever either of these limits exist. But it is 
proven in Refs. 1, 4, and 5 that the limit on the 
right exists when z is real and negative. Now, using 
the Vitali theorem, and using an argument entirely 
analogous to the one used for the canonical ensemble, 
we extend the convergence to all of R and obtain 
the analyticity of the limit function. 

The second Yang-Lee Theorem 1 states that, if 
z is real and negative and R' is a bounded region 
of the complex w plane containing a segment of the 
positive real axis and no zeros of Qj(z, w) for any j, 
then lim; ... ", ViI In Q;(z, w) = '/r(z, w) exists every­
where in R', and the limit is an analytic function of 
win R'. We could give a proof of this theorem by 
exactly the same method used in the previous the­
orem. It should be pointed out that the method 
used in these proofs does not depend on representing 
the partition function as a finite or infinite product. 
The last two theorems can be combined to give 
the following. 
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Theorem III: Let R be a bounded region of the 
space of two complex variables (z, w), such that 
Re z < 0 in R. Suppose R contains no zeros of Q;(z, w) 
for any j, and that R contains a region of the two­
dimensional subspace, z real and negative, w real 
and positive. Then lim;_., V;l In Q;(z, w) = 7r(z, w) 
exists everywhere in Rand 7r(z, w) is analytic in 
each variable separately in R. 

One might now hope the following picture of a 
phase transition is valid. The set of zeros of Q;(z, w) 
is a set of two-dimensional surfaces in the four­
dimensional space. As j ~ !Xl the surfaces coalesce 
to form a three-dimensional surface which may 
intersect the plane, z real, w real, in a curve. This 
curve then gives the values of z and w for which 
the phase transitions occur (of course we must 
restrict Re z < 0 as always). Again it seems difficult 
to prove this kind of behavior in general. 

We close this section with some results for a 
more restricted class of potentials. Let us associate 
with each potential of the form (6) another potential 
obtained by changing the sign of the nonhard core 
part, 

We now restrict ourselves to those sets of potentials 
such that both UN and U'N satisfy sufficient condi­
tions for the existence of a thermodynamic limit. 
In particular, there exists a K > 0 such that for 
all Nand r l ••• rN, 

UN(rl ••• rN) ?: -NK, 

uN(rl ••• rN) ?: -NK. 
(24) 

For example, any UN which is a sum of two-body 
potentials with hard cores and bounded, finite­
range tails will fall into this class. It is convenient 
to deal only with the configuration integral so we 
define 

W(z, N, Q) = Z(z, N, Q)A(Z)3N 

= liN! l e'UN dr l ••• drN, (25) 

W(z, N, Q) = liN! In e'V.N dr l ••• drN' 

Now, on the set AN, RN(r l ••• rN) = + !Xl, and for 
Rez < 0, the integrands in (25) are zero, hence 
we can integrate only over A, the set of points 
(rl ... rN) such that each r, E Q but (rl ... rN) EE AN' 
We can write 

W(z, N, Q) = liN! i e"SN dr l ••• drN, 

W(z, N, Q) = liN! i e-'SN drl ••• drN. 

(26) 

Both of these integrals are analytic functions 
of z for Re z < o. Since 

W(z, N, Q) = W( -z, N, Q), (27) 

it is clear that both Wand Ware entire functions, 
one of which is, in fact, just the reflection of the 
other through the origin. For such potentials, then 
we have W(z, N, Q) analytic everywhere. From (7) 
and (27) we get the upper bound. 

IW(z, N, Q)I ~ V1~)N eIR .. INK (28) 

for all z. This bound implies that the order of the 
entire function W(z, N, Q) is at most one and hence 
the following factorization. 6 

co 

W(z, N, Q) = ea
+

b
• II (1 - zlz,)eO'O

' (29) .-1 
or 

W(z, N, Q) = IT (l .. ~zlz,), (30) 
i-1 

depending on whether the order is one or less than 
one. A similar discussion does not hold for the grand 
canonical ensemble. From (16), 

Q(z, w, Q) E:-o W(z, n, Q)w", 

Q(z, w, Q) E:-o W(z, n, Q)w". 

From (27) 

Q(z, w, Q) = Q(-z, w, Q). 

From (20) and (32) 

IQ(z, w, Q)I ~ exp Vi Jwl eIR 
.. 

1K
• 

(31) 

(32) 

(33) 

Now (32) implies Q is an entire function of z, but 
the bound (33) is not strong enough to give any 
information about the order of Q. 

ID. EXAMPLES 

Since one cannot, at the present time, verify the 
proposed picture of a phase transition, it would be 
of some interest to verify it for at least some model. 
The natural thing to try is the two-dimensional 
Ising (lattice-gas) model, since it has been solved 
exactly in the thermodynamic limit and is known to 
exhibit a phase transition. Unfortunately, it seems 
difficult to find the zeros of the partition function 



                                                                                                                                    

2004 GERALD L. JONES 

for this model, and it has not yet been accomplished. 
As a start in this direction, we can consider the one­
dimensional Ising model. The theorems we have 
proven do not apply to an Ising model but one can 
carry through corresponding proofs for this model. 
The exact solution of the one-dimensional model, 
with nearest-neighbor interactions is known to be 
of the form7 

configuration integral is independent of z, hence, 
all of the z dependence of the partition function is 
in A(z), and these systems can exhibit no singular 
behavior as a function of temperature. 

Note added in proof: The use of complex tempera­
tures has been previously proposed by M. E. Fisher.s 

In this article Fisher finds the zeros of the two-

Q(z, H, N) = A!(Z, H) + A~(Z, H), 
dimensional Ising model and verifies the proposed 

(34) picture of the phase transition. 

where z is the complex temperature (z = -l/kT 
for z real and negative) and H is the external 
magnetic field 

}..,. (z, H) = e-i•J cosh (mHz) 

± [e-· J sinh2 (mHz) + e·J]t. (35) 

The energy of the system is of the form 

E = -!J L P,P.i - mH L. U" (36) 
(i .i) 

where the sum (i, i) goes over nearest neighbors 
and p., takes on the values ± 1. If we are to look 
for zeros of Q(z, H, N) we must set A+ = (_l)I/NL . 
Using (35) we obtain the following transcendental 
equation: 

e2J• 

tanh (mHz) + cosh2 (mHz) 

= -tan' 7r(k + !)/N, (37) 

where k = 0, 1 ... N - 1. It is clear that the left 
side of (37) is greater than zero for all real z and H, 
hence there will never be any roots near the real 
axis and therefore no phase transition. For real H 
and complex z, there are roots of (37) and they 
become dense on rather complicated curves in the 
complex z plane. For the case H = 0, the curves 
are easy to find. We have 

or 

where m is any integer. The zeros become dense 
on lines parallel to the real z axis and displaced by 
7r(2m + 1)/3J. For H ~ 0 Eq. (37) can, in general, 
only be solved approximately. 

Two other systems which have simple analytic 
structure in the z plane are the free gas and the 
gas of hard spheres. For both of these systems, the 

7 H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252 
(1941). 
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APPENDIX 

We want to show, under assumption (6), that 

is an analytic function of z for Re z < O. We set 
z = +,6 + ia, where ,6 < O. Referring to (6), let tl 
be the set of points (ri ... rN) such that each r, E g 
but (ri ... rN) EE AN. Using the decomposition 
(6) and the fact that e'UN = 0 on AN, we can write 

C(z) = C.(,6, a) + iC.(,6, a), (AI) 

where 

X sin aSN(rl ••• rN) dr i ••• drN 

when we have split C into its real and imaginary 
parts. We want to show the a and (3 derivatives 
of Cr and C, exist, and satisfy the Cauchy-Reimann 
conditions. To do this we need a standard theorem 
on differentiating under an integral sign. We state 
it in a form suitable for this problem.u 

Let x be a point in the n-dimensional Euclidian 
space R", and let y belong to RI. Let B be a closed 
region of Rn and I a closed interval in RI. Let 
I(x, y) be defined for x E Band y E I and such 
that (af/ay) (x, y) exists there, and that this de-

8 M. E. Fisher, in Lectures in Theoretical Physic8 (Urti­
versity of Colorado Press, Boulder, Colorado, 1965), Vol. 
VII C. 

DR. Courant, Differential and Integral Calculus (Inter­
science Publishers, Inc., New York, 1949). 
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rivative is continuous function of the n + 1 variables 
(x, y) in B X I. Then 

:y i lex, y) dx = i :~ (x, y) dx 

for all y E I. 
Let us apply this theorem to Cr(fj, a) and con­

sider the fj derivative. Then y = fj, x = (rl ... rN) 
and 

f(x, y) = eUSN(z) cos aS1V(x). 

We take I to be any closed interval on the negative 
real axis which does not include the origin. Now if 
x is such that SN(X) ri' + 00 then 

:~ (x, y) = SN(x)eU8N
(Z) cos aSN(x). 

If SN(X) = + 00 then (aflay) (x, y) = 0 for all y E I. 
Now using the continuity of SN(X) in x, it is easy 
to show that (aflay) (x, y) is continuous in x for 
any fixed y E I, including points for which SN(X) = 
+ 00. For any fixed x, it is clear that (aflay)(x, y) 
is continuous everywhere in I. However, continuity 
in x and y separately does not imply continuity 
in (x, y). For this we need the following theorem. 

Theorem: Let g(x, y) be continuous in y at 
(xo, Yo), and continuous in x at Xo uniformly in y, 
for all y in some neighborhood of Yo. Then g(x, y) 
is continuous at (xo, Yo). 

Proof: Given E > 0 we find 0 > 0 such that 
Iy - yol < 0 implies I/(xo, y) - !(xo, Yo) I < !E and 
also Iy - Yol < 0 and Ix - xol < 0 implies 
I/(x, y)-/(xo, y)I<!E. Now, let I(xo, Yo)-(x, y)l<o. 
Then Ix - xol < 0 and Iy - Yol < 0 hence 

I!(x, y) - !(xo, Yo) I < I!(x, y) - I(xo, y) I 
+ If(xo, y) - I(xo, Yo) I < E. 

We apply this theorem to (allay) (x, y). Let 

(xo, Yo) be an interior point of B X I. Suppose first 
SN(XO) ri' + 00. By the continuity of SN, we can 
find a neighborhood of Xo, in B, such that SN(X) ri' 
+ 00. Using the fact that 

(allay)(x, y) = SN(x)e"SN(z) cos aSN(x) 

for y E I and x in this neighborhood, it is easy to 
show that the continuity in x is uniform with respect 
to y. Now, if Xo is such that SN(XO) = + 00, then 
by the continuity of SN, given M > 0, we can find 
o > 0 such that Ix - xol < 0 implies SN(X) > M. 
For any y E I: 

I:~ (x, y) - * (xo, y)1 

= ISN(x)eIlSN(z) COB SN(X) - 0\ < MellM 

if we choose M so large that -My > 1 for all 
y E I. The right-hand side can be made arbitrarily 
small for all y E I by choosing M large enough, 
hence the continuity at Xo is uniform in y. 

Then 

aCr(fj, a) = 1 S lSN cos as dr .. , drN. 
afj t. N Ii 1 

Similar arguments show that 

aC;(fj, a) = 1 S~SN sin aSN dr
l 

••• drli , 

afj t. 

aCr(fj, a) = -I SNlSN sin aSN dr
l 

.,. drN, 
aa t. 

ac;~ a) = + i SNlSN cos aSIi drl .,. drN. 

It is clear that 

aCr ac. iii = a;; , aCr = _ aC. so that 
aa afj 

C is an analytic function of z for Re z < O. 
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Characterizing Coherent States of the Radiation Field* 
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Simple proofs are given for two properties of a Bose field discovered recently in the quantum­
theoretic description of optical coherence. The first is the theorem of Glauber and Titulaer that 
first-order coherence means that only one mode is excited. The second is the theorem of Aharanov, 
Falkoff, Lerner, and Pendleton that eigenstates of the annihilation operators are characterized by 
their ability to factor when the system is divided into two channels. The restriction of the latter to 
the case of a single excited mode is removed. 

T wo simple properties of a Bose field have been 
discovered recently in the quantum-theoretic 

description of optical coherence. The two theorems 
proved in this paper are intended to provide ele­
mentary demonstrations of these properties. They 
are obtained by considering states of the field with 
respect to different sets of modes. Let aj and their 
adjoints ai be annihilation and creation operators 
satisfying the commutation relations, 

for a set of independent (or "orthogonal") modes j. 
For each unitary matrix U 

and 

bt _ '" * t 
r - £..J Urjaj 

j 

are annihilation and creation operators for another 
set of modes r. 

First-order coherence for a state of the radiation 
field' means that there are complex numbers Zj such 
that 

Then 

(b ~b.) = L U~jU.k (a ~ak) = (L UrjZ;)*( L U.~k) 
Ik i Ie 

so the definition of first-order coherence is the same 
with respect to a set of modes defined by any unitary 
matrix U if all the sums 

LUrjZ; 
j 

* Supported by the U. S. Army Research Office, Durham, 
North Carolina. 

t Alfred P. Sloan Research Fellow. 
1 R. J. Glauber, Phys. Rev. 130,2529 (1963); R. J. Glauber 

and U. M. Titulaer, ibid. 140, B676 (1965); T. F. Jordan, 
Relv. Phys. Acta 37, 697 (1964); N. Mukunda and T. F. 
Jordan, J. Math. Phys. 7, 849 (1966). 

are finite, as is the case when 

is finite, which means that the total number of 
photons represented by the operator 

has a finite expectation value. Glauber and Titulaer2 

have discovered and proved the following. 

Theorem: A state for which <L; aiaj) is finite 
has the property of first-order coherence if and only 
if there is a set of modes (with annihilation and crea­
tion operators br and b: defined by a unitary matrix 
U as above) of which only one mode is excited. 

Proof: If only the single mode r = 1 is excited, 
then 

( t ) ( t brb. = I3r, 13" b, b1), 

which satisfies the definition of first-order coherence. 
To establish the converse, suppose that the state 
has first-order coherence and let 

Ulj = z~(L IZkI2)-i 
k 

assuming that 

is finite. Then 

2 R. J. Glauber and U. M. Titulaer, Phys. Rev. 145, 1041 
(1966). At the Physics of Quantum Electronics Conference in 
San Juan, Puerto Rico, June 1965, I learned, from Glauber and 
Titulaer, the statement but not the proof of this theorem. That 
is why I happen to have made a proof which seems to me to be 
suffiCiently different from the original proof to be of some inter­
est. I want to leave no doubt, however, that credit for the orig­
inal statement and proof of this theorem is due to Glauber 
and Titulaer. 

2006 
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We can find a unitary matrix U such that Uri = Ulj 

for r = 1. Then 

L UrjZj = (L IZkI2); L urjuTj = (L IZkI2); Orl 
; k i k 

and thus 

In particular, 

(b:br ) = 0 

for r ~ 1, which means that only the single mode 
r = 1 is excited. This completes the proof of the 
theorem. 

Let Iz) be a normalized eigenvector of the an­
nihilation operators aj 

aj Iz) = Zj Iz), 

(z I z) = 1, 

with z denoting the set of complex eigenvalues zj.a 
Then 

so Iz) is an eigenvector also of the annihilation 
operators br for a set of modes defined by any 
unitary matrix U if all the sums 

L Ur;Zj 
j 

are finite, as is the case when 

L IZj 12 = (zi L a:a; Iz) 
i i 

is finite. Consider a division of such a set of modes 
into two subsets. Any product of the annihilation 
operators br and the creation operators b: factors 
uniquely into two products of operators for the two 
subsets. For a pure state represented by the vector 
Iz), the expectation value of such a product factors 
into the expectation values of the two products for 
the two subsets of modes. We may think of this 
division as an analysis of the field with respect to 
two channels. For any such division, the state 
represented by the vector Iz) factors into two in­
dependent states for the two channel subsystems. 
The converse statement that this property is char­
acteristic of the eigenvectors of the annihilation op­
erators was discovered by Aharanov, Falkoff, Lerner, 
and Pendleton,4 was developed by Glauber and 

8 R. J. Glauber, Phys. Rev. 131, 2766 (1963). 
4 Y. Aharanov, D. Falkoff, E. Lerner, and H. Pendleton 

(to be published) prove this theorem for a pure state with only 
one excited mode using the complete factoring of the state. 

Titulaer/ and is demonstrated by the following. 

Theorem: A state for which (Lj a;a;) is finite 
is a pure state represented by an eigenvector of the 
annihilation operators if it has the property that 

(b:b.) = (b;) (b.) 

for r ~ 8 for every set of modes r defined by a 
unitary matrix U for which Urj is nonzero for at 
most two values of j for each r. 

Proof: Taking U to be the identity matrix and 
considering any two modes, say modes 1 and 2, 
we have 

(aia2) = (ai) (a2), 

(a!al) = (a!) (al)' 

Then, taking U to be the identity matrix except 
for r, j = 1, 2, we get 

o = (bib2) - (bi) (b2) 

= UTlu21«a:al) - (a:) (al» 

+ UT2u22«a!a2) - (a!) (a2»' 

Since unitarity requires that 

we conclude that 

(a:al) - (ai) (al) = (a!a2) - (a!) (a2)' 

In general, we can conclude that 

(aJaj) - (aJ) (aj) 

is the same for all j. Since this number is nonnegative, 
it must be zero for (L; a;a;) to be finite. Thus we 
have 

for all j. Let the density matrix representing the 
state be 

p = L w" Icp,,) (cp"l, 
" 

with cp" being orthonormal vectors and w" being 
positive numbers that sum to one. We have 

L w,,([a; - (a;) ]cp", raj - (aj) ]CPn) 
n 

= «a; - (aj» t(a; - (a;») = 0 

for all j. For each n, either w" = 0 or 

(a; - (aj»CPn = 0 

6 Ref. 2; Glauber and Titulaer prove this theorem for any 
state with only one excited mode. 
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for all j. The latter means that q,,, is an eigenvector 
of each a j with eigenvalue (ai)' Since there are no 
two linearly independent eigenvectors for the same 
set of eigenvalues, the only possibility is that Woo 

is nonzero for only one n, and the state is a pure 
state represented by an eigenvector of the annihila­
tion operators ai' This completes the proof of the 
theorem. 

This theorem requires only factoring of the ex­
pectation values of operators bilinear in the crea­
tion and annihilation operators for various divisions 

JOURNAL OF MATHEMATICAL PHYSICS 

of particular sets of modes into two subsets. Thus, 
it follows as a corollary to this theorem that the 
complete factoring of the state for divisions into 
two subsets of the more general sets of modes dis­
cussed earlier is implied by the factoring of the 
expectation values of the bilinear operators for these 
particular sets of modes. 
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We consider the discontinuities of the triangle-graph amplitude as a function of an internal mass 
variable. These discontinuities are important, since they form the kernel of the Aitchison-Anisovich 
integral equation, which is derived from the Khuri-Treiman three-body final-state-interaction dis­
persion relation. We evaluate the discontinuities by explicitly performing the Feynman a integrations. 
We also discuss their analytic continuations. Finally we consider the applicability of the Cutkosky 
rules to such an internal mass variable discontinuity. It is argued that these rules mnst be modified in 
two ways. One of these is straightforward, having to do with the appearance of spacelike masses. The 
other is more involved and is a consequence of the results of homology theory. We apply the modified 
Cutkosky rules to the triangle-graph discontinuities and obtain the same results as found by the 
direct method, so confirming the modifications which we have made. 

1. PREAMBLE 

ONE approach to the problem of three-body 
production and decay processes is to use a 

dispersion relation of the Khuri-Treiman type.1 

Aitchison2
•
a has shown how this can be transformed 

into a single-variable integral equation, using a 
method first applied by Anisovich4 in the non­
relativistic problem. This equation lends itself to 
numerical solution on a computer, and work is 

* This work was supported in part by the National Science 
Foundation under Grant NSF GP-3221. 

1 N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 
(1960). 

2 I. J. R. Aitchison, Nuovo Cimento 35 434 (1965). 
31. J. R. Aitchison, Phys. Rev. 137, 131070 (1965); also 

Erratum (to be published). Note that the f and fl; of that 
paper differ in normalization from those of t~e present paper. 
Speclfically,jAitoh == -2r2jxao, fl •. Aitob "" 11" flK ••• N?te that 
flAhob == [4(ri)3]-lffAitoh(>.2 - iE) - !Aitob(>.2 + lE)). We 
apologize for the confusion in conventions. (See also ReI. 9.) 

• V. V. Anisovich, Zh. Eksperim. i Teor. Fiz. 44, 1593 
(1963) [English trans!.: Soviet Phys.-JETP 17, 1072 (1963)]. 

being actively carried out on this.6
•
6 The kernel of 

this integral equation is identical with the sum of the 
discontinuities of the triangle graph taken with 
respect to an internal mass. It is therefore of im­
portance to study these discontinuities. 

In Ref. 3 these discontinuities were evaluated by 
using Cutkosky's rules.7 These discontinuities con­
sist of three terms, AI, A2, and A3, corresponding to 
three different branch points. The application of 
Cutkosky's rules for these discontinuities runs into 
difficulties associated with spacelike IImasses", which 
were not treated fully in Ref. 3. Furthermore, 
Aitchison's evaluation of Aa actually contains several 
errors. Aitchison did correctly note that Cutkosky's 
rules do not provide a complete specification of 

6 I. J. R. Aitchison (to be published). 
• 1. Duck and F. C. Khanna, Nucl Phys. 77, 609 (1966). 
7 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). See also 

W. B. Rolnick, Phys. Rev. Letters 16, 544 (1966). 
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for all j. The latter means that q,,, is an eigenvector 
of each a j with eigenvalue (ai)' Since there are no 
two linearly independent eigenvectors for the same 
set of eigenvalues, the only possibility is that Woo 

is nonzero for only one n, and the state is a pure 
state represented by an eigenvector of the annihila­
tion operators ai' This completes the proof of the 
theorem. 

This theorem requires only factoring of the ex­
pectation values of operators bilinear in the crea­
tion and annihilation operators for various divisions 

JOURNAL OF MATHEMATICAL PHYSICS 

of particular sets of modes into two subsets. Thus, 
it follows as a corollary to this theorem that the 
complete factoring of the state for divisions into 
two subsets of the more general sets of modes dis­
cussed earlier is implied by the factoring of the 
expectation values of the bilinear operators for these 
particular sets of modes. 
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We consider the discontinuities of the triangle-graph amplitude as a function of an internal mass 
variable. These discontinuities are important, since they form the kernel of the Aitchison-Anisovich 
integral equation, which is derived from the Khuri-Treiman three-body final-state-interaction dis­
persion relation. We evaluate the discontinuities by explicitly performing the Feynman a integrations. 
We also discuss their analytic continuations. Finally we consider the applicability of the Cutkosky 
rules to such an internal mass variable discontinuity. It is argued that these rules mnst be modified in 
two ways. One of these is straightforward, having to do with the appearance of spacelike masses. The 
other is more involved and is a consequence of the results of homology theory. We apply the modified 
Cutkosky rules to the triangle-graph discontinuities and obtain the same results as found by the 
direct method, so confirming the modifications which we have made. 

1. PREAMBLE 

ONE approach to the problem of three-body 
production and decay processes is to use a 

dispersion relation of the Khuri-Treiman type.1 

Aitchison2
•
a has shown how this can be transformed 

into a single-variable integral equation, using a 
method first applied by Anisovich4 in the non­
relativistic problem. This equation lends itself to 
numerical solution on a computer, and work is 

* This work was supported in part by the National Science 
Foundation under Grant NSF GP-3221. 

1 N. N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115 
(1960). 

2 I. J. R. Aitchison, Nuovo Cimento 35 434 (1965). 
31. J. R. Aitchison, Phys. Rev. 137, 131070 (1965); also 

Erratum (to be published). Note that the f and fl; of that 
paper differ in normalization from those of t~e present paper. 
Speclfically,jAitoh == -2r2jxao, fl •. Aitob "" 11" flK ••• N?te that 
flAhob == [4(ri)3]-lffAitoh(>.2 - iE) - !Aitob(>.2 + lE)). We 
apologize for the confusion in conventions. (See also ReI. 9.) 

• V. V. Anisovich, Zh. Eksperim. i Teor. Fiz. 44, 1593 
(1963) [English trans!.: Soviet Phys.-JETP 17, 1072 (1963)]. 

being actively carried out on this.6
•
6 The kernel of 

this integral equation is identical with the sum of the 
discontinuities of the triangle graph taken with 
respect to an internal mass. It is therefore of im­
portance to study these discontinuities. 

In Ref. 3 these discontinuities were evaluated by 
using Cutkosky's rules.7 These discontinuities con­
sist of three terms, AI, A2, and A3, corresponding to 
three different branch points. The application of 
Cutkosky's rules for these discontinuities runs into 
difficulties associated with spacelike IImasses", which 
were not treated fully in Ref. 3. Furthermore, 
Aitchison's evaluation of Aa actually contains several 
errors. Aitchison did correctly note that Cutkosky's 
rules do not provide a complete specification of 

6 I. J. R. Aitchison (to be published). 
• 1. Duck and F. C. Khanna, Nucl Phys. 77, 609 (1966). 
7 R. E. Cutkosky, J. Math. Phys. 1, 429 (1960). See also 

W. B. Rolnick, Phys. Rev. Letters 16, 544 (1966). 
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the discontinuity; and that they had to be supple­
mented by using the prescriptions of homology 
theory.8 

In a further paper by Aitchison and the present 
author,9 the physical significance of the discon­
tinuities was discussed, and Al was in fact evaluated 
by using well-known properties of the triangle graph. 
However, A2 and Aa were not discussed there, and 
in fact the error in Aa was not noted. 

The purpose of the present paper is to evaluate 
all three discontinuities, AI, A2, and A3 , by using 
a direct method that totally avoids the use of 
Cutkosky's rules. (Furthermore we treat the most 
general unequal mass case, while both Refs. 3 and 
9 considered a somewhat degenerate case.) Once 
we know AI, A2 , and Aa as evaluated by first princi­
ples, we return to a reconsideration of their evalua­
tion by means of Cutkosky's rules. We state a new 
generalization of Cutkosky's rules for the case of 
spacelike masses; and we reemphasize the necessity 
of following the modified prescription which arises 
from homology theory. Finally, we apply these 
modified Cutkosky rules to the evaluation of A., A2, 
and Aa. We find confirmation of our modified pre­
scription by obtaining the same results in each case 
as we obtained by the direct method. 

The detailed structure of the paper is as follows. 
In Sec. 2 we define the problem more carefully in 
terms of the Feynman integral for the triangle 
graph. In Secs. 3-6 we evaluate AI, A2, and Aa 
explicitly by performing the Feynman a integrations. 
This evaluation is initially performed for the case 
that the external two-particle mass variable s is 
not yet on its cut, so that the Ai are real. In Sec. 7 
we then consider the analytic continuation in s, 
following the method of Ref. 3. 

There are also three appendices. In Appendix A 
we reconsider the analytic continuation in s by 
using the known analytic properties of the triangle­
graph amplitude. In Appendix B we turn to the 
question of the Cutkosky rules. We first discuss why 
they need to be modified when applied to internal 
mass discontinuities, and then explicitly evaluate 
AI, A2 , and, in particular Aa, using these rules. The 
results agree with those of the direct method. Finally, 
in Appendix C we evaluate Aa using the method 

8 D. Fotiadi, M. Froissart, J. Lascoux, and F. Pham 
Ecole Poly technique preprint (unpublished), and related 
works; also Topology 4, 159 (1965). 

9 I. J. R. Aitchison and C. Kaeser [Nuovo Cimento 40, 576 
(1965)] use the same definition of f and the il, as we do here. 
However (owing to confusion engendered by the remarks of 
Ref. 3 of the present paper), a factor of '11" has been dropped 
in their Eqs. (6), (7), (9), (10), (12), and in the final equation; 
that is! the right-hand sides of each of those equations should 
be mUltiplied by '11". Further, the symbol L is used for our R. 

FIG. 1. The basic triangle m 
graph. 

of Aitchison,a corrected where necessary, and once 
again we obtain the same final expression for Aa. 

2. STATEMENT OF PROBLEM 

We consider the Feynman graph of Fig. 1, and 
are in fact interested in the fully physical decay 
region specified by m > A + v, A > p. + M, 
(m - M)2 > s > (v + p.)2. Here, for a real decay 
m ~ A + v ~ M + v + p., A corresponds to an inter­
mediate resonance mass, with a negative imaginary 
part. IO However, in the integral equation one must 
consider all real A 2 in the range - ex> < A 

2 < 
(M _ p.)2. 

We define the "triangle graph" f as11 

1 J d
4
k 

f = 7r
2i IT(m! - q~ - if) 

= il dal i
l 

da2 il daa 5(1 - al - a2 - aa)/D (1) 

with 
D = a lA

2 + a2p.2 + aall2 - ala2M2 

- a2aaS - aaalm
2 

- if. (2) 

Then, using standard methods,11-16 but working in 
sand A2 as variables, one readily generalizes the 
results of Bronzan and Kacserl6 to find the following 
sets of singularities: 

(1) The leading Landau singularity surface, 17 

r == SA2(S + A2) _ sA2(m2 + M2 + p.2 + v~ 
+ A2(m2 

_ M2)(l _ p.2) + s(m2 _ i)(M2 
_ p.2) 

+ m4l + MV + p.4m2 + v4M2 

- M 2m2(i + l) - li(m2 + M2) = 0, (3) 

10 The use of this "isobar" approximation has been dis­
cussed fully by I. J. R. Aitchison and C. Kaeser, Phys. Rev. 
133, B1239 (1964). 

11 R. Karplus, C. M. Sommerfield, and E. H. Wichmann, 
Phys. Rev. 111, 1187 (1958). 

12 L. D. Landau, Nucl. Phys. 13, 181 (1959). 
13 R. J. Eden, "Lectures on the Use of Perturbation 

Methods in Dispersion Theory," University of Maryland, 
Physics Department, Technical Report No. 211 (1961). 

14 R. J. Eden and G. C. Polkinghorne, Brandeis Summer 
School Lecture Notes, 1961 (W. A. Benjamin, Inc., New York, 
1962). 

Ii J. Tarski, J. Math. Phys. 1, 149 (1960). 
16 J. B. Bronzan and C. Kaeser, Phys. Rev. 132, 2703 

(1963); C. Kaeser, ibid. 132,2712 (1963); see also Refs. 3 and 9. 
17 This is given by the expression 1-xZ _y2 -Z2 -2xyz =0 

with x = (s-v2 -p.2)/(2p.v), y = (m2 -,Jl -")..2)/(2v")..), and 
z = (M2 -X' -p.2)/(2Xp.). It is identical with the Kibble 
cubic [T. W. B. Kibble, Phys. Rev. 117, 1159 (1960)] for the 
process p. + II -> m + M, with 8 the direct channel invariant 
and X2 the crossed m + v -> M + p. channel invariant. 



                                                                                                                                    

2010 C. KACSER 

n 

Here, the minus signs are inserted so that, even 
though the physical limit is taken in the sense 
}.2 _ iE, yet 

"J (m+,,) 2 Im f(s, }.2) 

S (m-,,)2 

TK+~ 

~~ Q 
(M+JL)2 

Y X P (M-JL)2 

./5. IV- ~ 

Z 0 ql"" p 

][ iN 

~ ~+ 
V 

(JL+II)2 (m-M)2 (m+M)2 
JL_,,)2 

FIG. 2. The various singularity surfaces in the real (S,A2) 

plane, for m > M + " + 1-'; throughout this paper we take 
the specific case M > I-' and " > I-' to determine the asymptotic 
behavior at s = 0 and A2 = O. The singularities are the heavy 
lines, and the arcs PQ, ZX and pq, and the complex surfaces 
joining these arcs. The second-type singularity is shown 
dashed. 

(2) al = 0 end point: s = (,.,. + 11)2, 
(3) a2 = 0 end point: }.2 = (m - 11)2, 
(4) aa = 0 end point: }.2 = (M - ,.,.)\ 
(5) double end point: a2 = aa = 0: }.2 = 0, 
(6) second-typel8 or non-Landau singularity 

s = (m - M)2. 

Using the standard asymptote and tangency con­
ditions,15 one finds that r is as shown in Fig. 2, in 
which the various singularities are also indicated. 
(We take M > ,.,. for definiteness.) For s < (,.,. + 11)2, 
the only singularities in}.2 are at (m - 11)2, (M _ ,.,.)2, 
and O. Further, for s < (,.,. + 11)2 and}.2 > m2 + 112, 
D can never vanish and f is real, so that the }. 2 

cuts must go towards minus infinity, and hence we 
can write 

f( 2) d' ,2 ~l S, {\ 1 j
cm-v)' A ( ,,2) 

S,}. = -- {\ ,'2 ,2 + . 
1(' _00 {\ - (\ tE 

1 jCM-,.), ~ (s }.2) 
d,,2 2 , - - {\ ,'2 ,2 + . 

1(' _00 {\ - {\ tE 

(4) 

18 See Ref. 16. 

= ~IO[(m - 11)2 - }.2] + ~20[(M _ ,.,.)2 _ }.2] 

(5) 

Our purpose here is to evaluate AI, A2, and Aa, 

initially for s < (,.,. + II?, but by analytic continua­
tion for s < (m - M)2. The method is based on 
Eqs. (5) and (1), and is modeled on the work of 
Barton and Kacser.19 

3. GEOMETRICAL DESCRIPTION OF THE 
CURVE D = 0 

From Eq. (1), Imf can only arise from those parts 
of the a-intergation region for which D = O. Hence 
we investigate the curve D = 0 in the alaa space, 
using a2 = 1 - al - aa, and looking particularly 
in the integration region 0 ::; al ::; 1, 0 ::; aa ::; al' 

We ignore the term iE. 
We have 

D(al' aa) = sa~ + (M
2 + s - m2)aaal + M2a~ 

+ (l - l - s)aa + (}.2 - ,.,.2 - M2)al + l. (6) 

Then D = 0 is a hyperbola for s < (m - M? Also 
D(l, 0) = }.2, D(O, 1) = l, and D(O, 0) = ,.,.2. 

Further, 

D(al'O) = M2a~ + (}.2 - M2 - l)al + l. 
Hence D(al' 0) = 0 

Here, 

M2 + ,.,.2 _ }.2 ± k(M2, }.2, l) 
2M2 

e(a2
, b2

, c2
) 

== a4 + b4 + c4 
_ 2a2b2 

_ 2b2c2 
- 2c2a2 

= [a2 - (b - c)2][a2 - (b + C)2] = cyclic perms 

(7) 

(8) 

Unless stated otherwise, k is always to be taken as 
positive if k 2 > O. (Once we continue in s, in Sec. 7, 
k will be specified with respect to the various branch 
cuts.) Equation (7) is plotted in Fig. 3, again for 
the case M > ,.,.. We see that, for }.2 < (M - ,.,.)2, D 
has two real intercepts with the al axis, and that 

19 G. Barton and C. Kaeser, Nuovo Cimento 21, 593 
(1961), in particular, the Appendix. Beware of errors in 
factors of 2, and also the omission of the second-type singu­
larity, cf. Ref. 13. 
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they both lie in the interval 0 :::; al :::; 1 for 0 :::; 
)..,2 :::; (M - Ill. Similarly, one has 

D(al, 1 - al) = m2a~ + ()..,2 - m'J - P~al + p2, 

which can be obtained from (7) by the substitutions 
M ~ m, J.I. ~ p (thus preserving m > p), so that D 
has two real intercepts with the al + aa = 1 bound­
ary for x.2 < (m - p)2, both lying in the interval 
o :::; a2 :::; 1 for 0 :::; x.2 :::; (m - p Y\ Finally similar 
analysis shows that D(O, aa) never vanishes for real 
aa if (J.I. + p)2 > 82 > (J.I. - p)2. For most of the re­
mainder of this paper, we restrict ourselves to this 
range of 8, (J.I. + p/ > 8 > (J.I. - 1/)2. For this range, 
D(al, aa) = 0 is a hyperbola, whose asymptotes 
both have positive slope.20 

With this information, we can locate the curve 
DCal, aa) = 0 with respect to the (ai, aa) integration 
region for all real x.2, as shown in Fig. 4. The transi­
tion in Fig. 4 from (b) to (c) can be investigated by 
setting X. 2 = (M - J.I.)2, and expanding D about al = 
J.I./M, a3 = 0; however, the need for continuity be­
tween Fig. 4 (c) and (d) really uniquely determines ( c). 
In Fig. 4 the "topology" is significant, but whether 
an individual arc has a tangent parallel to either the 
al or the aa axis is not necessarily correctly described. 
Recall however that we are looking at one branch 
of a hyperbola, whose asymptotes both have positive 
slope. 

The details of Fig. 4 correspond exactly to the 
singularities already found by means of the Landau 
analysis. Thus singularity (3) a 2 end point, x.2 = 
(m - J.I.)2 is the transition from (a) to (b) in the 
figure; singularity (4) is the transition from (b) to 
(c); and singularity (5) is the transition from (c) 
to (d). From the viewpoint of Fig. 4, the reason that 
singularities are some combination of end point and 
pinch is simply that the only way the "topology" 

. of D can change relative to the integration bound­
ary is by an arc of D either becoming tangent to 
the boundary, or by slipping off at a vertex of the 
boundary. The non-Landau second-type singularity 

FIG. 3. The curve D( al,O) ,.. 0 
in the real (al,X2) plane, for 
the case M > p.. 

20 They are given by 28 as/al =m2 -8-M2±k(s,m2,M2) > 0, 
since m2 > (Vii + M)=, s > O. 

FIG. 4. The curve D(al' as) = 0 and the integration region 
o < a < 1, 0 < as < ai, shown for various real At with 
(p. + ~)2 > 8 > (p. - v)2. The heavy arcs show those regions 
that contribute to 1m f. 

8 = (m - M)2 corresponds to the discontinuous 
transition of D in which it changes from being a 
hyperbola to being an ellipse. 

Finally, the "leading" Landau singularity of com­
plete coincident pinches corresponds to the case when 
the (all (3) hyperbola degenerates to two crossing 
straight lines, the point of intersection giving coin­
cident pairs of values for each of al> a2, and aa 
simultaneously. Thus, rewriting Eq. (6) in the form 

D(al' (3) ;;;; aa~ + 2halaa + ba~ 
+ 2gal + 2faa + c, (6') 

this degeneracy condition is simply given by21 

a h g 

.6.;;;; h b f = O. 

g f c 

(Sa) 

The equation .6. ;;;; 0 is identical with the usual 
determinant equation for r.22 

For the moment, with (J.I. + p)2 > 8 > (J.I. - p)2, we 
disregard the leading singularities. We can then 
immediately identify the discontinuity functions 
.6.1, .6.2 , and .6.3 , We rewrite Eq. (1) as 

so that Imf arises from those parts of the curve 

21 Recall the standard form ax! + 2hxy + by! + 2gx + 
2fy + c = 0; see for instance G. Salmon, A 7'reati8e on Conic 
Sections (Longsmans Green and Company, Inc., London, 
1879), 6th ed. 

22 Because, with D ,.. L: c,;f3,f3;, with the identification 
f31'" al, f32 = 1, and f33 = as; then ~f one sets f32 = al + a2 + a, 
to obtam D = L: a,;C""'j, one readIly finds det a,j""det C,j =6. 
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D(al' a3) = 0 which lie within the integration region. 
For the interval (m - ,,)2 > >..2> (M - J.L)2 this cor­
responds to the complete arc AB of Fig. 4(b). 
Similarly, for the interval (M - J.L)2 > >..2 > 0 this 
corresponds to the arcs AC + DB of Fig. 4(c). 
But this can be rewritten as AB - CD. Finally, 
for >..2 < 0, we can write the contribution as AB -
CD + BD. Thus, in fact, we can write 

CJ.L + ,,)2 > s > (J.L _ ,,)2: 

.6.\ = 1m J da\ J da3 D( 1 ); 
AB at, aa 

(M _ )2 > >..2 J.L _ , 

(9) 

(10) 

Equations (9)-(11) solve our problem for the 
specified range of s, leaving only the explicit evalua­
tion to be performed. This is straightforward, but 
tedious, and we only give the main steps. Before 
doing so, we remark from Fig. 4 that .6.\ clearly 
has >..2 = (m - ,,)2 as a branch point, and that .6.2 
has a branch point at >..2 = (M - J.L)2. However, 
.6.3 is regular at >..2 = O. 

4. EXPLICIT EVALUATION OF Al 

The arc AB of D(a\, aa) = 0 is part of the "upper" 
branch of a hyperbola both of whose asymptotes 
have positive slope. Hence, any line of the form 
a\ + a3 = const intersects AB either twice or not 
at all. It is therefore convenient to rotate axes so 
that we first integrate along such lines. Thus we 
define 

whence 

D == a{l + b{3 + c == a({3 - (3\) ({3 - (32) 

= C!m2){32 + (3[a(s - ~) + (1/V2) 

X (,,2 + M2 - S - >..~] + Ua2(2s + 2M2 - m2
) 

+ (a/V2)(,,2 - 2l - M2 - S + >..2) + l - iE], 
(12) 

where we have restored the iE of Eq. (2). Then, if 
we define {32 > {31! we see that 1m {12 > 0, 1m {11 < o. 
Hence 

where ao is the larger of the two a roots of {32 = {3\. 
(Recall that we are on the upper branch of the 
hyperbola.) Thus we set 

X == b
2 

- 4ac == Aa2 + Ba 

+ C == A(a - ao)(a - a') 

= a2e(s, m\ M2) + aV2 {(s - M2) 
X (,,2 + M2 _ S _ >..2) 

+ m2(2l - ,,2 + M2 + s _ >..2)} 

+ !{(" + M2 _ >..2 _ S)2 _ 4m2l1 
with ao > a'. Then 

1
11V2 

.6.\ = 2?ri (Aa2 + Ba + C)-t da 
a. 

(14) 

= I~i,ln {2 I(AX)!I + 2Aa + B}I~.V2. (15) 

After some algebra, one finds that 

XI1IV2 = !k2(m2
, ,,2, >..~ 

and 

{2 I (AX)t I + 2Aa + B} 11IV2 = V2 (Iutl - R), (16) 

where 

U,,== U(m2 ,M2 ;,,2,l) 
= k2(S, m\ M2)k2(m\ ,,2, >..2), 

and 

R == R(m\ M2; ,,2, l) 
-m' + m2(l - 2l + >..2 + M2 + s) 

+ (s - ~(>..2 _ ,,2) 

= 2m2 (>..2 + M2 - l) 
- (M2 + m2 

- s)(m2 + >..2 - l). 

Also, one finds that"3 

{2(AX)! + 2Aa + Blla. = I(B
2 

- 4AC)tl 

= V2 2m Irtl. 

(17) 

(18) 

(19) 

13 That B2_4AC = 8m'r is not unexpected, since this is 
the ex discriminant of X, which in turn is the f3 discriminant 
of D(ex, fJ). Hence, we can apply Lemma IB of Theorem 2 in 
Ref. 15 to show that this repeated discriminant is propor­
tional to the determinant of the coefficients of D(ex, f3) taken 
in the sense of Eqs. (6') and (8a). Such a determinant is in­
variant under a rotation of axes, so that it is identical to ~, 
and hence related to r (cf. Ref. 22). 
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But 

(20) 

and, in the region 'A2 «0, (J.l + II? > 8 > (J.l - 11)2, 
we find that R < 0, R2 - U > o. Thus 

_ 27ri (IUil - R) 
Al - 1m Ik(8, m2

, M2)1 In 12mr!1 

_ 1r (R - lUll). 
- Ik(8, m2, M2)1 In \R + IUtl 

Here both of R ± Ul < 0, so that the logarithm is 
real. Neither of R ± U' can change sign as 'A2 
varies in - co < 'A2 ::; (m - 11)2 since r ;:e 0, so 
that finally 

1r (R - IUil) 
Al = Ik(8, m\ M2)1 In \R + IUil ; 

R' == R'(m2
, M2; 11\ J.l2) 

_M4 + M2(l - 2112 + X2 + m2 + 8) 

+ (8 - m2
) ('A2 - J.l2) 

= 2M2('A2 + m2 _ 112) 

- (M2 + m2 
- 8)(M2 + X2 - l) 

= R(M2
, m2

; l, l), (24) 

where Eq. (24) should be compared with Eq. (18). 
Then one readily finds that 

[2(PY)i + 2paa + q]lo = 2{ IU"I + R'}, (25) 

where 

U' = U'(m2 M 2
• 2 2) = k2(8 m2 M2)k2(~ 2 "\2) - "II,J.l " ,P.,/\ 

_ U(M2 2. 2 2) - ,m,J.l,1I (26) 

[cf. Eq. (17)]. Also - co < 'A2 ::; (m - 11)2, 

~ + 11)2 ~ 8 ~ (p. - 11)2. (21) [2(PY)i + 2peta + q]la •• 

We consider the analytic continuation in 8 of this 
result in a. later section. 

5. EVALUATION OF A2 

This proceeds very similarly to that of All so 
that we give only the briefest outline. The arc CD 
is intersected either twice or not at all by a line aa = 
const, so that we work in (ai' aa) as variables. We 
rewrite Eq. (6) as 

D(al' aa) == M2(al - al)(al - a2), 

with 

1m a2 > 0, 1m a l < O. 

(Do not confuse a and a.) Then 

f
o 27ri 

A2 = - 1m daa ~2:-:-=c....:----:-
a.. M (a2 - a l ) 

1m fO daa 27ri 
- a .. (pa~ + qaa + r)t 

where24 

R,2 - U' = 4M2r. 

Hence one readily finds 

1r (R' - IU"I) 
A2 = Ik(8, m\ M2)1 In \R + IU'!I ; 

- co < 'A2 ::; (M - J.l)2, 

(J.l + 11)2 ~ 8 ~ ~ - 11)2. 

(27) 

(28) 

(29) 

Equation (29) is identical with Eq. (21) under the 
substitutions M2 ~ m2 and J.l2 ~ l. We note that 
R' > IU'il > O. 

6. EVALUATION OF A,. 

We finally come to Aa, which is the discontinuity 
function for which Cutkosky's rules are no longer 
a complete specification; and thus the present 
evaluation is the main content of this work. Regret­
tably the algebra is heavy, but can be conquered 

2 . 1° = -1m pinl In {2(PY)t + peta + q} . 
p a .. 

(22) if one believes strongly enough in the "simplicity" 
of nature. 

Here 

Y == pa: + qaa + r == p(aa - aao)(aa - a~) 

with 

and 

We proceed exactly as in Sec. 4, and work with 
the rotated variables a and {3. 

[The use of a and (3 ensures that any line a = 
const cuts the arc BD only once [cf. Fig. 4(d)]. 

24 Remarks similar to those of Ref. 23 apply here. The 
"factorizations" (20) and (28) are interesting variants of the 
more usual factorizations of r such as r "" 8[XI - X+ (8)] 
[X2 - X (8)], and can in fact be written as r "'" ml(p.1 - p._I) 
(p.t _ p.+I) and r ". M2(p2 - 1'_2) (vi - 1'+2), respectively. 
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CD 
i1kl 

+Ikl 
(m-M)2 elkl (m+M)2 

(0) k(s,m2,M2) 

0 
ilkl 

+Ikl 
(M-fL)2 elkl (M+fL)2 

0 
(b) k(A2,M2,fL2) 

ilkl 
+Ikl 

(m-l/) elkl (m+v2) 

(e) k(A2,m2,v2) 

FIG. 5. The cuts determining (a) k(s, m 2, M2), (b) k(X2, p,2,M2), 
and (c) k(X2, v2, m2). 

If one were to use the variables (ai, (3) one would 
have to distinguish between the two cases 

daa I ;;;, 0 L. ,. 
UUl B 

This transition does occur for some s for suf­
ficiently negative )1.2, though it can be handled 
by analytic continuation in )1.2 of the result for 
the case 

da3
\ < O. 

dal B 

We used the (ai, (3) variables as an independent 
check of our result.] 

Then [cf. Eq. (11), Fig. 4(d); and Eqs. (13), (15)] 

f aD 7ri 

.13 = 1m aB da (b2 _ 4~ 

= 1m 1~\lln {12 (AX)ll + 2Aa + BII::, 
since now only {32 contributes. Here 

1 
aB = ~, 

(30) 

(31) 

an = .~ ~ [M2 + p.2 _ )1.2 + Ik(M2, )1.2, p.2)11. 
v22M 

Then [cf. Eq. (16)] 

{2 I(AX)'I + 2Aa + B)lllv'l 

= v'2 (I uti - R) ~ 0 (32) 

and 

(8M4X)'laD = R' 

+ (m2 + M2 _ s) Ik(M2, )1.2, p.2)1 ~ o. (33) 

(This is an example of the "simplicity" of nature.) 
One then finds that 

v'2 M2[2(AX)' + 2Aa + B]\aD 

= [m2 + M2 - S + Ik(s, m2, M2)1J 
X [R' + IU"IJ ~ 0 (34) 

(another example). Furthermore, 

(m2 + M2 _ S)2 - e(s, m2, M2) = 4m2M2. (35) 

Hence one can combine Eqs. (30), (32), (34), and 
(35), together with Eqs. (20) and (28), to finally 
obtain 

7r [(R' + IU"I)(R + 1U'1)(m2 + M2 - S + Ik(s, m
2
, M2) D] . 

.13 = 2 Ik(s, m\ M2)lln (R' - IU'll)(R - IUll)(m2 + M2 - S - Ik(s, m\ M2)1) , 

7. ANALYTIC CONTINUATION OF THE Ai 

Equations (21), (29), and (36) determine the Ai 
for all relevant real )1.2, but only for the restricted 
s range (p. + V)2 ~ S ~ (p. - V)2. In this range the 
arguments of each logarithm are positive,25 and the 
Ai are each real. We wish to continue the Ai to all 
s in - co ~ S ~ (m - M)2. Here we follow the 
method of Ref. 3. In Appendix A we verify our con­
clusions by an independent method. 

We first define the various k functions in the whole 
of the appropriate complex planes, as determined 
by the cuts of Fig. 5. We may then remove all the 

26 Though note that both R ± IU11 /2 < o. 

)1.2 ~ 0, (p. + V)2 ~ S > (p. - V)2. (36) 

"absolute value" signs in Eqs. (21), (29), and (36) 
if we define 

Ul = k(s, m\ M2)k(m\ l, )1.2), 

U" = k(s, m2
, M2)k(M\ p.\ )1.2). 

(37) 

We then observe that, provided the logarithms re­
main on their principal sheets, each of the A, are 
regular at s = (m ± M)2. We further see that Al 
has a square root branch point at its threshold 
,,2 = (m - V)2, and similarly, .6.2 has one at its 
threshold ,,2 = (M - p.)2. However, .6.3 is completely 
regular at its threshold ,,2 = O. 

Let us now continue the .6.; in s. Then as long as 
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the logarithms remain on their principal sheets, the 
only new singularities that can arise occur at R2 = 
U or at R'2 = U'; i.e., they can only occur on the 
leading singularity surface r = O. We must there­
fore determine, for each point on r, which of R = 
+ Uf and R = - Ui applies, and similarly which 
of R' = ± Uti. For definiteness, we refer to the 
labeled arcs of r in Fig. 2 as 

TSQ : J\!(s) , TPQ: J\:(S) , ZXW: J\:(S) , VW: J\!(s) , 
(38) 

where the continuity of each of ;>..; and X! as dis­
tinguishable roots of r is implied, and is then in fact 
assured by giving S a small positive imaginary part. 
Further, the small imaginary part to be associated 
with either X;(s) or J\~(8) can then be read off Fig. 
2 by using the sign of iJl\2/dS appropriate to the 
arc under consideration. 

We observe that R = 0 is a rectangular hyperbola 
in (8, X2) with asymptotes;>.. 2 = Il - m2 < 0, and 
S = M2 - m2 < 0, lying in the (+, +) and ( -, -) 
quadrants. Now, we are only concerned with those 
parts of r which bound the regions ~ and III; 
(hereafter called r:o and rm) so that, on these parts 
of r, U = 0 only at S and at Q. Thus the hyperbola 
R = 0 intersects r:o only at S and at Q, while it lies 
"under" the complete arc rm. Hence, since R < 0 
between its two branches, we immediately see that 
R < 0 on rm and on STPQ, while R > 0 on SQ. 
Since ut 2 0 throughout these regions, we see that 

R = +Ut :SQ, 
(39) 

R = - Ui : STPQ, VWXZ. 

Furthermore R2 < U inside ~, while outside ~ 
and r, R2 > U. 

We are now ready to perform the analytic con­
tinuation of At in s using the technique of Appendix 
B of Ref. 3. We start in the region (p - p)2 ~ S ~ 
(p + p)2, all ;>..2 ~ (m - p)2, in which R < 0, with 
R2> U. 

In this region A1 must be real (since for such s, 
f is real for X2 not on its cut). Thus in this region we 
write 

In this s region (p - p)2 < s < (p + p)2, ;>..!(s) and 
X;(s) are complex conjugates, and, by continuity 
from the definitions for s > (p + 1/)2, we see that 
1m J\;(s) > 0, 1m X:(s) < O. Thus the appropriate 
choice of branches in Eqs. (40), which ensures that 
Al is real, is given by taking each logarithm on its 
principal branch, with the cuts from ;>..;(s) and 
X:(s) each extending parallel to the real ).2 axis 
to - co. 

We now increase 8 into the region 8T < 8 < 8 a, 
where 8T is the 8 value at the point T [in this case 
S7' = (p + V)2] and similarly for Sa. In this continua­
tion of Eq. (40), for fixed ",2, the branch points ",;(s) 
come down onto the real ;>..2 axis with 

J\! EST, 1m J\!(s + it) > 0, 

X: E TP 1m ).:(s + if) < O. 
(41) 

Furthermore, R + Ut passes through zero on ~; 
however, the form of Eq. (40) is such that the factor 
In (Ui - R) remains real for s < Sa. Hence we 
readily find that, for ST < 8 < s s, AI is real outside ~, 
and acquires an imaginary part of + i1r/k(s, m2

, M2) 
inside ~. 

We next continue to Sa < 8 < Sp. As 8 moves 
past S, ).;(s + ill) moves clockwise around the 
'" '}; contour end point;>.. 2 = (m - p )Z, and now acquires 
a small negative imaginary part. The ;>..2 contour 
is undistorted by this, as is shown in Fig. 6. Hence 
In (X2 - ;>..;) now has an imaginary part - i1r for 
X2 < ;>";, and - 2i1r for;>..! < ",2 < (m - 1/)2. How­
ever, for this latter region, we are above the arc SQ, 
so that the factor 2 In (Ui - R) must also be con­
sidered. The argument of this logarithm changes 
from being positive to being negative as we cross 
the arc SQ to the right. In order to determine the 
proper branch to associate with this logarithm, we 
re-express Eq. (40) in a form which allows us to 
continue in s across SQ with no difficulty. That is, 
we transform Eq. (40) to 

! k(s, m\ M2)Al 
1r 

_ [S(J\2 - J\:)().2 - A!)] 
- In (-Ut _ R)2 

= In s + In (X 2 
- X:) + In (;>..2 

- X!) 

-2In(-ui_R). (42) 

(40) FIG. 6. The branch cuts associated with A", 2(8) for 8a < 8 < SP> 



                                                                                                                                    

2016 C. KACSER 

o 
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A~ 

2 (m-v) 

FIG. 7. The branch cuts and A2 contour for Sp < s < 8Q' 

For 8 < 8s inside :D, we know that this expression 
has an imaginary part of +i7r. But, with the same 
X!(s) cuts as before, this implies that -2 In 
(- U t - R) must have an imaginary part of +27ri 
(recall - U- t - R < 0 here, but changes sign on 
STPQ). Hence, as 8 increases past s s, and A! circles 
around (m - 1)2, we find the imaginary part of 
k!:ld7r remains +i7r in the region X~ < X2 < X!, 
and remains zero for X! < X2. For X2 < X~ Eq. (42) 
cannot be used, since the factor - 2 In (- Ul - R) 
changes its imaginary part; however, Eq. (40) can 
be used in this region, and shows that !:lJ is real for 
X2 < X~. 

We next continue in s past Sp, and consider the 
arc PQ near which expression (40) is appropriate. 
At P, X~ circles around (M + p.)2 and moves into 
the upper half X2 plane. However, since !:lJ is part 
of the spectral function of the dispersion relation 
(4) for I, the contour of integration must also be 
distorted upwards, (see Fig. 7) and hence remains 
above X~. Hence even though 1m X~(s + if) > 0, 
no change occurs in the effective prescription for 
!:lJ, i.e., 1m (l/7r)k(s, m2, M2)!:lJ = 7r inside :D, = 0 
otherwise.2G 

In a precisely similar manner, and using Eq. (40), 
we find that inside III, !:lJ has an imaginary part 
1m !:l) = -7r/k(s, m2

, M2).27 In sum 

X2 < (m - 1)2, S < (m - M)2: 

]+7r2/k(S, m\ M2), (s, X2) E :D, 

1
-7r2/k(S, m2, M2), (s, X2) E III, (43) 

0, otherwise. ----
20 However, one very important change has occurred. For 

all parts of r:o other than PQ, the singularity of Al has been 
located ,at the approprill:t~ A2",(S + if) as determi!led by r. 
Thus, smce the smgulantles of I are on the 0PPOSlte side of 
~he A2 contou~ 1i<? those of A" I has no singularities on QSTP 
m the curve limit, and hence the complex surfaces sprouting 
from ,QSTP are n~msin~lar. However, for the arc PQ, Al 
effectlvely has a smgulanty at A2_ - if', so that I has one 
at A2_ + iE', which is the curve limit. Hence, the complex 
surface sprouting from PQ is singular on the physical sheet 
of I. This result agrees with that of Ref. 16. 
• 27 Again, for the arc ZX, A2_(8 + if) attempts to move 
mto the upper-half complex A2 plane, but instead simply 
slightly displaces the A2 contour upwards. Hence the remarks 
of Ref. 26 apply. In fact, the singularity surface of I, which 
leaves PQ, first connects to ZX, and then continues through 
complex points to pq. (We remark again that we have assumed 
M > J1. for defimteness. This determines that X is on rm 
rather than on r I .) 

We can treat !:l2 in a manner analogous to that 
used on !:l,. Now one finds that R' = 0 at X, and 
R' < 0 on ZX, R' > 0 on XWV. Thus, on XWV, 
one writes 

= In ~; ~ g;:) 
= In S(X2 - X!)(X2 

- X:) - 2 In (R' + U,l), (44) 

where In (R' + U'l) is regular for Sx < s < Sw with 
R' + U'l > O. Thus 1m (l/7r)k(s, m2, M2)!:l2 = +i7r 
in III. However, in the same region, we have [cf. 
Eq. (40), now Ul - R > 0] 

= 2 In (U' - R) - In S(X2 - X!)(X2 
- X:), (45) 

so that one sees directly that the imaginary parts 
of !:l, and !:l2 cancel; and further that neither XW 
nor WV is a singularity of I in any limit. 

Finally, as s moves through 8x , A~ circles anti­
clockwise around the X2 contour end point at X2 = 

(M - p.)2, ending in the upper half-plane with no 
distortion on the X2 contour. (This is similar to the 
behavior of A! near s s.) At the same time, as 8 

decreases across XS, R' + U,l becomes negative, so 
that the form of Eq. (43) must be replaced by the 
equivalent form, 

- In s - In (X2 - X:) - In (X2 - X!) (46) 

with 2 In (R' - U'l) having an imaginary part of 
+27ri inside rIJI for Sx < s < Sw (notice that 
R' - U,l changes from negative to positive as we 
cross WX out of region III). Then form (46) enables 
us to continue in s below Sx, and shows that the 
-27ri which arises from In (X2 - X~) for X2 > X~, is 
canceled by the +27ri from 2 In (R' - U,l). Thus, 
to summarize, 

(47) 

The slight extra complication in the region XYZ 
arises because X belongs to fIll' If we had assumed 
M < p., we would have found that X belonged to 
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r I •
28 In the equal mass case M = p" the point X at 

which r touches A2 = (M - p,)2 is at infinity, and 
no such complication arises. 

Finally we come to ~3' Since, in fact 

As = -leAl + A2) + 2k(s, ~\ M~ 

X In [m2 + M2 - S + k(s, m
2

, M2)] (48) 
m2 + M2 - 8 - k(8, m2

, M2) 

and the last part of Eq. (46) is regular throughout 
the region under consideration, the complete specifi­
cation of A3 is straightforward using (43) and (47). 

In Appendix A, we verify these results by an 
independent method. 

8. CONCLUSIONS 

Section 7 ends our direct evaluation of the triangle­
graph internal mass discontinuities ~i' The problem 
has been stated and solved. However, the Ai are of 
great importance in the Aitchison-Anisovich2

-
4 in­

tegral equation, which is derived from the Khuri­
Treiman1 equation, and which considers the problem 
of 3-body final-state interaction effects. Further, it 
has recently been argued by Pasquier and Aitchison211 

that this equation provides a way of unitarizing 
any three-body amplitude, since they prove that 
the Khuri-Treiman equation does satisfy three-body 
unitarity. 

It is therefore worthwhile to consider the Ai 
further. Hence, in Appendix A, we show how the 
analytic continuation of the Ai can be obtained by 
using the known analytic properties of the triangle­
graph amplitude. Further, in Appendix B, we gen­
eralize Cutkosky's rules for evaluating discontinui­
ties of Feynman amplitudes, so that they can be 
applied to internal mass variables. One of the two 
necessary generalizations makes use of homology 
theory.s Yet this generalization is needed. (The 
moral is clear.) With these generalizations we briefly 
evaluate the Ai using the Cutkosky rules, and find 
agreement with the direct evaluation. Finally, in 
Appendix C we reevaluate A3 using the method 
of Aitchison,s corrected where necessary, and again 
confirm previous results. 

28 By inspection of Eq. (3), we see that near 8 -+ "', r 
behaves as At = _(M2 _p.2) (mt -vl)/s. Since m2 > vl 
M2 ~ p.2 determines whether X belongs to rm or rio ' 

29 R. Pasquier, "Some Analytic Properties in the Total 
Energy Variable of Khuri-Treiman Type Amplitudes." Pre­
print, July, 1965 (Laboratoire de PhYSique ~u~eaire, B. P. 
No.1, Orsa:y, S et 0, France); 1. J. R. Aitchison and R. 
Pasquier, "Three Body Unitarity and Khuri-Treiman Ampli­
tudes." Preprint, March, 1966 (High-Energy Physics Group, 
Cavendish Laboratory, Cambridge, England). See also the 
works of G. Bonnevay cited in the latter preprint. 

Notes added in proof. 

1. R. Pasquier (private communication; to be 
published) has been able to derive the representation 

j
,_<m •. A') ds' 

A2 + A3 = 1l' _'" -(s"""--~s'--)-k-(s~' ,-m--=-2,-M2) , 

by interchanging the order of the dispersive and 
the angular projection integrations in the Khuri­
Treiman equation. This interchange then leads to 
an equation which can be immediately compared 
with Eqs. (19) and (23) given by Aitchison.s One 
can then unambiguously identify AI, and the com­
bination (A2 + A3)' (Pasquier works in the equal­
mass case. Hence, since each of A2 and A3 then 
appears in a A 2 integration starting at A2 = 0, only 
the combination can be identified.) The identifica­
tion of Al is identical with that given in Ref. 9 
[i.e., Eq. (AI) of the present paper]. Pasquier is 
able to determine the appropriate 8' contour for all 
relevant A\ for each of Al and (~2 + ~3)' since the 
interchange of orders of integration requires that 
the contours be chosen in a "compatible" manner 
(cf. Ref. 29, where this concept is introduced). 

By straightforward though tedious algebra, Pas­
quier is able to evaluate his representation for 
(~2 + A3)' He obtains the same result as given in the 
present paper for this combination. Thus this work 
confirms the validity of the modified Cutkosky rules, 
and also the evaluation of ~3' Further, since the 
contours are prescribed (but see the second paper 
cited in Ref. 29), Pasquier is able to determine the 
appropriate branch of each logarithm in ~1 and 
(A2 + A3)' His results agree with those given in the 
body of the present paper, and in Appendix A. 

Presumably Pasquier's work can be generalized 
to the unequal-mass case. 

2. R. Pasquier (private communication) has pro­
vided clarification on the analytic continuation of 
~1(8, A2) in 8 in the region A~ < A2 < A~, as discussed 
in Appendix A. He first remarks that for 8s < s < 
8p, we can follow all the physical A 2 values by using 
A2 + if [cf. Eq. (A2)]. Specifically for such an s, 
as A2 increases from - co to (m - V)2, it passes above 
each of A:(8) and A;(S). As A2 increases in this 
clockwise sense past A:(S), 8_{A2

) decreases and 
passes under 8, leading to the configuration shown 
in Fig. 8(c). Similarly as A2 increases further past 
A;(8), 8+{A2

) also decreases and passes under 8, so 
that the A2 contour joining S_(A2) to 8+(A2) becomes 
totally disengaged from s, in which case it can then 
be straightened out into the rectilinear contour 
joining S_{A2

) to 8+(A2
). Thus for 8s < S < 8p, 
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illeS, ),.2) is imaginary only for ),.~(s) < ),.2 < )-.;(s). 
This agrees with the remarks of Appendix A. 

Pasquier now points out that as s decreases past 
Sa, having a positive imaginary part, ),.~(s) com­
pletely loops )-. ~ in a clockwise sense. Then in the 
representation (A2), the ),.,2 contour remains un­
distorted, but as ),.,2 increases, it effectively now 
passes below )-.~(s). Thus, for s < Sa, as ),.2 increases 
from - co to (m - V)2, it first passes over ),.~(s), 
and then passes under )-.;(s). As ),.2 passes )-.~(s), 
S_()-.2) decreases and passes under s, leading to a 
configuration as in Fig. 8(c). Then as )-.2 passes 
below ),.;(s), S_()-.2) increases again past s, but again 
it passes under s, so that for ),.2 > ),.;(s), the s' 
contour joining S_()-.2) to S+(),.2) is again totally 
disengaged from the pole at 8. Thus again it can be 
straightened out to the rectilinear contour joining 
8_(),.2) to S+(),.2). This then corresponds to the physical 
limit shown in Fig. 8(d); so that, in particular, 
ill(s, ),.2) is real for s < S_(),.2), even for ),.2 > ),.;. 

The author is happy to acknowledge very helpful 
correspondence with Dr. Roger Pasquier. 
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APPENDIX A. ALTERNATIVE TREATMENT OF 
THE ANALYTIC CONTINUATION OF THE 4.. 

Our discussion in Sec. 7 was based on the explicit 
form of the functions ill, il2, and ila• However, one 
of these functions ill also has an integral representa­
tion which was obtained in Ref. 9, and it is in­
teresting to study how that representation leads to 
the same results. In Ref. 9, it was shown that 

2 1'+{~') ds' 
ill(s, ),.) = 11' ( , _ )k(' 2 M 2)' 

._(~') S S s, m , 
(AI) 

[Reference 9 only considers the equal mass case 
p. = v = M; also we have inserted the missing factor 
of 11' here.] This form is to hold with k taken real 
and positive (i.e., in agreement with the cut specifica­
tion of Fig. 5), and, in particular, with an undis­
torted s' contour of integration, for ),.~ < ),.2 < 

(m - vl. (This avoids the complications ansmg 
from the second-type singularity.) However, this 
form was only derived for s < (p. + V)2, so that at 
first sight it is not clear how to extend this both in 
s and in )-.2. 

The clue is provided by the representation of f 
given by Eq. (4). We already know the singularity 
structure of f(s, ),.2) for alls and )-.2, as given by Refs. 
16 and 10. It therefore follows from Eq. (4) that the 
singularity structure of ill(s, )-.2) in )-.2 for fixed s is 
fully prescribed. It is possible to "invert" this in­
formation to yield the singularity structure of 
ill (s, )-.2) in s for fixed ),.2. With this information, the 
integral representation (AI) can be analytically con­
tinued in s. Since the direct evaluation of the rep­
resentation (AI) was already performed in Ref. 9, 
and obtained the same result as given in Eq. (21), 
the only specific ambiguities concern the analytic 
continuations, i.e., the "proper" branches to be 
associated with the logarithm. By considering the 
prescribed contours, we show that the results of 
the present method agree with those of Sec. 7. 

We first note that the representation of Eq. (4) 
can be written 

+ (il2' ila terms). (A2) 

That is, if the physical limit of f(s, )-.2 - iE) has a 
singularity, then this is a corresponding singularity 
of ill in the),.2 limit ill(s, ),.2 + iE). 

Now, of course, the representation (A2) originally 
assumed that s was real, with - co < s :::; (p. + V)2. 
However, our aim is to analytically continue the 
representation in s. In this continuation, as long as 
no ),.2 singularity of ill (s, )-.2) crosses the )-.,2 integra­
tion contour, no new singularity of f(s, ),.2) occurs (at 
least on its first physical sheet). That is, if f(s, ),.2) 

has any),.2 physical sheet singularities not on - co < 
)-.2 < (m - V)2, it follows that a ),.2 singularity of 
il(s, ),.2) must have crossed the )-.2 cut; however, any 
singularities of il(s, ),.2) which are not first-sheet 
singularities of f(s, ),.2) cannot have crossed the ),.2 

cut. 
We now recall16

,lo that the only physical sheet 
singUlarities of f(s, }..2) are those associated with the 
complex surface PQpq with corresponding imaginary 
parts for sand )-.2. Thus, in the physicalslimit s + iE, 
the only ),.2 physical-sheet singularities are associated 
with the arc PQ. On this, ),.~(s) is singular on the 
physical sheet at ),.~(s + iE) = ),.~(s) + iE'. Further, 
if we consider s ± iil, il finite, then, if it is on this 
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surface PQpq >"~(s ± iA) has a finite positive (nega­
tive) imaginary part, and is still a physical-sheet 
singularity of f(s, >,.2). But there are no other singu­
larities of f(s_>,.2). 

However, when we consider Al (s, >,.2), then the 
representation (AI) shows us that Al necessarily 
has singularities at s = s±(X2

), or >,.2 = X!(s). That 
is, AI(s, >,.2) necessarily has singularities on the 
whole of the (complex) surface r. 

We also have another very useful piece of informa­
tion, namely that, for - co < s < (JL - 1')2, Al 
must be real, since for such s, Al = 1m f(s, X2) for 
(M - JL)2 < X2 < (m - 11)2; and f(s, X2) is real for 
both sand X2 off their cuts. 

These two pieces of information enable us to 
determine Al nearly completely, as shown in Fig. 8. 
In that figure, we consider 4 different ranges of >,.2, in 
the last three >,.2 having an infinitesimal positive 
imaginary part. Let us first disregard Fig. 8(d). 
Then the prescriptions follow from the representation 
(AI), with X,2 + if being the proper X,2 limit. In 
particular, in Fig. 8 (c) we know that, from the 
original domain of definition of the representation 
(AI), the integral is to be taken over an undistorted 
contour on the first sheet of k(s', m2

, M2), at least 
for s < (JL + 11)2. The X2 + if limit then puts the s' 
contour slightly below the real axis, so that scan 
then continue along the real axis for all s < 
(m - M? = Sl' Thus for this X2 range, 1m Al = 
7f'2 jk for S_CX2) < s < s+(X2), 0 otherwise. 

The transition in Fig. 8 from (c) to (b) follows by 
continuity, since S+(>,.2 + iE) loops clockwise round 
s = SJ as >,.2 + if decreases past >..~. One then again 
finds that 1m Al = 7f'2jk for S_(X2) < s < s+(X2), 0 
otherwise, for one can rewrite the representation 
in this region as 

2 [jO' jO' ] 1 AJ(s, A) = 7f' + -:-r,--~ 
o-(},') '+(}") (s - s) 

X 1 (A3) 
k(s', m2

, M2) lfiut .heet ' 

where the two contours 8_ --+ SI and s+ --+ SI are below 
and above the real axis, respectively. 

In Fig. 8, on going from (b) to (a), i.e., (M - p/ < 
>,.2 < (M + JL)2, the representation (A3) still holds, 
but now s+ = (s_)*, so that Al now becomes purely 
real for all real s < (JL + 11)2. This agrees with the 
reality condition previously stated, and extends it 
somewhat. It also confirms the distorted s' contours 
of Fig. 8 (a) and (b). 

We notice that our prescriptions in Fig. 8 agree 
with Eq. (AI) over undislorted contours, for A~ < 

(a) 

(b) 

@ 
(c) 

* s 

5 
JI( 

51 52 
rv-.. A",'PI 

physical 5 limit 

(d) @ i,iS! j,-~, 
FIG. 8. The s' contour for the integral representation Eq. 

(AI) of AI(S, ;\2). (a) (M - p)2 < At < (M + p)2, At real; 
(b) (M + p)2 < At < AQ2, At + if limit; (c) AQ2 < At < AT!, 
A2 + if limit; (d) AT! < A2 < As! == (m - V)2, A2 + if limit. 
We have defined sl=sQ=(m-M)2 and 82=8q =(m+M)2. In 
(a) 8., have finite imaginary parts, while in (b)-(d) their 
imaginary parts are infinitesimal. 

",2 < "';, for which the second-type singularity 
is irrelevant [see paragraph after Eq. (AI)]. The 
distorted contours in Fig. 8 (a) and (b) are for 
X2 < "'~ and show the second~type singularity. The 
undistorted contour prescription also holds for >,.; < 
X2 < X~, at least for s < (JL + 1')2. This now cor­
responds to the range in Fig. 8 (d). For this range, 
we now assert as in Fig. 8 (d) that the physical s 
limit is from above the effectively undistorted s' 
contour. (In the figure, the distorted s' contour 
follows the trajectory of S_(X2), but we still take the 
physical limit from above, so that this is equivalent 
to the undistorted contour.) 

At this point, we really have to return to the anal­
ysis of Sec. 7. If we were to take the distorted 8' 

contour literally, we would allow the possibility 
of the 8 pole being looped by it for ST < s < 8 s, and 
so leading to 1m Ai = 27r2 jk for 8T < s < 8_(>..2). 
But we would then contradict the conclusion of 
Sec. 7 discussed in the paragraphs around Eqs. (40) 
and (41), in which the 8 continuity was used to 
argue that no 27r2 jk contribution arises. The ap­
parent difficulty here is a manifestation of the need 
for "compatible" contours, discussed in Ref. 29. 
(See also Note 2 added in proof.) With our prescrip-
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tion, Im.il = 1l/k for S_(X2) < s < s+(X2), 0 other­
wise. Thus (with this slight retreat to Sec. 7) the 
conclusions of this appendix agree fully with those 
of Sec. 7. 

Parenthetically, we can readily see how the arc 
PQpq becomes a first-sheet singularity of f(s, X2). 
.i1(s, X2) of course always has singularities at s = 
S±(A2); i.e., at X2 = X!(s). As s increases past Sp 
with small positive imaginary part (the physical 
limit) A~(S) moves clockwise around X2 = X; = 
(M + p.)2, circling from below the A/2 contour and 
pushing it upwards infinitesimally. As s now moves 
upwards to acquire a finite positive imaginary part, 
X~(s) also moves upwards and carries the X/2 contour 
with it. This then produces a first-sheet X2 singularity 
at X~(s). Thus the (+, +) arc of PQpq is afirst-sheet 
singularity of f, similarly, so is the (-, -) arc of 
PQpq. 

APPENDIX B. EVALUATION OF THE 4, USING A 
(NECESSARILY) MODIFIED FORM OF THE 

CUTKOSKY RULES 

Preamble 

Cutkosky7 has given a complete method for evalu­
ating the discontinuity of any Feynman graph. 
This method was originally proposed for discon­
tinuities across cuts in an external mass variable. 
However, there is no obvious reason why it cannot 
be applied as is to an internal mass discontinuity, 
such as the .ii. In fact, Cutkosky's method was so 
used for the first time in Ref. 3. In that paper, 
Aitchison did evaluate .iI, .i2 , and .ia. His .il and 
.i2 agree with the ones obtained in the present paper; 
however, the evaluation of .ia given in Appendix A 
of that paper contains several errors. None the less, 
Aitchison did correctly remark that the Cutkosky 
prescription needed to be modified in a way which 
is implied by the work of Fotiadi, Froissart, Lascoux, 
and Pham,8 in their studies of Feynman diagrams 
using homological methods. This homological pre­
scription differs from that of Cutkosky as regards 
the proper domain of integration which is to be 
used. Otherwise the rules are identical. 

On close inspection, it turns out that, even as 
regards .il and .i2 , the Cutkosky domain of integra­
tion must be somewhat modified. In the present 
appendix, we therefore first briefly sketch the modi­
fied Cutkosky method of evaluation of .il and .i2 • 

We then treat .ia in more detail. Our results for 
each of .ill .i2, and .ia agree with those obtained 
in the main text of this paper. 

The modification of the Cutkosky domains has 

to do with the Cutkosky prescription ~+ (q2 - m2) == 
~(q2 _ m2) (J(qo) , or, in our case ~(q2 - A2) (J(qo). 
We find that the "proper" root restriction (J(qo) 
must be relaxed when considering an internal mass 
variable such as X2. The reason is related to the fact 
that such variables have cuts which typically include 
X2 < O. A straightforward application of the Feyn­
man prescription A2 - iE for X2 > 0 does, of course, 
lead to the inclusion of only one qo-pole of the 
Feynman propagator (q2 - X2 + iE)-t, and such a 
restriction is then equivalent to the restriction (J(qo). 
However, for X2 < 0, the propagator qo-poles can 
enter the complex plane, in which case the restriction 
O(qo) becomes ill defined. In fact, in that case the 
poles will be complex conjugates of each other, and 
one will automatically only pick up one such pole 
in performing the Feynman integral, even if one 
ignores the Cutkosky (J(qo). Thus pragmatically one 
should ignore those (J(qo) which effectively cause a 
cutoff in the Cutkosky domain of integration only 
because an internal mass is then negative. A straight­
forward example and application of this idea is 
presented in our consideration of .i1. 

However, a further problem arises when we con­
sider .ia. In that case we again have a Cutkosky 
prescription (J(qo)~(q2 - X2) with X2 < O. This time 
there are no other ~-functions, so that we really do 
have a qo-integral to perform. Yet, even disregarding 
the (J(qo), we have no way of integrating ~(q~ -
q2 + IAn throughout 0 < Iql < <Xl without qo 
becoming imaginary in part of the range of integra­
tion. One possible choice would then be to integrate 
over (_X2)i < Iql < <Xl. However, the work of 
Fotiadi et al.8 indicates that one should always 
integrate over some closed cycle which vanishes 
as one approaches the branch point in question. 
(That the cycle be closed is related to the fact that 
the discontinuity is the difference between two inte­
gration contours, and hence necessarily has a closed 
integration path. That the cycle should vanish at 
the branch point seems plausible, but not manda­
tory.) In our case, these conditions suggest setting 
qo = ik, and integrating in the k, Iql plane around 
the circumference of the circle e + q2 = l2, where 
Z2 = - X 2

• However, if we let q range over all 
directions, we must in fact restrict this integration 
to the semicircle Iql > O. This interpretation of the 
closed-cycle condition differs from that of Aitchison. 
As we see below, our interpretation does lead to the 
same .ia as already found. It is clear that the results 
of homology theory have practical impact on sordid 
computational problems, and that this theory de­
serves further study. 
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Evaluation of 4.1 and 4.2 

Recalling the normalization of I given in Eq. (1), 
an immediate application of Cutkosky's rules leads 
to 

.11 = ~ disc 1/ 
2~ >"-(m-.)' 

x 5+(}.2 leg) X (112 leg propagator) 

= 21. X 4 X (211"~Y J d4k (}(Po - ko) 
~ 11" ~ 

where the various momenta are defined in Fig. 9. 
Equation (B1) is Lorentz-invariant, and we there­
fore evaluate it in the p rest frame, with Po = m, and 

Then 

.11 = ~. X (2~Y 
11"~ 

101 = k(m
2

, M2, s). 
2m 

X {lr dq, L: d cos () L: dko fa'" Ikl2 
d Ikl 

(B2) 

X (}(m - ko)(}(ko) X 5[m2 + }.2 - 112 - 2mko] 

5[k~ - Ikl2 
- }.2] 

X l- }.2 - M2 + 2kouo - 21kllol cos () - if' 
(B3) 

where we have taken 0 along the z axis. Because of 

p 

m 

FIG. 9. The 4-momenta appropriate to the evaluation of the Ll,. 

the two delta-functions, we see that 

ko = m
2 + }.2 - 112 , Ikl2 = k\m\ ~2, 112). (B4) 

2m 4m 

Thus Ikl2 = 0 at the branch point }.2 = (m _ 11)2, 
at which ko = m - II. This lies within the domain 
of each (}-function. However, in general, these re­
strictions become 

(}(m - ko) == (}[m - (m2 + }.2 - 112)j2m] 

= (}(m2 + l _ }.2) 

and 

(B5a) 

(B5b) 

While the restriction introduced by (}(m - ko) has 
no limiting effect, the second restriction arising 
from (}(ko) implies that .11 vanishes for }.2 < 
112 - m2 < O. But we know that this is not a singu­
larity of t. Hence this second restriction (B5b) 
must be ignored. It arises from a 8(qo), where qo is 
part of a 4-vector q which is spacelike. In fact, for 
such a spacelike vector, the restriction 8(qo) is not 
even Lorentz-invariant, which provides another good 
reason for ignoring it. Once this step is taken, the 
evaluation is trivial, leading to 

_ ~ ~ 2 11 ~ lhl 1 
.11 - 2' X 2' X (2~) X 211" d cos 8 X 2 X 2 X [2 }.2 M2 + 2k 2 Ikl I I 8 . ] 

~ 11" ~ -1 m P. - - oUo - II cos - u 

which agrees with Eq. (21). 
In a precisely similar manner, one can evaluate .12 and obtain the result of Eq. (29). It is very clear 

that the Cutkosky 8(qo) restriction should be relaxed for such cases. Needless to say Cutkosky himself did 
not actually consider the case when an internal mass might become "spacelike". 
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Evaluation of 43 

In a precisely similar way 

1, I 1 1 J d'k (Jeleo) BW - A2) 
Aa =2,dlScj =2,X:r:X(21!"1,)X r .. 2 (1. )2 '][2 ( k)2 'J' (B7) 1, X'-O 1, 1r 1, lP - Iii - U - 1,E V - P - - 1,E 

We again work in the p rest frame, and take d to be along the z axis. Then 

1 1 12

.. 11 1'" 1'" As = 2' X :r: X (21r1,) X dq, d cos 8 dko Ikl2 d Ikl 
1, 1r 1, 0 -1 -'" 0 

X (Jeko) B(le~ - k2 
- A2) 

~2 _ A2 - M2 + 2koO'o - 2 lkl Idl cos 8 - iE][v2 - m2 - ).2 + 2mko - if]' 
(BS) 

Now however A2 < 0, so that we immediately drop the restriction (J(ko) , But we are still faced with 
the question of the domain of integration, and we follow the guide of homology theory,S Thus we set 
ko = iK, and ).2 = _l2, to obtain B(l2 - k 2 

- K2), We then integrate around the circumference of this 
circle. In practice, this is most easily done by changing variables by 

Ikl = r sin x, ko = iK = ir cos x, 
with 0 ::; r < cx>, 0 ::; X < 1r, which leads to 

X ~2 _ '10.
2 

_ M2 + 2ir cos X Uo - 2r sin X 101 cos (J - iE][v2 - m2 
- '10.

2 + 2mir cos X - iff (B9) 

The r integration is absorbed by the delta-function, and the X integral can then be performed by going 
to t = tan h, whence 

111 1'" 2 dt 2 2 
Aa = 2 -1 d cos (J _00 1 + t2 l 4t 

X [(l - A2 - M2 - if)(l + t!) + 2iluo(1 - t~ - 21101 cos fJ2tr l 

X [(v2 
- m2 

- A 2 
- iE)(l + t2

) + 2mil(1 _ t2
)]-1, (BIO) 

Here originally the t integration went from 0 to co; but, by using the symmetry of the integrand 
under (J ~ 1r - 8, t ~ - t, we have replaced the t limits by - cx> < t < + cx>, We thus have a closed 
contour integral in t, since the integrand ~ t-4 as t ~ co, The integrand has poles at 

,[em - A)' - VZ + if]! 
t1 = i, t, = -i, ta = t'll = 1, (m + ).)2 _ v2 + if ' t4 = - ta 

ts} _ -2iA 101 cos 8 =t= i[(~2 - A2 - M2 - iE)' - 4A2(u~ - 02 cos2 8)]' • (Bll) 
t6 - p.2 - '10.

2 
- M2 - if - 2Auo 

Here, we have set il = A in some of the expressions, (By inspection of (BS), we see that the final result 
depends only on A2

, so that the choice il = ±A is immaterial provided it is made consistently,) We 
also define 

(B12) 

Then we have 

1 I'" 4ff 
A3 = i1 d cos I) _'" (1 + t2)[at2 + 4i). 101 cos () t + (a + 4i\uo)][bt2 + (b + 4mi\)] 

11 1'" 4e t
2 

= d cos 8 dt - 6 • 

-1 -'" ab II (t - t.) 
(B13) 

.-1 
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The t integration can then be performed by closing 
the contour in the upper half-plane and enclosing 
th ta, and ts. Here we are working on the basis of 
the pole locations for A2 ~ 0, which are then in­
dependent of OJ and by analytic continuation we 
preserve the same choice of poles for all A 2 « O. ao 

Then 

(BI4) 

where 

Rl = (-)ab{2i[4}"uo - 4}" Idl cos O][4m}"]}-\ (BI5) 

Ra = t!a{(1 + t!)(2tp ) 

X [at! + 4}"i Idl cos 0 tp + (a + 4AUo]) -\ (BI6) 

and 

Ro = t!b{ (1 + t~)(to - t6) 

X [bt! + (b + 4m},,)]} -1. (B17) 

The dependence of each of Rl and Ra on cos 0 is 
explicit, and the cos 0 integration can immediately 
be performed. Thus 

= 2k(s, m2, M2) 

X In [m2 + M2 - S + kes, m
2
, M 2

)]. 

m2 + M2 _ S - k(s, m2, M2) 

Similarly, one finds 

'Ir (R + Ul) 
13 = 2k(s, m2 , M2) In \.R _ Ui , 

where Rand U are defined in (17) and (IS). 

(BIS) 

(BI9) 

The evaluation of 15 requires more circumspection, 
since ts is an irrational function of cos 0, and Rs is a 
nontrivial function of to. We change variables to 
T = t5, so that 

. [ae T2 + 1) + 2}"uo] 
T = ts, cos 0 = ~ 4A Idl T ' 

(B20) 

30 Here we are assuming that M > Il, so that a < 0 for 
}.I == o. Our final results are independent of this assumption, 
as can be seen by analytic continuation, since M = Il is not 
a singularity in M. 

Also 

and 

til - t6 = 2[to + (2i}" Idl cos O/a)] 

= (aT2 - a - 2Auo)/(aT) 

= [Cd cos O)/i(dT)](4A Idl T/a) 

T+ = T(COS 0 = +I)} 
T_ = T(COS (} = -1) 

= [=F2iA Idl - ik(J.I." A" M 2)]/a. 

We then obtain 

'irA 1T

+ de T2) 
Is = TdI T_ (1 + T2)[bT2 + b + 4mA] 

(B21) 

(B22) 

'irA 1T

+ dT2 ( 1 b) 
= TdI T_ 4m}" 1 + T2 - bT2 + b + 4m}" 

= 2k(s, ~2, M2) [In (1 + l) 
- In (bT2 + b + 4m},,)11~~ 

'Ir [b + 4m}"(1 + T~TIJ 
= 2k(s, m2, M2) In b + 4m}"(1 + T!) 1 • (B23) 

For the final step, we use the remarkable facts that 
2 

(1 + T:) :A = 2AM2 - uo(l - X2 - M2) 

=F Idl k(},,2, M2, l) 
= M 2a2 [2}"M2 _ UO(J.l.2 _ },,2 _ M2) 

+ Idl k(}..2, M2, l)]-I. (B24) 

Hence one readily finds that 

b + 4mX(I + T:)-1 = (I/2M2)(-R' ± U'l), (B25) 

so that finally 

(B26) 

On gathering together (BI4), (BIS), (BI9), and 
(B26) we obtain precisely the same result as already 
given in Sec. 6 . 

Summary 

The analysis of this appendix hence shows (at 
least in our specific case) that internal mass dis­
continuities can be calculated according to Cut­
kosky's rule, provided two important modifications 
are made in the interpretation. These are: 

1. Ignore the "proper" pole prescription associ-
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ated with 0+ (q2 - m2) for m2 < o. Replace this by 
the simple prescription o(l - m2

) for m2 < O. 
2. When integrating over the q2 associated with 

such a 0(q2 - m2
) for m2 < 0, the qo, Iql domain of 

integration must be re-interpreted into the complex 
plane, in such a way that one is integrating over a 
closed cycle which vanishes as one approaches the 
singularity in question. This result shows the im­
portance of homological methods in practical con­
siderations of Feynman graphs. The moral here is 
clear. 

APPENDIX C. EQUIVALENCE OF .13 WITH 
AITCmSON'S FORM (Added in proof) 

As already noted, Aitchison's evaluationS of .1s 

contains several errors. However, his basic method 
of evaluating .1a is valid, and in this appendix we 
show that his corrected result is in fact equivalent 
to the one given here. 

We commence with Eq. (BlO) , and perform the 
cos (} integration. Then 

iA 1'" t dt 
Aa = TdT _'" (t2 + 1)b(t2 

- t;) 

X In {(t - ts+)(t - t6+)} 
(t - ts_)(t - t6-) , 

where 

tu = tsloose-±1 = _1 [ik(A\M2,l) ±2iA Idl], 
a 

(01) 

t6± = t6100s e- ±1 (02) 

= _1 [-ik(A2, M\ l) ± 2iA Idl], 
a 

and 

_ .{(m - A)2 - l}i _ ike'/..2 , m2, ,,2) 
t» - t (m + A)2 _ l - (m + A)2 - l 

-ik(A2, m2
, l) i[(m - A)2 - v2

) 

= b = k(A2, m2 , 112) • 
(03) 

We again locate the poles and branch points for 
A2 ::::::: 0, and preserve these same locations relative 
to the integration contour for A2 « 0 by analytic 
continuation. Then the integrand has poles at i and 
at t» in the upper half-plane, at -i and at -t» in 
the lower half-plane; and branch points at t5+ and 
t5- in the upper half-plane, and at t6 + and i6 - in the 
lower half-plane (cf., Aitchison, Fig. 15). Then using 

t 1 {[I 1J 
(e + 1)(t2 

- t;) = 2(1 + t!) t - t» - t - i 

+ [t ~ t» - t ~ J} , 

where we have split the poles into the two half­
planes, we immediately obtain 

A ~ 7r In {(tv - t6+)(tv + ts-) 
3 - 2k(s, m2

, M2) t" - t6- t" + ts+ 

X (~ + ts+)(~ - t6
-)} 

t + ts- t - t6+ 

_ 7r In {(tv + ts_)(i + ts+)}2 (04) 
- 2k(s, m2, M2) (tv + t5+)(i + t5-) . 

(Here, we have used t5± = -tn.) [Eq. (04) is 
essentially the same as Aitchison's expression for 
3.a(s, A) given above his Eq. (AS). Aitchison incor­
rectly integrated X from 0 to 211", instead of only from 
o to 11". Thus, he incorrectly set .1a = 3.3 (s, A) + 
3.a(s, -A)-his Eq. (A4), when in fact .13 == 3.3 (s, A). 
Actually 3.3 (s, A) is a function of A2.] 

While (04) is correct, and is in fact only dependent 
on A2

, this property is not explicit. Now, from (02) 
and (03) 

tu(A) = -l/t5:( -A), t»(A) = -l/t,,( -A), 

where ts±(A) == ts±, and tu( -A) is obtained from 
ts±(A) by the substitution A ~ -A; similarly for 
t,,(-A). Hence, after trivial manipulation, we can 
rewrite (04) as 

with 

A+ = [f,,(A) + ts-(A)] [t,,( -A) + ts-( -A)], 

B+ = [i + ts+(A)][i + t5+( - A)] 

(05) 

(06) 

and where A_ and B_ are obtained from A+ and B+ 
by the replacement Idl ~ -Idl, under which tu ~ 
tH . 

To reduce A+ and B+ further, we introduce the 
following condensed notation: 

k" = k(A\ M\ ,.l), K" = A2 + M2 _ JJ.
2
,} 

k, = k(A\ m2
, 11

2
), K. = A2 + m2 

- l, 

k. = k(M\ m2, s), K. = M2 + m2 
- s. 

Then 

2mcro = K., 2m Idl = k., 

and 

(07) 

(08) 

R = 2m2K" - K.K, , Ui = k.k,l (09) 

R' = 2M2K, - K,K" , U" = k.kJ 

[(cf., Eqs. (18), (17), (24), and (26)]. We also define 

R" = 2A2K, - K~., U"; = k"k,. (010) 
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There is a very useful symmetry here, as indicated 
in a triangle 

We then find 

A+ = [i(K. - 2mX) + i(mk~ - Xk.)] 
k. mK~ + XK. 

X [ditto A -4 -A] 

= [if m(R" - U"!) + A(R + ut)}] 
k.(mK~ + AK.) 

X [ditto A -4 -X] 

= _ [m2(R" - un!)2 - A2(R + ut)l 
k!(m2K! - X2K!) 

But we also have the property 

(C11) 

(C12) 

R2 - U = 4m'r, R,2 - U' == 4M'r, 

[cf., Eqs. (3), (20), (28), and the symmetry (C11)J. 
Hence 

mi(R" - U"t)2 _ X '(R + Ut)2 

== ..!.. {(R' - U)(R" - unt)' 4r 

- (R'" - U")(R + Ut)2) 

== 2i (R + Ut)(R" - U";)(RU"t + R"Ul). (C13) 

Similarly, we find 

B+ = [i + ~~:! ~:)J[ditto A -4 -X] 

== [m(K .. ~ k~) + X(K. + k.)] 
-~(mK .. + AK.) 

X [ditto X -4 -A] 

= 
[m2(K" + kSJ 

- A2(K. + k.)2] 
(m2K! - X2K!) • (C14) 

We now use the property 

(C15) 

to obtain 

m2(Kp. + kp.)2 _ A2(K. + k.)' 

= 4~2 {(K! - k;)(Kp. + k,,)' 

- (K; - k!)(K. + k.)2} 
1 

= 2M2 (K. + k.)(K" + k")(K.k,, - K"k.). (C16) 

Finally (using brute force multiplication), we observe 
that 

(K.k .. - K .. k.)(RUfli + R"Ul) 

= (K.k" - K"k.)[(2m
2
K .. - K.K.)k.k .. 

+ (2X2K. - K,.K.)k.k.] 

= 2k.(X2K! - m2K;)(R' + U,i) , 

where (C15) was used to eliminate k! and k!. 
(C17) 

Putting Eqs. (C12), (C13), (C14), (C16), and 
(C17) together, we then obtain 

A+B+ 

_ (R+ Ul)(R" - U"i) (K.+k.) (KI'+k,,)(R' + U'i). 
- 2M2 rk.(m2K!-X2K!) 

(C18) 

To obtain A_B_ from A+B+ we change Idl to -Idl, 
i.e., k. -4 -k •. In this change Ui -4 - ut, U'i -4 

- U'i, k. -4 -k., and no other quantities change. 
Hence 

A+B+ (R + UI)(R' + U,t)(K. + k.) 
A..B_ = (R - UI)(R' - U't)(K. - k,f (C19) 

Equations (C5) and (C19) are exactly equivalent 
to Eqs. (36) and (48). Hence Aitchison's equation 
for ..13 (8, X) is equivalent to our expression for .13 , 

except for minor algebraic errors (cf, his erratum, 
to be published). 
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Continuous Degenerate Representations of N oncompact Rotation Groups. II 
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~hree principal continuo~ series of most degenerate unitary irreducible representations of an 
arbl~rary noncompact rotatIOn group SO(p, q) have been derived and their properties discussed in 
detail. The corresponding harmonic functions have been constructed. 

1. INTRODUCTION 

I N our previous paper, l the discrete series of most 
degenerate representations of an arbitrary non­

compact rotation group SOo(p, q) were derived and 
their properties discussed. In the present work, we 
go into the continuous series of most degenerate 
representations of these groups and the correspond­
ing harmonic functions. 

The harmonic functions for the Lorentz group 
SO(3, 1) were investigated in detail by Dolginov 
and his co-workers.2 An arbitrary Lorentz-type group 
was considered by Vilenkin,3 who derived the ir­
reducible unitary representations of the class one 
of SO(n, 1). The construction of harmonic functions, 
which carry one continuous series of the most degen­
erate representations of any SOo(p, q) group, was 
given in Ref. 4. In this paper, we present three 
continuous series of most degenerate representations 
of an arbitrary noncompact SOo(p, q) group, and 
we also construct explicitly a set of corresponding 
harmonic functions. These harmonic functions are 
characterized only by discrete numbers connected 
with the representation of the maximal compact 
subgroup SO(p) X SO(q) of the group SOo(p, q). 

In Sec. 2, two series of continuous representations 
of the SOo(p, q) p ;::: q > 1 and corresponding har­
monic functions related to the hyperboloids are 
constructed. The same problem for the Lorentz-type 

* On leave of absence from Institute Rudjer Boskovi6, 
Zagreb. 

t On leave of absence from Institute of Physics of the 
Czechoslovak Academy of Sciences, Prague. 

:\: On leave of absence from Institute of Nuclear Research, 
Warsaw. 
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1861 (1966). 

• A. Z. Dolginov, Zh. Eksperim. i Teor. Fiz. 30, 746 
(1956) [English transl.: Soviet Phys.-JETP 3, 589 (1956)]' 
A: Z. Dolginov and J. N: Toptygin, Zh. Eksperim. i Teor: 
FIZ. 37,1441 (1959) [EnglIsh transl.: Soviet Phys.-JETP 10, 
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groups SOo(p, 1) is considered in Sec. 3. The con­
tinuous representations and corresponding harmonic 
functions related to the cone of an arbitrary SOo(p, q) 
group are investigated in Sec. 4. Section 5 is devoted 
to proof of the irreducibility of the derived series of 
representations. Finally, in Sec. 6, we discuss some 
features of the derived representations and harmonic 
functions. For instance, it turns out that, except for 
one series of representations of the Lorentz-type 
groups, there exist two irreducible representations 
of SOo(p, q) differing by parity for any definite 
eigenvalue of the Casimir operator. 

The completeness relations of our harmonic func­
tions, the corresponding decomposition of quasi­
regular representations, and the connection with 
the Gel'fand-Kostiucenko triplet will be treated 
in detail in a subsequent article (Part III). 

In what follows, we use the conventional ter­
minology, that is, we speak about representations of 
the group SOo(p, q) on the Hilbert space ~, although 
we derived only representations of the Lie algebra 
m of the considered group on definite vector space 1), 

which is dense in the Hilbert space ~. However, 
in Part III of our series of articles, it will be shown 
that our local representations induce the global 
irreducible unitary representations of the group 
SOo(p, q). 

2. CONTINUOUS SERIES OF MOST DEGENERATE 
REPRESENTATIONS OF SOo(P, q) GROUPS 
(P ~ q > 1) RELATED TO HYPERBOLOIDS 

For the most degenerate representations of 
SOo(p, q), the ring of invariant operators of the 
corresponding Lie algebra is generated only by one 
independent operator. Following the procedure ex­
plained in Sec. 2 of Ref. 1, we can represent it as 
the Laplace-Beltrami operator on the definite vector 
space 1), which is dense in the Hilbert space of 
functions, the domain of which are the following 
homogeneous spaces of rank one, 

x+ = SOo(P, q)/SOo(P - 1, q), 

X_ = SOo(P, q)/SOo(P, q - 1). 
(2.1) 

2026 
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Then we solve the eigenvalue problem for this in­
variant operator. It is obvious that the generalized 
Fourier images of its eigenfunctions carry continuous 
representations of the considered group. The ir­
reducibility of these representations is proved in 
Sec. 5. 

The homogeneous space X + and X _, defined in 
(2.1), can be realized by the hyperboloids H: and 
H:, respectively. I The hyperboloid H: is determined 
by the equation 

(XI)2 + ... + (Xa)2 

- (xa+I)2 _ ... _ (Xa +b)2 = 1 (2.2) 

and is imbedded in (a + b)-dimensional Minkowski 
space M ea .bJ

• By using the biharmonic coordinate 
system defined in [(3.4)-(3.9) of Ref. 1], and con­
sidering the properties of the metric tensor g,,~(H:) 

on the hyperboloid H:, we can write the Laplace­
Beltrami operator L:::..(H:) in the form [see (3.10) 
of Ref. 1] 

A (H") -1 () sh"-I () inh.-I () () 
L.:>. • = cosh" 1 () sinh.-1 () (}() co ·s (}O 

8E[0, (0), (2.3) 

where b.(S,,-I)[L:::..(S·-I)] is the Laplace-Beltrami 
operator on the sphere S"-I [S·-I] of the compact 
rotation group SO (p)[SO(q)] defined by (A3) and 
(A4) of Ref. 1. If we represent the eigenfunctions of 
L:::.. CH:) as a product of the eigenfunctions of b. (S"-I), 
b.(S·-I), and a function vtep,.).f,o'." we obtain 
the following differential equationS for the latter 
function: 

[ 
-1 .!L 1..1>-1 (). !_1..0-1 o!L _ l'iP,(l'iPJ + p - 2) 

COsh,,-1 ().sinh·- I () dO COSu S1l1ll d() cosIi' () 

(2.4) 

Here, l,iP) (l,iP) + p - 2)[1,io' (l,io) + q - 2)] are eigenvalues of the operator L:::..(S,,-I)[L:::..(S·-I)] on the 
sphere S,,-I[S·-I]. Therefore, l'1,,)[l'10)] are non-negative integers, except the lowest case p = 2[q = 2] when 
by definition II == ml[ll == ml]' and ml[md is integer. A2 + [!(p + q - 2)y, A E [0, (0) is our ansatz for 
eigenvalues of L:::.. (H:) corresponding to the continuous series of representations. It is shown in Part III that 
in this way the whole continuous spectrum of b. CH:) is obtained. 

The solution of Eq. (2.4), regular at the origin, is given by the function 

V:,p,.).l'o'.)(O) = (N-I).tanh)f"")) 8·coshH(,,+0-2J+iA) 8· 2Ft!![jl'1.J\ + Il'l"J\ - iA +!(p + q - 2)], 

·![Il'hd - Il'lPd - iA + !(q - p + 2)]; Il'lod + !q; tanh
2 

O}, (2.5) 

with 

N = 2 ) r(ll,tod + !q). r(iA) )' 
11" r{![iA + Il'l"d + Il'l.d + t(P + q - 2)]} ·r{![iA + Il'iad - Il'lPd + !(q - p + 2)]} . 

The eigenfunctions of the Laplace-Beltrami opera­
tor L:::.. (H:) are then harmonic functions 

of the form 

6 Here and elsewhere we keep the notation from Ref. 1. 
Let us keep in mind that the brackets are defined as follows: 

{
!a if a = 2r 

[!a] = r = 1,2 ... 
!(a - 1) if a = 2r + 1 ' 

and 
if a = 2r 

{

!a 
{!al = r = 1,2, .... 

!(a + 1) if a = 2r + 1 

(2.6) 

where V~'p,.},1'o,.)(8) is given in (2.5), 

yl •..... !,.,.) (w) and y~·····!1.'·) (-) 
ml.···.m(p/.1 ml ••••• m (Q/.J W 

are, respectively, the eigenfunctions of b.(S"-l) and 
L:::..(S·-I). They can be expressed as a product of 
the usual d-functions of angular momenta and 
exponential functions [see (A9) and (3.18) of Ref. 1]. 
For instance, y!::::::.I~~~;!Jw) looks like 
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• • 
Y I •••••. 1, ( \ _ (N-i) II . 2-10 ( k) dJ • (2 k) II . • m ...... m.\W' -. sm t'}. M.;M.· t'}. exp tmkCP if p = 2r, 

10-2 10-1 

(2.7) 

. . 
. II sin2

-
k (t'}k) ·d~·.;M.,(2t'}~· II exp imkcplo, if p = 2r + 1, 

10-2 10-1 

with the normalization factors The harmonic functions 
, 

N. = 211"' II (lk + k - 1)-\ 
10-2 (2.8) 

• 
N'+I = 411"'(2(l'+1 + r) - I)-I. II (lk + k - I)-I, 

10-2 

and 

constitute an orthogonal set of functions with respect 
to the measure dJ.l.(e, w, iii) induced by our coordinate 
system on the hyperboloid H: 

J" = !(l. + k - 2), Mio = !(mk + lH + k - 2), 

M~ = !(mlo - llo-I - k + 2) for k = 2,3, .,. ,r, 
J'+I = lr+1 + r - 1, and M'+I = lr + r - 1. 

dJ.l.(e, w,;;;) = [ii(lP.)]l cU,,·dZ,·de 

= dJ.l.(w) ·dJ.l.(;;;) ·dJ.l.(e), 

where 

itr cos (t'}k)·sin(Zk-3) (t'}k)·dt'}k. tr dcp", for p = 2r, 
dJ.l.(w) = k-2 '-I 

sin2H (t'}r+l) dt'}r+l. tr cos (t'}k) ·sin<2k-3l (t')~ ·dt'}l:· tr dcpk, for p = 2r + 1, 
10-2 10-1 

(2.9) 

dJ.l.(e) = coshP
-

1 e·sinh·-I e·de, 

and the expression for dJ.l.(iii) is the same as for dJ.l.(w), 
but in twiddle variables. 

where pext, ... x"+·) is an arbitrary polynomial in 
x" and Xi are expressed in our biharmonic coordi­
nates on H: [(3.4)-(3.9) of Ref. 1], has the form 

Let us construct now the carrier space of repre­
sentations belonging to the group SOo(p, q). The 
generalized Fourier transform with respect to the 
eigenfunction (2.6) of a function 

A .1 .... '.1 1.,.1.1 ...... 11 .,.1 
Xm:t.. ···.m(p/.) ,nit. ···,m.l~/.l 

'f(e, w, iii) ·dJ.l.(e, w, iii). 

All such Fourier transforms determine the Hilbert spaces S':>!:.+ and S':>!:.- of vectors 

A.", _ { A.I •• • ... II,'.I.I .... ·.II.'.I. l + 1 _ (even)} 
X = Xm" .. • .... I.'.J .m •. • ... ml.'.J' liPl Ii.) - odd 

for which 

II A''''112 = ~ I A.I ...... II.'.):../ ...... .!I.'.112 < 00, X k..J xm :t..···.m.[p/.l,ml.···.1n[czl.1 
1 .... ·.11.'.1.1 .... ·.11.'.) 

m,1 •••• ,m[ p/.) • m •. •••. til Q/.l 

(2.10) 

where lliP) + lli.) is even or odd, respectively. The scalar product in the Hilbert space S':>!:.'" is defined by 

( A ... • "A.",) = ~ A.I ...... II.'.)./ ...... II.'.) •• I.A.I ...... lf.'.).:,I •. • .. :!f.'.) 
X ,'t' ~ xm l •••• ,m!p/.) • .;;:h, ••• ,mrcr/.) Y'ml.···.m[p/.).'h'h.···.ml,/.l' (2.11) 

where the sum is taken over all integers (l2, •.. , llivll 12, ••• , 1lhll ml, •.. , mlb1! ml , ••• , mIlo) with 
lib) + 111• 1 even or odd, respectively. The Hilbert space S':>!::eS':>!:.-) is an eigenspace of the parity operator 
with the eigenvalue +1(-1) and can be decomposed as follows: 

., 

~!:.'" = L EB ~!:.~I(./.I.II.I'J, 
1 I.,. I. il.,.)-O 
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h c:,.A '" fi 'te d' . 1 t d te . d b A.I .... ·.If.I.l.f ...... fl.'.1 with were W,,:.:lI
p
,.I.flf/.1 are nl - Imeru'llOna vec or spaces e rIDlne y X ... , ....... ,.,.,.ii, ..... _,.,.) 

fixed llbl and 11;." 

The continuous series C!:.'" of the representations of the group SOo(p, q), p > q ;::: 1, on the Hilbert space 
c:,.A.", is induced by the representation of the corresponding Lie algebra on the vectors XA 

•• "Vp,e 

L A.± - {<yA.I •..... II.I.I. I ., ... ,fl.I .1 L f)' 1 + 1 _ (even)} 
if X = .. ', .. · ... I.I.l,m' ... ·.ml.I.] ' i; 'Ibl 1101 - odd ' 

(2.12) 

B A.± - {<yA.Io ..... II.I.I.f ...... , I • I .1 B f)' 1 + 1 _ (even)} •• x = ... ,,· ...... I.I.j,m'.···.ml.I.) ' II ,1;,,1 liol - odd ' 

where again 

IP(x\ ... , :lrO) is a polynomial and Xi are expressed in the biharmonic coordinates on the hyperboloid 
H: in (3.4)-(3.9) of Ref. IJ and L;;, B., are elements of the Lie algebra of the compact and noncompact 
type, respectively [Ref. 1, Eqs. (6.2), (6.3)J. 

The proof of the irreducibility of the derived series C!:q'" of the continuous representations is given in 
Sec. 5. 

The harmonic functions on the hyperboloid H! can be obtained by exchanging p, IliPI and q, l'hh re­
spectively, and vice versa only in the function Vtl.I • I.fl./II(8) contained in the harmonic function 
yA.I ...... II.'.I:! .... ·.II.'., on the hyperboloid HP The continuous series CA.", of the most degenerate ir~ 

.. 1.···, .. '.'.1,_1,···.,.1.'.1 ct' Cl.P 

reducible unitary representations of SOo(P, q), p ;::: q > 1, on ~:.~'" are then constructed by the same pro-
cedure as described above. 

3. CONTINUOUS SERIES OF MOST DEGENERATE REPRESENTATIONS OF SO(p, 1) GROUPS 
RELATED TO THE HYPERBOLOmS 

The spaces X + and X _ (2.1) can be realized now by hyperboloids H~ and H;, respectively.1 The biharmonic 
coordinates on H~ and H! are introduced again as in [Ref. 1, Sec. 3J. We consider the Lorentz-type groups 
separately because the range of 8 on the hyperboloid H~ is (- co, co), and therefore the solution of the 
eigenvalue problem of I:::.. (H~) is different from the corresponding one in the previous case. On the hyper­
boloid H!, the range of 8 is from zero to infinity since we restrict ourselves to the upper sheet of the hyper­
boloid H!. Of course, the upper sheet of H! is a transitive manifold only under the proper SOo(P, 1) group, 
Le., under the group of transformations g = (gill), for which gll is positive. 

The Laplace-Beltrami operator I:::..(Hr) has the form [Ref. 1, Eq. (5.2)] 

OE(-co, co), (3.1) 

where 1:::..(8"-1) is the Laplace-Beltrami operator for the SO(p) group. Representing the eigenfunctions of 
I:::..(H~) as a product of eigenfunctions of I:::.. (SV-l) and a function vtl. /II (8), we obtain the following differential 
equation for vtt ',11(8): 

[ 1 !i. cosh"-l o!i. + l'blCllbl + p - 2) + At + (~)2J. VA (0' = 0 
cosh" 1 0 dO dO cosh2 0 2 11.1.1 J , 

(3.2) 

where lliPI(llbl + p - 2) and Ail + l(p - 1)2 are eigenvalues of 1:::..(8"-1) and I:::..(Hr), respectively. Both 
independent solutions of Eq. (3.2) are regular at the origin and can be taken as orthogonal func­
tions 1.2Vtl"IoJ(8) in the form 

1 vtl
p
,"1(8) = -2(lK-i) ·tanh 8· cosh-[!(P-l)+HI 8 

(3.3) 
and 

I vtto,.J(8) = (2K-i) cosh-1iC,,-1)+HI 0 

'2Fl {HiA + l'bl + !(p - 1)], !CiA - l(ivl - !(P - 3)]; i; tanh' OJ, 
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with 

K = 11" { cosh (1I"A) - (_1)11.1.). cos [!(p - 1)11"] \·lrfUiA + lliP) + !(p - 1)]\ 12 
1 sinh (1I"A) 'Ir{![iA + lli"! + !(P + 1)] Ii' 
K = 1I"{cosh (1I"A) + (-I)II.I·)·COS a(p - 1)1I"]1·lrfUiA + llt:l>! + i(p + I)J112 

2 sinh (1I"A)'lr{!(iA + 11i:l» + t(P - 1)]112 
, 

and A E [0, 00), lib! is non-negative integer except 
for the case p = 2 when 11 == ml and 'lnl is integer. 
The eigenfunctions of the Laplace-Beltrami operator 
~ (Hn are harmonic functions orthogonal with re­
spect to the measure dp.(w, 8) = [g(H~)]idw dO. Their 
form is 

y A.I •..••. II·'·)(O ) 
1.2 "h. "',111[:1'/.) , '" 

= 1.2 vtl.,.1(8)· Y;:'·::::,~::;~J(w). (3.4) 

where y 1 .... ·.11.1.1 (w) are eigenfunctions of 6(S:l>-I) 
1n1,"',mr"hl} 

expressed in Eq, (2.7) and 1.2V~I'I.l(8) is given 
in (3.3). 

The construction of the carrier space of the rep­
resentation of the group SOo(p, 1) is analogous to 
the previous case. Thus, the generalized Fourier 
transform with respect to the eigenfunction (3.4) 
of a function 

f(O, w) = P(x!, .••• X"+l) exp [- ~ (Xi)Z] , .-1 
where P(x\ ... , x"+!) is an arbitrary polynomial; 
x\ expressed in biharmonic coordinates on H~[Ref. 1, 
Eqs. (3.4)-(3.9)1. has the form 

= 1 1.2y!:~~::::.:/.t;:t)(8, w)·f(O, w)·dp.(O, w). (3.5) 
H,' 

All such Fourier transforms determine the Hilbert 
space S)!:l± of vectors 

A.± _ { A,I .... ·.II.I.). + 1 
X = aX .. , . .. • ... I.I.J ,ex Ib) 

for which 

a: ~ I •• §. '.t (p/s J 
nit. ~·",ml:p/.l 

I A.I ...... II.I.112 < 
aX." •• "."1.1.1 00 , 

and for which ex + lltpl is, respectively, even or odd. 
The scalar product in the Hilbert space S)::1± is 
defined as 

XA
."', l/IA.± E S)!:l±' (3.6) 

where the sum is taken over all integers l2' •.• , llbl> 

ml, ... , m[iph and ex and ex + lltl» is even or odd, 
respectively. The Hilbert space S)!:t(S)!:l-) is again 
the eigenspace of the parity operator with the eigen­
value + 1 (-1). The structure of the Hilbert space 
S)!:/ has the form 

(3.7) 

where S)!:1~ I( .,.1 are the finite-dimensional vector 
t . . A.I .... ·.II.I.) 'th fi d 1 spaces con alll1llg aX", ...... ",[.1.' Wl xe Itl>I' 

The continuous series C!:l± of the representations 
of the group SOo(p, 1) on the Hilbert space S)!:1± is 
induced by the representation of the corresponding 
Lie algebra on the vectors xA.±: 

L A.± - {< yA.I ...... ll p'., L f)' + l iiX = a"". • ...... 1.1.)' if ,ex {iP) = (::)} , 

= (:~:)}, 
(3.8) 

B A.± - {< yA.I ...... II.'.1 B f)' + 1 
.IX = '" m' ... ·."'I.'.I' ., I ex {!PI 

where f(O, w) is a function as in (3.5) and L ij , B" are, 
respectively, the representations of the generators 
of the compact and noncompact one-parameter sub­
groups of the group SOo(p, 1). 

The Laplace-Beltrami operator 6 (H!) on the 
hyperboloid H! has the form (See Ref. 1, Sec. 5) 

(HI) -1 a inh"-1 (J a 6(8,,-1) 
1:::. I> = sinh" 1 0 ao s a8 - sinh 20 ' 

Since ~ (H!) has again the continuous spectrum of 
the form _A2 - [Hp - lW, and eigenvalues of 
~(SP-l) are -lit,,]' (llbl + p - 2), the eigenfunc­
tions of 6. (II!) can be expressed as 

(3.10) 

8 E [0, 00). (3.9) where now 
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vtlp,.l(O) = (K-!) tanhlll.,.ll O·cosh11A-i(p-1l1 0 

'2FdUll'bd - iA + !(p - 1)], ![il'bd - iA + !(p + 1)]; Illbll + !p;tanh
2 

o}, (3.11) 

I 
(2·nir(iA). r(Jl'bd + !p) 12 

K = r{UiA + !(p - 1) + Il,!pd]}· r{![iA + !(p + 1) + Il'bd]} , 

yl •..... II.'.1 (w) is given in (2.6), and A E [0, co), llbl 
tnl, ···,"'[,./-1 

being a non-negative integer except for the case 
p = 2 when, by definition, II == ml, and ml is integer. 

The series e~.p of the continuous most degenerate 
irreducible unitary representations of the group 
SOo(p, 1) on the Hilbert space &;l~.P are easily ob­
tained from those constructed in Sec. 2 by omitting 
dependence on all twiddle variables. 

As proved in Sec. 5, we construct two series, 
eA. ± and CAl of irreducible unitary representations », 1 ~'P' 

related to the hyperboloids H~ and H!, respectively. 

4. CONTINUOUS SERIES OF MOST DEGENERATE 
REPRESENTATIONS OF SO(p, q) GROUPS 

RELATED TO THE CONE 

In this section, we derive the continuous series 
of most degenerate representations of an arbitrary 
SOo(P, q) group on the Hilbert space &;leX) of func­
tions the domain X of which is the following homoge­
neous space of rank one under the action of SOo(p, q) 6: 

X = SOo(P, q)/TP +
a- 2 lID SO(p - 1, q - 1). (4.1) 

Here, T P+ a-
2 is the group of translations in the 

(p + q - 2)-dimensional Minkowski space M,,-l.a-l. 
The homogeneous space X can be realized by the 
cone c: defined as 

(Xl)2 + ... + (x")2 _ (X"+1)2 _ .•. _ (x,,+a)2 = o. 
Following the general procedure described in Ref. 

1, Sec. 1, we have to introduce first the biharmonic 
coordinate system on the cone e:. Then we would 
try to find the metric tensor g aB( e:) on the cone e: 
and construct the Laplace-Beltrami operator. How­
ever, it turns out that the metric tensor is singular 
on the cone, and hence the Laplace-Beltrami opera­
tor does not exist. Therefore, we have to construct 
the second-order Casimir operator e(2) directly from 
the algebra. Calculating the Cartan metric tensor 
from the Lie algebra ~ [see Ref. 1 (6.1)] of the group 
SOo(p, q), we easily find that the Casimir operator 
has the form 

2(P + q - 2) , 

(4.2) 
• The authors are grateful to Dr. O. Nachtman for a 

valuable discussion on the group of motion on the cone. 

The biharmonic coordinate system on the cone is 
introduced as 

Xk = r'x,k, 

Xl = r'i l
, 

k=I,2,···,p, 

l = p + 1, p + 2, 
(4.3) 

,p + q, 

where X'k
, i l have the same structure as in formulas 

(3.5)-(3.7) of Ref. 1. We represent now the Lie 
algebra ~ of the group SOo(p, q) with respect to the 
parametrization (4.3) by the operators Lij and B.,: 

( 
. aci . aci) a 

Lij = x' ax; - x' ax' aci + .. , 

( 
; at9- lbl 

j iJt9-lbl) a 
+ x --a;r- - x ~ at9-li"l' (4.4) 

where i, j = 1, 2, .. , , p. The analogous expressions 
hold for Lij, i, j = p + 1, p + 2, ... , p + q. 

B I • 1 a = x ir­., ar 

a-I a • !I:QI!al a 
+ .cp + + uv 

X ax' acpl x axe a;?'lial 

, acpl a + ,iJt9-lbl a + x ax' acpl + x ---aT iJt9- li"l ' (4.5) 

where 8 = 1, 2, ... , p; t = P + 1, p + 2, ... , p + q; 
and x", it are defined in (4.3). The operators Lij 
are r-independent and have the same form as in 
previous cases. The corresponding representation of 
the invariant operator Q2 has the form 

[ 
a2 a] 

Q2 = - r2 ar2 + (p + q - l)r ar . (4.6) 

The left-invariant measure on the cone is given by 

dp. (r, w,~) = rp
+a- a dr·dp.(w) ·dp.(~), (4.7) 

where dp.(w) is defined by (2.8). 
From here we pursue again our general procedure, 

i.e., we first solve the eigenvalue problem for the 
invariant operator Q2 (4.6). The eigenfunctions of 
the operator Q2 are the solutions of the differential 
equation 

{ 
d2 d 

r2 dr2 + (p + q - 1).r' dr 

+ A2 + [!(P + q - 2)]2~(r) = 0, (4.8) 
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where we put the ansatz A2 + H·(P + q - 2)]2, 
A E (- en, en) for the spectrum of the operator 
Q2. It will be shown in Part III of our work that we 
do not lose any part of the spectrum of Q2 in this 
way. Hence, the general form of the eigenfunction 
'Of the operator Q2 has the form ra<p(w, <71), where 
.a = -!(P + q - 2) + iA, and <pew, <71) is a function 
which can be chosen in an arbitrary way. It is con­
venient for our purpose to restrict eigenfunctions 
'Of the invariant operator Q2 to be the harmonic func­
tions of the following form: 

(4.9) 

where a = -!(p + q - 2) + iA, and the functions 
Y!::::::'~~~;!I(w) are defined in (2.7) for p > 1 (for 
P = 1 this function equals one). 

The generalized Fourier transform with respect 
to the eigenfunction (4.9) of a function 

where P(Xl) •.• , xPH
), an arbitrary polynomial in 

x· [x' are defined in our biharmonic coordinates 
(4.3) on the cone G:], is given by 

.&..1 •• • .. ,II .,.), f., ···.I! 01.) 
Xt'lh.·· "-(JI/sJ . nit • "'tm[q/11 

·f(r, w, <71)·dp.(r, w, <71). (4.10) 

For P ~ q > 1, as in previous cases, all such 
generalized Fourier transforms determine the Hil­
bert space !f:>!:«*, of the vectors 

for which 

I Ix.&.· * II' = '" Ix.&. ,I." ",I 1.1.).1 •• • ... !I "'01 12 < ,£,., mJ, •••• , .. 'Jl/.l. tih •••• ,mll/.) OJ, 

where llip) + lilol is even or odd, respectively. The 
Hilbert space !f:>!:«* can be decomposed in the form 

co 

!O!:.* = L EB !O!:Q~II'I.,.rl'loh (4.11) 
11.lol.lI".I-O 

{
even 

1I.,0HlI".I- odd 

where !f:>!:«~I("I.l.rl./.l are the finite-dimensjonal vec­
tor spaces determined by XA.I ...... lt./.I.,. ..... !I.I.J 

tilt, ••• ''"'I pIa I._it I" ',m( ./1) 

with fixed llll>l and 1(;01' 

The scalar product in the Hilbert space ff>!:.* is 
defined by 

(xA.*, .I,A.%) = '" A.I ••• • •• II.I.).I •• • ... !I.I.) 
¥" £..i Xmt. ·· .. m(p/.l.mi. ···.-l.I.) 

(4.12) 

where the sum is taken over all integers I" ••• I'iplI 
12 , ••• l(io" ml, '" , mil,,], mI, ... , mila" with 
lIb I + lila' even or odd, respectively. 

The representation of the series C!:.* on the Hil­
bert space S::>!:a'" is defined by the representation 
of the algebra on the vectors x"'''' 

L .&..* - {(yA.Io ..... I1.I.I.f ...... fl.'.1 L f)'l + 1 
IjX = m .... ·."'I.I.I ....... ·.ml.I.I' Ii , Ivl lial = (even)} 

odd ' 
(4.13) 

with f(r, w, <71) as in (4.10). 
For q = 1, the corresponding representations are 

constructed in a way completely analogous to that 
used in Sec. 3. Let us keep in mind that in this 
case we have restricted ourselves only to the proper 
SO(P1l) group (upper sheet of the cone ~). 

5. IRREDUCIBILITY 
A. The Representations Related to the Hyperboloid 

for Pi?: q> 2 

The maximal compact subalgebra (consisting the 
generators Lij) with any generator B., of a one­
parameter noncompact subgroup generates the whole 
algebra. Therefore, the problem of the irreducibility 

= (:~n)}, 

of the representation of the algebra can be solved 
by considering only the set of generators L;; to­
gether with one of the generators B.,. 

For the proof, we take the generator B»;»+. and 
represent it by the definition (2.12) on the vectors 
(2.10) which determine the Hilbert space ff>:.~+ EB 
!f:>!:Il-' Calculating the explicit form of the operator 
B",»+4 from the expression (6.3) of Ref. 1, we easily 
find that it can map an arbitrary vector f 11,1.). fl"'] E 
!f:>::.~l' (,I'I.r t"ol only to such vectors fft"ol,.r './0)' for 
which 

lhpl = Ilip) ± 1 and l~h) = 1licl ± 1. 

Hence, we have at least two invariant subspaces 
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S)::~~ with respect to the representation of the 
algebra for the same eigenvalue of the Casimir opera­
tor. In what follows, we show that any of these 
is irreducible, i.e., they do not contain the invariant 
subspaces with respect to the representation of the 
algebra. 

To show that there is no invariant subspace in 
the vector space determined by the vectors C2.9) 
with respect to the algebra R, it is sufficient to find 
vectors 

such that every B XA.I(~/.l.ll'I.J has nonvanish-
l',p+a "'17'1).&[1/1) 

ing components in four neighbouring subspaces 
s)::o~ I I~/. J ~1.1 I 1/.1 u' Choosing 

A.II~/.I.II.I.I _ A.I •.. ".II~/.I.I •. "·.III/.J 
Xm,(p/IJ,mlcr/ll - X""l,···.1II(JJ/I).ih,···,ml,/I] J 

where 

and 

Imll, Imll, 12 , 12 , ••• , 1Ibl-l, 1llol-1 

have the minimal possible values, we calculate from 
C6.3) of Ref. 1 and (2.12): 

B".p+aX:.'o'·1 = -·11 + 1 +!(p + q - 2) + iAI·A+(l).A+Cl)·[N(l + 1, 1 + 1)/N(l, l)]l.<t>A.I+l.l+l 

+ 11 - 1 + !(p + q - 2) + iA - pl· A+(l)· A-(l)· [N(Z + 1, 1 - 1)/N(l, l)]l.<t>A.I+l.l-l 

- 11 - 1 + !(p + q - 2) + iA - P + 21· A_(l)· A+(l)· [N(l - 1, 1 + 1)/N(l, l)]1.<t>A.I-1.I+l 

+ 11 + 1 +!(p + q - 2) + iA - 21·A_(l)·A_(l)·[N(1 - 1,1- 1)/N(l, l)]l.<t>A.I-l.I-t, (5.1) 

where 1 == ll;pI> 1 == llial> A~Cl) are defined by (6.7) or (6.8) of Ref. 1, N(l, 1) == N(lltpl1lhl) = NIlJ1I·Nllol 
[Nllp) and N lla ) are defined by the expressions (3.21) of Ref. 1], and 

{

XA.,CP+ll/ •. ,CIHI/. for odd p and q, 

<t>A.II~/.'.III/" = !(il)[x~:;~/"'CI+:I/' - X~i~:;I •. lcI+ll/'], for evenp and odd q, (5.2) 

1. A.I~/ •• II/. + 1 A.I,I •• II/. + 1 A.I~/ •• II/. 1. A.I,I •• II/. I!or even p and q. - ,Xl.l ,Xl.-l ,X-l.l - ,X-l.-l ,1' 

The only coefficients in the expression (5.1) which 
can vanish for non-negative integers lllpI> lilal are 
A-(lapI) and A-Cla.,), If p(q) is odd, then the 
coefficient A-Cli (P+1) [A-(l(la+ll)] is zero for Z; (p+1) = 
0[11 (0+1) = 0] in accordance with the fact that we 
have the representation. If p(q) is even, A-(lip) = 
o [A-Clio) = 0] for lil> = 1 [lla = 1]. This does not 
mean that the representation is reducible, because 
the mapping 

c:;,A.~ B c:;,A.~ 
'l.'J1.0;11~/.1.111/.1 "'"+ 'l.'p.o;II~/.I+l,lll/.l+l 

always exists and the operator Bp • J1+. is skew-sym­
metric on the vectorspace determined by the vectors 
(2.10). 

Thus, we proved that the second-order Casimir 
operator is not sufficient to specify the irreducible 
representations. The complete specification of the 
irreducible representations is achieved by the com­
mutative invariant algebra, generated by the second­
order Casimir operator and an operator P, the 
eigenvalues of which are ± 1. Let us show that the 
operator P is the representation of the parity opera­
tor px" = -x", k = 1, 2, "', p + q. From the ex-

plicit form of the harmonic functions, we easily 
calculate the representation of the parity operator 
on any harmonic function 

pyA .1 •• "'.1 I~/.I..: I •.. ":.11 1/"(n) 
mi. II ·,1II[p/al ,ml, II ',m[ 'l/I] 

= (_I)II,I,)+fl.I•, . yA.I •. " .. II.I.,..:f •..... ..'I.I., (5.3) 
m •• ···.ml2f/.).mll···,"'(,/.) • 

Then the representation of the parity operator on 
the space ~::o~ is defined by the expression 

P A. I •• " ·.11,/.1. f ••• ".110/.1 
Xmll' ",""(p/.) .nh I" -,iiil fIll 

= (_1)".1.,+1101.,. A. 1.'''',11.1.1..: I •. ''':.' I 1/.1 xm l,···,mlp/.].ml.···.mlt/.) • (5.4) 

It follows that the vectors X",Z of the space c:;,A.~ 
q?",Q' 

are common eigenvectors of the operator ~ (H:) 
with the eigenvalue A 2 + !(p + q - 2)]2 and the 
operator P with the eigenvalue ±1, respectively. 

Completely analogous proof holds for the series 
C~,~~ of the representations related to the hyper­
boloid H;. 
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B. The Representations Related to the Hyperboloid 
forq = 2 

The proof of the irreducibility of the representa­
tions of the continuous series C!:'.t and C:.'p" does 
not differ from the previous one as the vector 

B2'.2'+2X~:~:"·1 1 

where 

values, has essentially the same structure as in the 
previous case. 

C. The Representations Related to the Hyperboloid 
forq = 1 

The proof of the irreducibility of the representa­
tions of the continuous series C~.2' can be obtained by 
specifying the one which is derived in A above. 
Omitting completely the indices 12 , ••• • 1llerh 

ml, ... ml!Q}, in A, we obtain 

B 1,1+pJ(t· l
(p,"l = - 11112'1 + !(p - 1) + iAI' A+(lli2'I)[N(l'i2'1 + 1)/N(lll2'I)]tq,A,llp'tJ+l 

- Illbl + !(P + 1) + iAI·A_(lli2'I)[N(ltfpl - 1)/N(l'i2'I)]tq,A,/{p'"l-1, (5.5) 

where A",(ll2'/21) are defined as before, N(11J>/21) = N{P/21 is determined in (3.21) of Ref. 1, and 

{ 

A,I(p+1)/1 f odd q,A.lf"/ll _ Xo, Or p, 

!(Cl)(X~·I./1 - X~i/·I'), for even p. 
(5.6) 

For the representations of the series continuous C::1* we choose, as in the case of discrete representations, 1 

the vector 

where m, = ... = mrJpl = 0 and Imll, 121 •• , 1 It}2'I-l have the minimal possible values. 

B A.I 
2'.2'+l·lXO = - \i(P - 1) + l + iAI' A+(l)· [N(Z + l)/N(l)]t2¢A.I+l 

- 1!(P - 3) + l + iAI·A_(l)·[N(l- 1)/N(l)]i2¢A.I-l, 
(5.7) 

BM +l· 2Xt· 1 == Il(P - 1) + l + iAI·A+(l)·[N(l + 1)/N(l)]i1q,A.l+l 

+ li(P - 3) + l + iAI· A_(l)· [N(l - 1)/N(l)]i1q,A , 1-1 , 

Analyzing the coefficients in the expressions (5.5) 
and (5.7), one can verify again that there is no in­
variant subspace, i.e., the representations of the 
series C::1* and C~.2' are irreducible. Hence, the 
irreducible representations of the series C!:I'" on the 
Hilbert space ~::1';' are again characterized by the 
eigenvalue of both the Casimir operator D.. (Hn and 
the parity operator P. 

D. The Representations Related to the Cone 

By the same argument as in the previous section, 
we first establish the existence of at least two in­
variant subspaces ~::q+ and 4)::«- with respect to 
the representation of the group for the fixed value 
of the Casimir operator Q2' Then we prove their 
irreducibility as before (for instance, for q > 2). As 

(5.8) 
for evenp. 

we have mentioned, the representations Lit (4.4) 
of the generators of the compact one-parameter 
subgroups have the same form on 4)!,~* as in Sec. 2. 
Moreover, since the operators Lu are reduced by 
the subspaces ~:: .. ~lIp/.l.r{.,.) exactly to the same 
operators as in Sec. 2, the subspaces ~!:q~II_I.I.I('I.l 
are irreducible with respect to the maximal compact 
subgroup. Now, we proceed as before, i.e., we con­
sider the operator B p.2'+q and the vector 

where m2 = ... = mql"] = m2 = ... = m!hl = 0 
and jmll, linti, la, 12, ••• I l{b}-t, Ilhl-l have the 
minimal possible values. Using the definitions (4.5) 
and (4.13), we easily compute the following expres­
sion: 



                                                                                                                                    

REPRESENTATIONS OF NONCOMPACT GROUPS. II 2035 

BJI.JI+«·xt.'oi.1 = +[iA - l- 1- t(P + q - 2)]·A+(l)·A+(l)·[N(l + 1, 1 + 1)/N(l, l)],.</>A.l+l.f+l 

+[iA - l + 1- t(P - q + 2)]·A+Cl)·A-C1)·[N(l + 1, 1- 1)/NC1,1)],.</>A.I+l.r-l 

+[iA + 1- 1 + t(P - q - 2)]·A_(l)·A+{1)·[N(l- 1,1 + 1)/N(l, l)],.</>A.I-1.1+1 

+[iA + 1 + 1 + t(P + q - 6)]·A-Cl)·A_(1)·[N(l - 1,1- 1)/N(l, l)]t.q,A,I-1.r-\ (5.9) 

where A '" (l), N (l, 1) are defined as in the expression 
(5.1) and q,,,,I,l is defined as in expression (5.2). 

Using the same analysis as before, we can check 
that there are no invariant subspaces of the vector 
spaces determined by the vectors (4.10) with respect 
to the representation of the algebra. 

The representations relate to the cone for q = 1 
and q = 2. The corresponding proofs of irreducibility 
obtain as before. 

The unitarity of the representations of the group 
SOo(p, q) on Hilbert spaces ~~:: related to all three 
homogeneous spaces will be proved in Part III of 
our work. 

6. SUMMARY 

Three most degenerate principal continuous series 
of the irreducible unitary single-valued representa­
tions of an arbitrary noncompact rotation group 
SOo(p, q) have been constructed. These series are 
related to three homogeneous spaces of rank one 
under the action of SOo(p, q), i.e., to the hyperboloids 
H: and H:, and to the cone C:. 

Generally, the most degenerate continuous series 
of irreducible unitary representations of SOo(p, q) are 
characterized by two numbers, A and P. The former 
determines the eigenvalue of the second-order Casi­
mir operator and the latter is the eigenvalue of 
the parity operator. 

In particular cases the situation is as follows: 

(i) SOo(p, q), p ? q > I-The constructed repre-

sentations are determined by both A and P. A is 
real from the ranges (0, CI) and (- CI), CI) for 
representations related respectively to the hyper­
boloids and to the cone; P has the value ± 1. 

(ii) SOo(p, I)-Two series of representations of the 
Lorentz-type group related to the hyperboloid 
Hf and to the upper sheet of the cone Of are also 
characterized by both A and P, whereas the rep­
resentations of the series related to the upper 
sheet of the hyperboloid H; are characterized 
only by the number A. The ranges of A is again 
(0, CI) and ( - CI), CI) for representations related 
respectively to the hyperboloids and to the cone; 
P is equal to ± 1. 

The harmonic functions of the derived three con­
tinuous series of representations have been explicitly 
constructed. They are labeled by numbers A, P, 
from the corresponding ranges mentioned above, and 
by a set of integers lz, •.. , lllP" ml, ... , m{iJlh 

12, ••• , lliall ml, ... , m[Jqll which determine the 
eigenvalues of the maximal set of compact com­
muting operators defined in (7.8) of Ref. l. 
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The method of singular eigenfunction expansions is applied to time-independent one-speed half­
space transport pro~leIllS with a,:isotrop~c sCll;tteri,:g. Adjoint eigenfunctions are cons'tructed such that 
~ set ~f half-range bl-orthogonahty relatIOns IS vahd. These relations lead to the expansion coefficients 
III '!' direct manner. The adjoint eigenfunction3 are also used to express the half-space albedo operator 
which relates the emerging angular density to the ingoing one. 

L INTRODUCTION 

I N the mathematically equivalent theories of one­
speed neutron transport and of monochromatic 

radiative transfer, several analytical methods have 
been developed for handling problems in plane 
geometry.l.a Most work in this field has so far 
been limited to the simplest scattering laws, in 
particular, to isotropic scattering. The primary rea­
son for this limitation is that, for more complicated 
scattering laws, all such methods soon become 
lengthy and beset with complications.a•

4 Problems 
with highly anisotropic scattering are, however, of 
practical interest, especially in the optics of turbid 
media. The measured scattering function of natural 
fogS shows a forward to backward ratio of 40 : 1 
and can be satisfactorily fitted only by a polynomial 
of at least eighth order.s The need for handling 
anisotropic scattering again arises with a simple 
model in slowing down theory, where a Mellin 
transform in the energy variable leads to an equa­
tion of the one-speed type.1 

Any kind of anisotropic scattering can, of course, 
be handled numerically by the Wick-Chandrasekhar 
or the SN methods of discrete ordinates. However, 
it might be useful to gain more insight into the 
properties of solutions by having some analytical 
method fully worked out for an arbitrary scattering 
law. This will be done with Case's method,S which 

• National Science Foundation Postdoctoral Fellow. 
1 S. Chandrasekhar, Radiative Transfer (Oxford University 

Pres!', London, 1950). 
I B. Davison, Neutron Transport Theory (Oxford Univer-

lity Press, London, 1957). 
a 1. KuMer, J. Math. & Phys. 34, 256 (1956); 37,52 (1958). 
'I. W. Busbridge, The Mathematics of Radiative Transfer 

(Cambridge University Press, London, 1960). 
'E. D. Spencer, J. Opt. Soc. Am. SO, 584 (1960). 
'S. Pahor (unpublished). 
7 R. E. Marshak, Rev. Mod. Phys. 19,185 (19(7); see also 

J. J. McInerney, Nucl. Sci. Eng. 22, 215 (1965) . 
• K. M. Case, Ann. Phys. (N. Y.) 9, 1 (1960); Recent 

Developments in Neutron Transport Theory, Michigan Memo­
rial Phoenix Project Report, The University of Michigan 
(1961). 

utilizes an expansion of the angular density (in· 
tensity) in terms of the eigenfunctions of the homo­
geneous transport equation. Completeness prop­
erties of the set of eigenfunctions were first proved 
by Case for isotropic scattering, and by Mikall for 
anisotropic scattering. 

If scattering is isotropic, application of Case's 
method to half-space problems can be simplified by 
the use of half-range orthogonality relations for 
the eigenfunctions.10 So far this auxiliary technique 
has been generalized to linearly anisotropic scatter­
ing (where the scattering function is linear in the 
cosine of the scattering angle).l1 There, bi-orthog­
onality relations involving certain" adjoint" eigen­
functions had to be employed. In the present 
work,lz this technique is generalized to the case 
where the scattering law is described by an arbitrary 
polynomial. Azimuthal dependence of the solutions 
will also be permitted. 

Section II deals with the homogeneous transport 
equation and its eigenfunctions. Also included is 
a set of equations for Chandrasekhar's H-functions , 
which are basic for the application of singular 
eigenfunctions to half-space problems. Sections III 
and IV (the latter for a nonabsorbing medium) 
contain the derivation of the bi-orthogonality rela­
tions and of associated equations involving the 
eigenfunctions and their adjoints. This derivation 
provides some reduction of effort over what was 
previously done for isotropiclo and linearly aniso­
tropic scattering.11 It turns out that the construction 
of the adjoints in the general case is somewhat 
tedious, but, after this is done, the solutions of 
standard half-space problems can be expressed in 
an exact and compact way by the adjoints and the 

• J. R. Mika, Nuc!. Sci. En~. 11, 415 (1961). 
101. KuMer, N. J. McCormIck, and G. C. Summerfield 

Ann. Phys. (N. Y.) 30, 411 (1964). ' 
11 N. J. McCormick and I. KuMer, J. Math. Phys. 6, 1939 

(1965). 
12 Preliminary results reported at the Ankara Inter­

national Summer School of Transport Theory (1965). 
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H-functions. The scheme to be followed in the (II - P.)q!"(II, p.) 
computation of these two sets of functions is sum-
marized in Sec. V. = til fl p"'(p., P.')cP"'(,1, p.') dm(p.'), (10) 

II. EIGENFUNCTIONS 

The transport equation (equation of transfer) 
has the form 

(p. :x + 1 )1(X, p., 1fI) 

1 fl 12 .. = 4- dp.' dlfl' p(cos 6)I(x, p.', 1fI'), 
'II" -1 0 

(1) 

where p. is the cosine of the polar angle with respect 
to the positive x axis, and IfI is the azimuthal angle. 
The scattering (phase) function p(cos 6) is assumed 
to be a polynomial of order N, 

N 

p(cos 6) = L fiJIPI(COS 6), (2) 
1-0 

o < fiJo < 1, IfiJd < 2l + 1, l = 1,2, ••. N. (3) 

We defer the case fiJo = 1 until Sec. IV. 
Application of the spherical harmonics addition 

theorem to Eq. (2) gives1
•
13 

p(cos 6) = pO(p., p.') 
N 

+ 2 L p"'(p., p.')(1 - l)l'" 
... -1 

X (1 -:- p.'~l'" cos m(1fI - 1fI'), (4) 

where 
N 

p"'(p., p.') = L c";p";(p.)p";(p.') , (5) 
1- .. 

(6) 

",-1 

p:(p.) = II (2n + 1), (See Ref. 14) (7) 
.. -0 

c'; (l - m)! 
= fiJI (l + m)!" (8) 

Here and henceforth, l = m, m + 1, ... N. 
We seek particular solutions of Eq. (1) of the 

form 

1( ) = -%/'A."'( )(1 _ 2)1"'{COS mlfl} x, p., IfI e .,.. II, P. P. . , sm m1p 
(9) 

and obtain the following equations for the eigen­
functions </>"'(11, p.): 

13 T. W. Mullikin, Astrophys. J. 139, 379 (1964). 
14 In this and subsequent equations, substitute 1 and 0 for 

the symbols llc/• n and LCI ... , respectively, whenever k < n. 

m = 0, 1, ... N, 

where, for the sake of brevity, the symbol 

dm(p.) == (1 - p.2)'" dp. (11) 

has been introduced. Let us normalize the eigen­
functions by 

{I </>"'(11, p.) dm(p.) = 1. (12) 

For convenience in future notation, we suppress 
the superscript m with </>"'(11, p.) and other functions. 
All relevant quantities in any of the equations must 
be understood as referring to the particular azimuthal 
component under consideration. 

To the interval -1 < 11 < 1, there corresponds 
a continuous set of singular eigenfunctions 

1 
</>(11, p.) = !lIg(,1, p.)(9-­

II-P. 

+ X(v)(1 - l)-" 8(11 - p.). (13) 

The (9 refers to Cauchy principal values of integrals 
of cP(lI, p.). Here we have used the definitions 

X(lI) = 1 - !lI(9jl g(lI, p.) dm(p.) , (14) 
-1 JI - P. 

N 

g(II, p.) = L Clgl(lI)PI(p.). (15) 
1-.. 

The functions gl(,1) are defined by the equation 

gl(,1) = {I 4>(11, P.)PI(p.) dm(p.), (16) 

and obey the recurrence relation1
•
13 

(l + 1 - m)gl+l(lI) - hl,1gl (,1) 

+ (l + m)gl-I(,1) = 0, (17) 

hi = 2l + 1 - fiJI. (18) 

By virtue of (7) and (12), 
... -1 

g:(,1) = II (2n + 1), (19) 
.. -0 

so it follows from (17) that the gl(lI) are polynomials 
of order (l - m), alternatively even and odd. 

In addition to the set of continuum eigenfunctions 
there may also exist discrete modes of the form ' 

4>(±lIj, p.) = !lIj g(±lIj, p.) . 
111 =F P. 

(20) 
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The discrete eigenvalues are determined as roots of 

A(±v,.) = 0, (21) 

A(z) = 1 - !z fl g(Z,/~ d:(p.) 

= 1 - !z II g(p., p.) dm(fJ.) . (22) 
-1 z - P. 

It can be proved that these eigenvalues are real, 
and we assume that they are outside the interval 
(-1, 1). Let Vj, j = 1,2, ... M, denote the positive 
eigenvalues, ordered in decreasing magnitude. Their 
number is limited, as can be shown in the manner 
of Mika,9 by 

M::=;N-m+l. (23) 

We exclude degeneracies in the v/s, since any such 
exceptional case requires special treatment.1S 

The boundary values of A(z) on the cut (-1, 1) 
can be expressed as 

A ±(v) == lim A(v ± iE) 
e-O+ 

= "A(v) ± !iwg(v, v)(l - v2)"'. (24) 

Also of importance is the expansion 

A(z) = 1 - t '1;: , 
,,-0 z 

Izl> 1, 

where 

'12" = ~ fl p.2"g(p., p.) dm(p.). 

By induction it has been shown13 that 

N h 
A(ex» = 1 - '10 = II --' -. 

1-", 2l + 1 

(25) 

(26) 

(27) 

In applying Case's method of solution, we need 
the H-function of Chandrasekhar1 for the "char­
acteristic function" !g(p., p.)(1 - p.2)"'. A closed-form 
expression can be quoted, 

M 

H-\ -z) = [A( ex> )]1(1 - Z)-M II (Vi - z) 
j-l 

[ 
1 11 A +(p) dv ] 

X exp 211'i 0 In A-(v) P - Z ' 
(28) 

which is equivalent to an expression derived by 
Chandrasekhar.1 A translation from this notation 
to that used by Cases and others9

-
1l is effected by 

M 

M 

p.H(p.) = 2W;I[A( ex> )]1 II (Vi - p.h(p.). (30) 
i-1 

The notation with the H-function has some ad­
vantage over that involving the X or 'Y. 

We also need the following equations l
•
s: 

_1_ = 1 _ !'z 11 g(p., p.)H(p.) dm(p.) 
H(z) 2 0 Z + P. , 

1 [1 1 ] 
- 211'i H+( -p.) - H-( -p.) 

= !p.H(p.)g(p., p.)(1 _ p.2)"', 

~ [H+/-p.) + H-/-p.)] = H(p.)"A(p.). 

(31) 

(32) 

(33) 

(+34) 

(+35) 

The restriction of the variable p. to the interval 
(0, 1) in (34), (35), and in some of the subsequent 
equations is indicated by + with the equation 
numbers. 

From (33), we obtain the expansion 

1 '" (3" 
H( -z) = 1 - ~ z" , Izl > 1, (36) 

where 

111 (3" = 2 0 p."g(p., p.)H(p.) dm(p.). (37) 

Using Eqs. (25), (31), and (36), we find a set of 
useful relations,4 

2 .. 

'12 .. - 2{32 .. + L (-1)k{3k{32 .. _k = o. (38) 
k-O 

The {3" can be, in an obvious way, expressed ill 

terms of the moments of the H-function, 

a" = { p."H(p.) dm(p.). (39) 

m. BI-ORTHOGONALITY RELATIONS 

In half-space problems, we are led to expansions 
of the following forms.9 : 

M 

lex, p.) = L ajq,(vj, p.)e-z
/

P
/ 

j-l 

+ { A(p)q,(v, p.)e-z
/, dp + f(x, p.). (40) 

H- 1
( -z) = [A( ex>)]1 IT (Vi - z)X(z) , 

i-I 

15 R. Goldstein, Nucl. Sci. Eng. 18, 412 (1964). 

(29) The term f(x, p.) embodies (1) any eigenmodes in­
creasing with x, if they are permitted by the bound­
ary condition at x ~ ex>, and (2) a particular solu-
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tion of the inhomogeneous equation in the event 
that sources are present. The expansion coefficients 
aj and A (I') have to be determined from the bound­
ary condition at x = 0, that is, from 

1 11 J(z, z') = z _ z' 0 g(z, fJ.)g(z', fJ.) 

X [-, _1_ - _1_JfJ.H(fJ.) dm(fJ.). 
z - fJ. z - fJ. 

(45) 

t/I(fJ.) = ~ ajcp(vj, fJ.) + [ A(v)cfJ(v, fJ.) dv, (+41) Now, in view of Eq. (15), J can be expressed in 
terms of the integrals 

where 

t/I(fJ.) == 1(0, fJ.) - f(O, fJ.). (42) 

The existence of such expansions is guaranteed 
by the half-range completeness theorem. A proof 
of this theorem has been given by Mika9 for m = 0, 
and can be generalized to any m. 

We wish to facilitate the determination of the 
coefficients aj and A (I') by constructing a set of 
half-range bi-orthogonality relations. To this end, 
an appropriate weight function must be found and 
an "adjoint" rj)(v, fJ.) specified for each cp(v, fJ.). 

Inspection of the derivations in previous work10
•
11 

leads to the conjecture that the weight function 
again will have an analogous form (except for the 
change in notation). Thus, the bi-orthogonality rela­
tions should read as 

{ cp(v, fJ.)rj)(v', fJ.)~(fJ.) dm(fJ.) = 0, I' ~ 1". (+43) 

The plus sign with the equation number now refers 
to I' and v' and indicates here, as well as in some 
further equations, that positive eigenvalues must 
be taken, v, v' E (0, 1) or = +Vj, j = 1, 2, ... M. 
Otherwise, the letter p will be used to denote any 
eigenvalue, positive or negative. 

It will later be necessary to carry out some trans­
formations of the integral in (43), where we have 
to rely upon the identities (34) and (35). Our 
choice of the weight function essentially hinges 
upon these identities, which are a consequence of 
H(z) being a solution of the appropriate Hilbert 
problem. 

We are left with the task of constructing the 
function rj)(v, fJ.) such that Eq. (43) will hold. Let 
us first see what happens to the integral in that 
equation if cp is substituted for rj). The derivation 
will be amenable to some useful generalizations 
if complex variables z, z' EE (0, 1), z ~ z', are 
substituted instead of the real v, v'. That is, we wish 
to evaluate the integral 

11 g(z, p.) ~(z', p.) fJ.H(p.) dm(p.) == J(z, z'). (44) 
oZ-fJ.Z -fJ. 

Partial-fraction analysis immediately leads to 

(46) 

These functions can be reduced to simpler quantities 
by the following manipulation: 

+ 11 pz(fJ.) g(p., p.) fJ.H(p.) dm(fJ.). (47) 
o z - fJ. 

In the last term, we substitute the left-hand side 
of Eq. (34) and then change the integration path 
into a contour encircling the interval (0, 1). After 
the contour is blown up, we collect the residue at 
fJ. = z. The integral over the large loop gives the prin­
cipal part (the polynomial part), 2[Pz(z)/H( -z)].a, 
of the function 2pz(z)/H( -z) appearing in the in­
tegrand. The final result is 

Kz(z) = Kz(z) - 2pz(z)/H( -z), (48) 

where K z (z) is the following polynomial of maximum 
order N - m - 1 if l < N, and N - m if l = N: 

Kz(z) = 11 pz(fJ.) g(z, fJ.) - g(p., fJ.) fJ.H(fJ.) dm(p.) 
o z - iJ 

+ 2[~J. (49) H( -z) aa 

It is useful to know for later purpose that, if z 
is substituted by any of the positive eigenvalues, 
we have the simpler expression 

(+50) 

For I' = Vj, the proof of this equation is immediate 
from Eq. (46) because H- 1

( -v;) = 0, and the last 
term in (48) therefore vanishes. The continuum 
eigenvalues are included by allowing z in (46) to 
approach the interval (0, 1) from above and from 
below. The arithmetic mean gives a principal-value 
integral. Then we add on both sides the contribu­
tion due to the a-term in the eigenfunction cp(v, p.). 
It is this contribution which now cancels the last 
term in (48), in view of the identity (35). 
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With Eqs. (15), (46), and (48) used in (45), we 
express J (z, z') as 

J(z, z') == L(z, z') 

2 [y(Z, z') _ y(z', z)] (51) 
- z - z' H(-z') H(-z) , 

where L is a symmetric polynomial of maximum 
order N - m - 1 in each variable, namely: 

1 N 
L(z, z') = --, L: CI[YI(z)KI(z') - YI(z')K1(z)]. 

z - z 1- .. 

(52) 

From Eqs. (45) and (51) we deduce that, for any 
two different positive eigenvalues, the relation 

4 11 -; cpcP, p.)cp(v', p.)p.H(p.) dm(p.) = L(v, v') (+53) 
W 0 

holds. For two discrete eigenvalues, this is im­
mediately clear because the last term in (51) van­
ishes. The extension to the continuum eigenvalues 
is carried out in the same way as in the proof of 
Eq. (50). 

With Eq. (53), it becomes clear how the adjoint 
r$(v, p.) has to be constructed. It should differ from 
cp(v, p.) by an amount 

ivB(v, p.) == 4'>(v, p.) - cpcP, p) (54) 

such that the corresponding contribution to the 
integral (43) cancels the right-hand side of Eq. (53). 
That is, we want B(v, p) to fit the condition 

211 - 4>(v, p.)B(v', p.)p.H(p.) dm(p.) = -L(v, v'). (+55) 
v 0 

If this is satisfied, the bi-orthogonality relation 
(43) holds, with r$ defined by Eq. (54). 

In view of Eq. (52), and thinking of a Legendre 
expansion of B(v, p.), we see that this function must 
be a polynomial of maximum order N - m - 1 
in each variable. Therefore, we write 

N-l 

B(v', p.) = L: B Z(V')PI(P.) , (56) 
I-m 

and we try to determine the coefficients from the 
condition (55). In view of Eq. (50), we have 

N-l 

L: BzcP')K1(II) = -L(v, v'). (57) 
1-.. 

In the simple case N = 1, m = 0, the L, Ko, 
and B are constants; from Eq. (57), we obtain 

B = 'Glthowaat/(2 - woan), (58) 

which has been shown16 to equal the cB of Ref. 11. 
n N. J. McCormick, Ph.D. thesis, The University of 

Michigan (unpublished). 

The sole condition for the existence and uniqueness 
of B(v, p.) is that the KI's in Eq. (57) are linearly 
independent. Unfortunately, it has not been possible 
so far to guarantee this linear independence for all 
physically possible scattering functions, although 
simple examples indicate that linear dependence 
could occur at most for special values of the wI's. For 
what follows, we assume that linear independence 
of the K, polynomials does hold; for any particular 
case, one should verify the validity of this assump­
tion numerically. 

It may be added that the troubles here are similar 
to those encountered with other methods for handling 
transport problems with anisotropic scattering. Ei­
ther explicitly or tacitly, in each of these 
methods3.4.u.17 the nonvanishing of some deter­
minant has been assumed without proof. 

Two further useful equations are obtained by 
generalizing the integral in (55) to complex variables. 
Using (56), (46), (48), and (57), we find 

11 y(z, p) B(z', p.)p.H(p.) dm(p.) 
o z - p. 

= _ L(z z') _ 2B(z', z) • (59) 
, H(-z) 

Combination ofthis result with (44) and (51) enables 
us to write 

11 g(z, p.) [Y,(z" p.) + B(z', p.)]p.H(p.) dm(p.) 
o Z-p Z-p 

2y(z, z') 
= - (z - i)H(-t) 

__ 2 _ [~(z" z) + B(z', z)]. (60) 
H(-z) z - z 

If two different positive eigenvalues are sub­
stituted for z, z' in this equation, the bi-orthogonality 
relations follow, as already mentioned. On the other 
hand, we may also substitute negative eigenvalues. 
All such relations can be summarized in a single 
equation, 

f cpcP, p)r$(v', p)pH(p) dm(p.) 

- _ V'cp(lI, v') '-"( ') _ vr$(v', v) '-"() II ..... v'. (61) 
- H( -v') \71 V H( _II) \71(11 , r-

Here we have introduced the following step function: 

9cP) = {O for 0 < v < 1, (62) 
1 otherwise. 

17 S. Pahor, Nucl. Sci. Eng. 26, 192 (1966). 
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It may be mentioned that Eq. (61) encompasses a 
set of eight formulas worked out previouslyll for 
the special case N = 1, m = O. 

Weare left with the determination of the nor­
malization constants. Those for the discrete eigen­
functions follow from (60) if we put z = v, and then 
let z' approach the same value. Mter application of 
the identity (32), the result is 

{ q,(Vi' P,)f$(yi' p,)p,H(p,) dm(p,) 

- 1. 2 ( )H( )[dA(Z)] - 2 vig Vi, Vi Vi dz . . -., (63) 

Before we can deduce the normalization constant 
for the continuum modes, we must decide what 
meaning to attach to the product of two singular 
eigenfunctions in the event that V and v' are allowed 
to merge. Following an established practice,S-lo we 
use 

(5) _1_ (5) _,_I_ 
V - p, V - p, 

1 [1 1 ] --- (5)---(5>--
- v - v' v' - p, v - p, 

(64) 

which for v' ~ v is a definition. With this definition, 
the Poincare-Bertrand formula permits the formal 
inversion of orders of integration in certain double 
integrals.1s 

All the deductions which led to Eq. (60), and 
specifically to Eq. (61), remain valid also for v' ~ v, 
o < v < 1, except for two additional contributions. 
One contribution, ,,2(v)vH(v)(1 - l)-m~(v - v'), 
originates from the product of the ~-functions in­
volved in q, and f$, and another, 

[tvg(v, v)]2vH(v)(1 - l)"'7l ~(v - v'), 

is due to the last term in (64). The identity (24) 
enables us to write the final result as 

{ q,(v, p,)f$(v', p,)p,H(p,) dm(p,) 

plify the determination of the expansion coefficients 
for slab problems.19

•
2o In some applications, it be­

comes necessary to derive a few more auxiliary for­
mulas, as was done for N = 1.11 

If we are interested solely in the angular dis­
tribution emerging at x = 0, we need only Eq. (61) 
for 0 < v < 1 or v = Vj, and -1 < v' < O. Instead 
of handling each single q,(v, p,) separately, we may 
use the whole expansion (41) and get, after re­
naming the variables, 

1/I(-p,) = p,-lH(p,) 

X { 1/t(p,')f$(-p" p,')p,'H(p,') dm(p,') • (+66) 

Here the left-hand side denotes the value of the 
expansion (41) (the coefficients of which we now 
need not know) with -p, substituted for p,. Thus 
the relation serves to determine the emerging an­
gular distribution from the ingoing one. ll Equation 
(66) may therefore be called the "switching relation", 
or we may say that the integral operator in (66) 
represents the albedo operator for a half-space. 
A slightly generalized technique can be used to 
determine both the reflected and the transmitted 
angular densities for a slab, after the expansion 
coefficients are calculated. 

As an example of the use of Eq. (66), we consider 
the albedo problem, defined by the boundary condi­
tions 

lex, p" f{J) ~ 0, x~ (Xl. 

(+67) 

(68) 

The azimuthal Fourier expansion 13 may be written as 

N 

lex, p" f{J) = L (2 - ~om)1"'(X, p,) 
... -0 

X (1 - l),"/2(1 - p,~)"'/2 cos m(f{J - f{J0) 

+ ~(p, - p,o)e-,"/II{ O(f{J - f{J0) - i1l' 

X "ta (2 - ~om) cos m(f{J - f{J0)]' (69) 
= A +(v)r(v)vH(v) (1 - l)-m ~(v - v'), 

v, v' E (0, 1). (65) The boundary condition for 1'" is 

The three equations (61), (63), and (65) are all 
we need in several typical half-space problems for 
calculating the expansion coefficients in (40). It 
might also be mentioned that these equations sim-

18 I. Kuscer and N. J. McCormick, Nucl. Sci. Eng. 23, 
404 (1965). 

1"'(0 ) - ~(p, - P,o) 
,p, - 211'(1 - p,~)m (+70) 

According to Eq. (41), where now f 0, we 

19 G. J. Mitsis, Nucl. Sci. Eng. 17, 55 (963). 
10 N. J. McCormick and M. R. Mendelson, Nucl. Sci. 

Eng. 20, 462 (1964). 
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substitute 1"'(0, p.') for "'(p.') in the switching rela­
tion (66) and obtain 

["'(0, -p.) 

(+71) 

The entire emergmg angular distribution is then 
given by 

N 

[(0, -p., cp) = 2p.o L: (2 - 50m)Hm(p.)H"'(p.o) 
7rP. m-O 

x cr(-p., p.o)(1 - l)m/2 

X (1 - p.~)m/2 cos m(cp - CPo). (+72) 

The functions 

47rp.(2 - 50",)1"'(0, - p)(1 - l)m/2(1 - p~)"'/2 

and 47rp[(0, -P, cp) for p > ° equal Chandrasekhar's 
sm(p, Po) and S(p, cp; Po, CPo), respectively. In terms 
of these functions, relation (66) and its azimuth­
dependent generalization can be derived by physical 
intuition, as shown by Chandrasekhar. l 

The reciprocity theorem of Chandrasekhar says 
that p1"'(O, - p) is a symmetric function of p and 
Po, so that 

An expression similar to (71) has already been 
derived by Busbridge/ namely 

["'(0 _ ) = PoH"'(p)H"'(po) 
,p 47rCJ.! + Po) 

N 

X L: (-I)I+"'c";q";(p)q";CJ.!o), (+74) 
1-", 

where q";(p) are polynomials. We conclude that 

2p-l(p + Po)rj)"'(-p, Po) 

= g";(-p, Po) - (p + Po)B(-p, Po) 

N 

= L: (-I)I+"'c";q";(p)q";(po). 
1-", 

(75) 

Pahor17 has recently found a practical method for 
obtaining Busbridge's q";, so that B could then be 
constructed from (75). 

IV. THE NONABSORBING MEDIUM 

In the case with no absorption ('UYo = 1 and there­
fore ho = 0), the azimuth-independent problem 
(m = 0) requires special consideration because 
Vl and -Vl merge at infinity. The approach when 
'UYo ~ 1 is like Vl ~ [hohlrl. Consequently, two of 
the eigenmodes become identical, 

(76) 

A new linearly independent eigenmode arises in the 
following way: 

lim !hlvl[<P( -Vl, p)e~/" - <P(Vl, p)e-~/"] 

(77) 

Once again we are omitting the superscript (m = 0). 
The function A(z) now has a double zero at in­

finity, and we see from Eqs. (27) and (38) that 

'110 = 1, f30 = 1, (78) 

The value of '112 now becomes important and is 
given by the equation3 

1 N hi 
'112 = 3" n 2l + l' (79) 

The polynomials gl(v) are of order l - 2 instead 
of l. Therefore, the polynomials K,(z) as defined 
in Eq. (49) are of maximum order N - 3 or l - 1, 
whichever is greater; if N ::; 2, Ko vanishes. Ob­
viously the lowering of the order destroys the pre­
viously assumed linear independence of the K ,. 
However, because the maximum order of L(v, v') 
now is only N - 2, it is sufficient to assume that 
linear independence holds after anyone of the 
K/s, l = 0, 1, ... N - 2, is omitted. Under this 
assumption, the expansion (57) exists, but it is 
not uniquely determined. 

Except for the ensuing ambiguity in B(v, p), 
we can now take over from the previous section 
the formulas for the eigenfunctions <pCv, p), with 
the exclusion of the limits of <P(Vl, p) and ¢(Vl' p). 
The corresponding relations for the latter functions 
will be derived separately. 

By using v = Vl in Eq. (61), we obtain in the 
limit 

(80) 

This gives us a supplementary condition upon 
B(v, p). After the expansion (56) is inserted into 
(SO) with v > 0, we have 

N-l 

KoCv) + L: BI(V)k l = 0, (81) 
1-0 

where 

k, = ~~l v1K1(Vl) = { P,(p.)pH(p) dp. (S2) 

We assume that condition (81) and Eq. (57) de­
termine B(v, p) uniquely. For example, for N = 2, 
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we find in this way 

B(v, IL) = 3:2 
(:: - IL)· (83) 

From Eq. (61), supplemented by (80), we see 
that the switching relation (66) remains valid, with 
1/t(IL) defined as before. 

We also have to introduce 

cblCIL) == lim cb(v1, IL) = U1 + b(IL)], (84) 
wo ..... l 

where 

b(lL) = lim vIB(Vl' IL). 
zao-l 

Equation (61) shows that 

f c/J(v, lL)cbl(IL)ILHCIL) dlL = -H(~v) ~l(V)e(V). 
Then, using the expansion 

N-2 

b(lL) = L b,P,CIL), 
1-0 

we derive from (86) with v > 0, 
N-2 

Ko(v) + L: bIKI(v) = 0, 
1-0 

(85) 

(86) 

(87) 

(88) 

which determines cbl(lL) up to a constant factor. 
This constant will now be evaluated from the nor­
malization constant corresponding to (63) for i = 1. 

First, we derive from the recursion formula for 
gl(v) that 

• I 2n - 1 
~~ gl(V1)PI(VI) = IT h,.· (89) 

It follows by inductive reasoning that 

. N2n+1 1 
hm Y(Vl' VI) = II h = h ' 
"0-1 n-I ft 1 'f12 

(90) 

in view of Eq. (79). Finally, from (63), with (25) 
and (36), 

f cblCIL)ILH(IL) dlL 

(91) 

Equations (88) and (91) determine the b,'s, and 

evaluate integrals involving JJ.Ci). From Eqs. (77) 
(with x = 0) and (61), we find 

f ILcb(v, IL)ILH(IL) dlL 

2 

= - H( -v) e(v) - jhl{31~1( -v), (93) 

where we have used Eq. (36) and the symmetry 
relation (73), with an obvious generalization in the 
variables. Equation (93), together with Eqs. (80), 
(86), and (91), represent a set of additional formulas 
needed for 'Ci70 = 1. 

For the integral 

C == f ILcblCIL)ILH(IL) dlL (94) 

no expression like the ljh\{31 in Eq. (91) has been 
found, so we have to evaluate it in terms of the 
moments of the H-function, which must be com­
puted anyway. 

As an example, we consider some results for the 
Milne problem, for which 

1(0, IL) = 0, 

lex, IL) r-..J x, 

We now have the expansion 
M 

(+95) 

(96) 

lex, IL) = !(h1x - 31L) + !a1 + L: a,.q,(vi' p.)e-:Z:/>I 
j-2 

+ f A(v)c/>(v, p.)e-:z:I • dv. (97) 

The two leading terms in (97) give the asymptotic 
density 

(98) 

which vanishes at the extrapolated endpoint, x = 
-zoo After al is evaluated by applying (86), (91), 
and (94) to the expansion (97) for x = 0, we find 

(99) 

To determine the angular density emerging at 
x = 0, we use the switching relation (66) and Eq. 
(93) to show that 

1(0, - p.) = hl{31H(IL)cbl(IL). (+100) 

hence the function cbl (p.). As an example, we quote With expression (92) inserted, this equation re-
the result for N = 2: produces a result of Chandrasekharl for N = 2. 

(92) 

With respect to Milne's problem where the eigen­
mode (77) appears in the expansion, we also need to 

v. CALCULATIONAL SCHEME 

As shown by the two examples in Secs. III and 
IV, the final solutions of standard half-space prob-
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lems can be expressed in closed form by the H­
functions and the adjoints (r(v, p.). The latter in­
volve the polynomials Bm(v, p.), the coefficients of 
which have to be computed numerically. Only for 
the simplest cases (i.e., for N - m = 0 or 1, and 
for N = 2 if Wo = 1, m = 0) is it practical to ex­
press the B"'(v, p.) directly in terms of the coefficients 
WI of the scattering function. Even then the H­
functions and a few of their moments have to be 
calculated numerically for each particular scatter­
ing law of interest. 

For any scattering law, numerical computations 
could proceed according to the following scheme. 
First, the coefficients of g";(v) are found from Eqs. 
(17) and (19). [The coefficients for g~(v) are ex­
plicitly known.3

] This enables us to express A "'(z) 
from Eq. (22) either numerically or in terms of the 
function tanh-1 (Z-I). The discrete eigenvalues v7 
are then determined from (21). (For v~, Holte's 
power series3 could be used if absorption is weak.) 
The values [dA"'(z)/dz] ••• , .. are also to be computed. 
Similarly, A"'(v) and the boundary values are found 
in terms of tanh-1 (v) through Eqs. (14) and (24), 
respectively. 

The functions Hm(p.), 0 :::; p. :::; 1, and the values 
of Hm(vi) can be computed either from the non­
linear integral equation/· 21

•
22 Eq. (33), or from 

the closed-form expression (28). A modified form 
of the latter, probably better suited for computa­
tion, is17 

[ 1 11 A "'+(v) {I I} ] 
X exp 21ri ° In Am-(v) v + p. - -; dv , (101) 

All further computation makes use of the numeri­
cally computed moments a': of the H-functions, 
defined in Eq. (39), for n = 0, 1, ... 3(N - m). 
In an obvious way, the quantities f3";. of Eq. (37) 
may then be calculated for n = 0, 1, .,. (N - m). 
[For Wo = 1 and m = 0, only the moments a~, 
n = 1, 2, ... (3N - 2), and the f3~, n = 1, 2, .. , N, 
are required.] Numerical accuracy may be checked 
by use of the identities (38). 

With the values of a': and f3':, the coefficients 
of the polynomials K";(v), l = 0, 1, ... N, easily 
follow from (49). Linear independence should then 
be verified. Finally, after calculating the coefficients 
of Lm(v, v') from Eq. (52), the determination of the 

21 T. W. Mullikin, Astrophys. J. 139, 1267 (1964). 
22 S. Pahor and 1. KuSiier, Astrophys. J. 143, 888 (1966). 

coefficients of B"'(v, p.) is carried out using Eq. (57). 
For Wo = 1, m = 0, Eq. (81) must also be used to 
find BO(v, p.). In this event, some additional work 
is required for the determination of the coefficients 
of b(p.) from Eqs. (88) and (91). 

The determination of the K- and L-polynomials 
could be avoided if the Busbridge polynomials 
q";(p.) are determined by the method of Pahor. 17 The 
coefficients of Bm(v, p.) would then be found by use 
of Eq. (75). 
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APPENDIX. REMARK ABOUT FULL-RANGE 
ORTHOGONALITY RELATIONS 

As shown by Mika,u Eq. (10) immediately leads 
to full-range orthogonality of the full set of eigen­
functions, with the weight function p.(1 _ p.2)"'. 
In particular, for v, v' E (-1, 1), 

['1 q,(v, p.)q,(v', p.) p. dm(p.) 

= A + (v) A -(v)v(l - v2
)-.. ~(v - v'), (AI) 

where the superscripts m are again omitted. To this 
we can add a convenient expression for the nor­
malization constants for the discrete eigenfunctions: 

['1 [q,(±Vj, p.)yp. dm(p.) 

= ±!v~g(Vj, v;)[dA(z)/dz] ••• ,. (A2) 

These relations enable us to solve the problem 
of a plane source in an infinite medium. 

The proof of the last relation is obtained by 
applying the reasoning of Sec. III to full-range 
integrals. Denoting the various functions modified 
in this sense by the same symbols as in that section, 
we introduce first 

Jl g(z, p.) ~(z', p.) p. dm(p.) == J(z, z'). (A3) 
-1 z - P. Z - P. 

After a partial fraction analysis, J can be expressed 
in terms of the integrals 

(A4) 
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Analysis similar to that leading to Eq. (4S) then 
shows that 

where KI(z) is again a polynomial. We have 

PI(P.) and Eqs. (16) and (17) show that 

KI(v) = 2t~ 1 gl(v), (A7) 

Therefore, proceeding as in Sec. III, we finally 
find that 

(A6) J(z, z') = -~ [g(z, z')A(z') - g(z', z)A(z)]. (AS) 
Z - z 

whenever v is an eigenvalue, as shown by the aid 
of Eqs. (21) and (24). The recursion formula for 

10URNAL OF MATHEMATICAL PHYSICS 

After we substitute z = ±Vi and carry out the 
limit z' ~ ±v;, Eq. (A2) immediately follows. 
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In this paper, a model of a paramagnetic impurity in a semiconductor (or of an F' center in an alkali 
halide) is proposed. It is an exactly soluble form of the quantum-mechanical 3-body problem. Specifi­
cally, we deal with 2 interacting particles in any number of dimensions in an attractive external 
potential, and present the qualitative features of the resulting eigenvalues and eigenfunctions. We 
find algebraically the conditions for a magnetic moment to appear (e.g., for an F' center to become 
unstable with respect to an F center) and discover that even a large 2-body electronic repulsion U 
does not cause a moment to appear when the one-electron bound state orbits about the impurity are 
sufficiently great. Conversely, in the case of small, tightly bound orbits, beyond a certain value of U, 
the impurity does in fact become magnetic in the ground state. Using the exact ground-state solution, 
we show that a perturbation-theoretic expansion in powers of U has a finite radius of convergence. 

1. INTRODUCTION 

T HE problems associated with magnetic im­
purities in metals have received a great deal of 

attention,t but are still far from reaching a rigorous 
solution. By contrast, we have readily found an 
.exactly soluble model of paramagnetic (donor or 
:acceptor) impurities in semiconductors, which can 
be rigorously analyzed over an entire range of param­
.eters with rather interesting results. The present 
paper is the first report on the theory of this model, 

• This work was supported by the United States Air Force 
.office of Scientific Research under Grant AFOSR-I07566 
(D. M.) and AFOSR-71364, 50866 (E. L.). 

t Present address: Physics Department, Northeastern 
University, Boston, Massachusetts. 

1 The quantum- and statistical-mechanical aspects have 
-been discussed by P. W. Anderson, Phys. Rev. 124,41 (1961), 
.and recently extended by, among others, A. C. Hewson, Phys. 
Rev. 144,420 (1966), and by J. R. Schrieffer an~ D. C. Mattis, 
. ibid. 140, A1412 (1965). Transport propertIes have been 
:anal;vzed by J. Friedel, Metallic Solid Solutions (W. A. 
,BenJamin, Inc., New York, 1963), and most recently by 
D. J. Kim, Phys. Rev. (to be published). 

giving features of the eigenstates and of the mag­
netic properties. Quantitative numerical results as 
well as transport properties (i.e., scattering cross 
section), statistical mechanics, and other features of 
this model will be reported later. 

It has long been known that the Coulomb re­
pulsion among electrons in impurity states of a 
semiconductor cannot be safely neglected. More 
than eleven years ago Brooks2 wrote, "... band 
(i.e., Bloch) states have the property that the cor­
responding wavefunctions are spread throughout the 
crystal. Thus there is practically no price, in terms of 
extra electrostatic interaction, for putting two elec­
trons in the same (Bloch) state. This is the condition 
for the applicability of Fermi statistics in its simple 
form. In the case of localized states, however, a 
very different situation obtains. Even though an 

2 H. Brooks, Advances in Electronics and Electron Physics, 
L. Marton, Ed. (Academic Press Inc., New York, 1955), 
Vol. VII. See also C. Kittel, Introduction to Solid State Physics 
(John Wiley & Sons, Inc., New York, 1956), 2nd ed., p. 359. 
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electron may be allowed two directions of spin in a 
localized state, once the state is occupied by an 
electron of either spin, it cannot then be occupied 
by an electron of opposite spin, because the elec­
trostatic repulsion of the two localized charge dis­
tributions would raise the energy of the second 
electron ... ". If only a single electron can be bound 
to the impurity, the latter is perforce a paramagnetic 
impurity of one Bohr magneton. The present model 
is designed to explain precisely how this single 
binding mayor may not occur. 

Several superficial difficulties have to be overcome 
in the process, for, in general, the problem of two 
interacting particles in an attractive potential well 
(such as the two electrons in helium atom or in the 
hydrogen molecule) has no solution in closed form. 
Fortunately for us, the present calculation for the 
solid is more tractable than the usual two-electron 
problems, and it is possible to obtain an explicit 
solution in closed form, as we show below. 

In all such problems involving two electrons, one 
readily proves3 that the ground-state wavefunction 
is nodeless; it then must be symmetric under inter­
change of the spatial coordinates of the two particles, 
and it must belong to spin S = O. Does this preclude 
magnetic behavior? The answer, surprisingly is no, 
provided the 2-particle repulsion U exceeds a critical 
magnitude U •. In that case, one of the electrons is 
ionized and the energy splitting between the ground 
state and the lowest S = 1 state ceases to be finite 
and becomes O(N-2

), where N = number of atoms 
in the crystal. The ground state can then be taken 
as an arbitrary combination of triplet and singlet, so 
that, in effect, there is one Bohr magneton localized 
on the impurity, and one uncorrelated Bohr mag­
neton on the second, wandering, particle. The net 
localized spin of the impurity is then 1JLB, the largest 
value attainable in the present model. One of the 
results obtained below is an expression for U. in 
terms of the one-electron parameters (viz., band 
structure and binding energy of the impurity poten­
tial well). When U. is infinite, then the impurity 
is always entirely nonmagnetic. 

a E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962). This 
theorem and its consequences are discussed also in D. Mattis, 
The Theory of Magnetism (Harper and Row, Publishers, Inc., 
New York, 1965), Chap. 4. The 2-electron problem considered 
earlier by J. C. Slater, H. Statz, and G. F. Koster, Phys. Rev. 
91, 1323 (1953), also indicated that, without Hund's rule 
coupling, the ground state belongs to S = 0, on the basis of 
a model similar to the present model with v "" O. A different 
but also exactly soluble model of two electrons in an harmonic 
oscillator potential, interacting by Coulomb repulsion, was 
solved by N. Kestner and O. Sinanoglu, Phys. Rev. 128, 2687 
(1962). Their interesting result cannot be directly compared 
with ours, however, because it has no scattering state, no 
unbound solution, and no magnetism. 

After the present manuscript was essentially com­
pleted, strong experimental evidence for the existence 
of such paramagnetic impurities in n-type InSb was 
reported by Katayama and Tanaka4 (viz., the ex­
istence of a resistance-minimum anomaly such as 
have been commonly observed in metals containing 
paramagnetic impurities, but much larger than in 
these metals). An earlier indication of this was 
provided by work on the thermoelectric power by 
Khosla and Sladek.~ Both series of experiments 
were preceded by a theory due to Toyozawa,4I based 
on the Hartree-Fock approximation. As we see 
below, this approximation can only be valid for very 
deep donor levels. 

As another application, we recall that the F center 
consists of an electron bound to a vacancy in an 
alkali-halide crystal, whereas the F' center consists 
of two electrons bound to the same vacancy. The 
energetic stability and capture cross section of the 
F' center for the second electron may also in prin­
ciple be calculated by the present methods, extending 
recent approximation schemes.6 

2. DESCRIPTION OF THE MODEL 

In this section, we describe the general model and 
its general solutions, explaining the steps whereby 
the latter are obtained. In the following section a 
one-dimensional example is explicitly worked out 
using this method. 

For definiteness, we discuss a donor-type impurity 
and 2 electrons in the conduction band of a semi­
conductor. (The analysis for an acceptor-type im­
purity and 2 holes in the valence band is, mutatis 
mutandis, formally identical.) The electrons move 
from one Wannier site to the next, with overlap 
matrix elements K(R. - R;). The band structure, 
given by the Bloch energies E(k) (the Fourier trans­
forms of the K's) is therefore 

E(k) = ~ ~ K(R. - R/) cos k·Ro/' (2.1) 
'.1 

In addition, there is the potential of an impurity 
at the origin: -v(R.) which is assumed to be deep 
enough to have one and only one bound state. 

[If the potential has no bound state there can 
be no localized spin, as the probability that 
either of the two electrons is in the vicinity of 

, Y. Katayama and S. Tanaka, Phys. Rev. Letters 16, 129 
(1966); R. Khosla and R. Sladek, Phys. Rev. Letters 15, 1521 
(1965). 

5 Y. Toyozawa, J. Phys. Soc. Japan 17, 986 (1962). [See 
parenthetical statement after Eq. (2.22).] 

6 S. Y. La and R. H. Bartram, Phys. Rev. 144,670 (1966), 
and references therein. 
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the impurity is just O(IIN) ,...., zero. (This is 
quite different from the cases of interest in a 
metal, where electrons are always available 
in the vicinity of any site.) When the potential 
has two or more bound states, the analysis be­
comes more complicated than envisaged in the 
present calculation but it can be done. A sum­
mary of our findings in the more complicated 
situation is this: if the bound states are a degen­
erate set, then the 2-electron ground state of the 
impurity is likely to be a triplet or doublet 
magnetic state, in agreement with Hund's rule. 
Otherwise, the impurity is generally a nonmag­
netic singlet for all values of the two-electron 
repulsion. This situation, descriptive of multi­
level traps such as gold in germanium, can in 
fact be handled by the present methods although 
we do not further consider it in the present 
paper.7] 

Before introducing the two-particle interaction, 
let us solve for the one-electron eigenstates for the 
band structure (2.1) in the presence of the impurity 
potential -v. This can always be done by straight­
forward methods (an explicit solution in the one­
dimensional case is displayed in the following section) 
and results in a set of orthonormal eigenfunctions 
labeled by an ascending quantum number r = 0, 1, 
2, ... and spin quantum number m = ±!: 

4> ..... = L f.(Ri)cr .... I 0) (2.2) , 
with energy eigenvalues: e.; 

r = 0 for the bound state, r = 1, 2, 
for continuum states, arranged in the se­
quence e. :::; e.+l, and interlacing the Bloch 
energies f •• (2.3) 

Two-particle states are merely antisymmetrized 
product states, 

.p~.";, .. ,,, = 2-!{[L f.(R,) L f.·(R;) 
& i 

± L f.(R;) L f.·(R i)]}cr .... c1 .... • I 0) (2.4) 
i i 

with energy eigenvalues: 

E(r, r') = e. + e~; r = r' = 0 for the two­
particle bound state, r = 0 and r' ~ 0 (or 
vice-versa) for the one-particle bound state, 
and r ~ 0 and r' ~ 0 for the completely 
ionized states of the impurity. (2.5) 

7 For more background into the one-electron problem, the 
nature of the bound states, etc., we refer to G. F. Koster and 
J. C. Slater, Phys. Rev. 95,1167 (1954); ibid. 96,1208 (1954); 
and M. Lax, ibid. 94, 1391 (1954). Interaction with field bands 
is discussed by L. J. Sham, Phys. Rev. ISO, 720 (1966). 

Of all these two-particle states, only the one-particle 
bound states possess a localized magnetic moment of 
one Bohr magneton, the others having a localized 
magnetic moment which is either identically zero 
(two-particle bound states) or virtually zero, O(IIN), 
(for the completely ionized states). 

The two-particle eigenstates in presence of the 
two-particle interaction can be written as 

<I> = L F(R" Rj)c~.mc1.m· I 0), (2.6) 
i.j 

and are antisymmetric or symmetric under the 
interchange of Ri and R; according to whether they 
belong to eigenvalue S = 1 or S = 0 of total spin. 

We obtain the correct F's by a Green's function 
technique. First we write the complete two-body 
Green's function, 

G ( .. I '1 '/) - "f~(1,,)f~· (j)f.(i/)f.·(j') 
E 2} 1,} - "'-' E 

r,r' - e,. - er , 
(2.7) 

and then, in terms of the repulsive two-body inter­
action U(R;, R;) ;::: 0, we obtain 

F(i}) = .~. U(i', jl)GE(i' j' I iJ)F(i' j'), (2.8) .. , 
a system of linear coupled equations which are to 
be solved for the wavefunction F and the energy 
eigenvalue E. If U is nonvanishing over the entire 
crystal, this poses an intractable problem which 
must be solved by any of the variety of approximate 
techniques used in scattering theory. Although it is 
justified to neglect this long-range interaction, there 
are good reasons, outlined by Anderson,l not to 
neglect the Coulomb repulsion near the impurity. 
There, the atomic orbitals, hence the Wannier or­
bitals, tend to be more compact, and the electro­
static repulsion cannot be ignored, particularly in 
the case of magnetic atoms. If U is nonvanishing 
over Z distinct sites in the neighborhood of the 
impurity (located at the origin), the solution of 
(2.8) reduces to a Z2 X Z2 determinantal equation . 
In what follows, we assume the simplest model, II 
i.e., an interaction only at the origin [i.e., Z = 1, 
with U(O, 0) == U, and U(i, j) = 0 for R. and R; 
not both at the origin]. 

With the assumption of such a local repulsion, 
the wavefunctions are explicitly given as 

F(iJ) = UG(OO I iJ)F(OO). (2.9) 

We immediately note that all the antisymmetric 
solutions (i.e., the triplet states, in addition to those 

8 The simplest model displays the qualitative features of 
the general model; we have also determined that Anderson's 
model l yields similar results in the present context, when a 
one-particle bound state exists. 
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E 

2eo 

~ma!'lnetic~ 
region 

FIG. 1. Energy eigenvalues as fu~ctions of rep~lsive 2-b<!dy 
interaction U. Lowest singlet solutIon Eo and tnplet solutIOn 
E merge for U > U. resulting in a localized moment of 
1 \'B' The dotted-line '(spurious) indicates solution of Eq. 
(2.17) in range U > U •. Note that, although curve shown 
does not indicate it, dEoldV = 0 whE;n U = U c. ~nge of 
energies above E, is I-particle scattenng states contmuum. 
Shaded range labeled "continuum" refers to the 2-particle 
scattering states. 

singlet states which have a node at the origin) 
have the unperturbed energy eigenvalues 

E = e. + e., (2.10) 

thus compensating the vanishing numerator in (2.9) 
by a vanishing denominator. These wavefunctions 
are given in (2.4). Excluding such trivial solutions 
from present considerations, let us now consider 
those solutions for which F(OO) F O. First, we 
calculate the magnitude of this parameter required 
to normalize the wavefunctions: 

1 = :E IF(ij) 12 
"i 

= IF(OO)12 u2 :E 11.(0)1 •. (0)1
2 

2 , 

.,.' (E - e. - e.,) 

i.e., 

F(OO) = {U2 :E 11.(0)1.,(0)1
2 2}-1, (2.11) 

• ,.' (E - er - er .) 

where we have made use of the orthogonality 
relation, 

2: f~(~)fr'(~) = O.,r" (2.12) 
• 

Next we solve for the eigenvalues E by setting 
R. ::: R j = 0 in the eigenvalue equation (2.9) and 
obtain: 

.1 = 2: 11.(0)1.,(0) 12 
U •. r' E - e, - er , 

(2.13) 

This is a standard eigenvalue equation with the 
usual interlacing properties: there is an eigenvalue 
E between each pair of neighboring unperturbed 
energy levels E(r, r') given in (2.5). Thus all but 
one of the energy levels may be displaced by at 
most O(1IN), no matter how large U is allowed to 
become. The exception is the 2-particle bound state,. 
which corresponded to r = r' = 0 for the unper­
turbed electrons. If we denote its energy eigenvalue 
by Eo, we must have 

(2.14) 

The first inequality reHects the fact that a repulsive 
interaction can only raise the energy,9 and the 
second is proved by setting Eo = eo + el - x. As 
x is varied from the value e, - eQ to zero, the right­
hand side of (2.13) varies from + co to - co, which 
ensures that at some intermediate value a solution 
to the equation must exist. 

What we are to discover is that, in the limit 
N -l> co the range of x required to change the right­
hand side of (2.13) from some finite positive value 
to - co is only O(1IN). Consequently, the solution 
Eo of (2.13) must have the general features shown 
in Fig. 1: it is an increasing function of U below a 
certain value denoted Uo• For values of U larger than 
this, Eo = eo + e1 = const, in the limit N -l> co. 

As a result, the ground-state energy is a nonanalytic, 
albeit continuous, function of U at U = Uc, which 
defines U. as: precisely the magnitude of the repulsive 
potential required to singly ionize the impurity. 
Thus, for U ~ U., the impurity possesses a magnetic 
moment of one Bohr magneton. 

The above is not a general property of the above 
eigenvalue equation, but follows, rather, from de­
tailed consideration of both numerator and denom­
inator in this equation. We find it important to 
consider the normalization of the unperturbed states 
fr(i), so as to find their amplitudes at the origin, 
and we find that the continuum states behave 
differently from the bound state in one very sig­
nificant way . 

Thus, we note that, while the bound-state ampli­
tude at the impurity site is 10(0) ,...., 0(1), the scat­
tering-state amplitudes are O(N-i), and we there­
fore write 

r ~ 1, (2.15) 

9 Differentiating (2.13) with respect to U yields dEl dU 
~ 0 for all eigenvalues E. 
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which defines nCr) a quantity 0(1). The eigenvalue 
.equation (2.13) now reads 

1-. = 110(0) 14 + 110(0) 12 ~ L: n
2
(r) 

V E - 2eo N .~l E - eo - e. 

+ (1)2 L n
2
(r)n

2
(r'). (2.16) 

\N .~l E - e. - e., 

In solving this equation for Eo, it is permissible to 
proceed to the limit N __ CX) and replace sums by 
integrals, provided Eo does not exceed El == eo + el' 
Let us define U. as that value of U for which Eo = 
E 1 • Then, Eo = El for the entire range U. :::; U:::; CX), 

whereas for U < U. the correct solution is obtained 
-from the equation 

1-. = 110(0) 14 + 2 110(0) 12 J dr g(r)n
2

(r) 
U Eo - 2eo Eo - eo - e(r) 

+ 11 dr dr' g(r)g(r')n
2

(r)n
2

(r:) U < U (2.17) 
Eo - e(r) - e(r) , - c, 

where g(r) == density of states factor required to 
-change a sum to an integral. 

If we interpret the integrals as principal parts 
integrations, this equation also has a (spurious) 
flolution for Eo in the range U > U., indicated by 
the dotted line in Fig. 1, which merely shows that 
the limiting process N __ CX) must be taken carefully, 
-for we have already seen that the correct solution 
in this range is Eo = E 1 • 

We may also examine the results of perturbation 
theory, by expanding the exact solution in powers 
Qf U. Letting 

Eo = 2eo + y 

define the energy shift y, we readily solve for this 
quantity in (2.17): 

11 = 110(0) 14 U(1 - UQ)-l 

= 110(0)1' U(1 + UQ + ... ), 
where Q, the correlation terms in (2.17), are given by 

Q = 2 110(0) 12 J dr g(r)n
2

(r) 
Eo - eo - e(r) 

+ 11 d d' g(r)g(r')n
2
(r)n

2
(r') 

r r Eo - e(r) - e(r') 

and, in the Rayleigh--8chrodinger perturbation the­
my, may be evaluated using approximate values 
Qf y, computed to the desired order in powers of U. 
Clearly, the expansion ceases to exist, and perturba­
tion theory becomes meaningless, once 

u IQI ~ 1. 

The Brillouin-Wigner perturbation theory, in which 
Q is not approximated, appears to have a somewhat 
larger radius of convergence. Further examination 
of this point would be of interest, but is outside 
the scope of the present investigation. 

We now proceed to a very useful simplification, 
which enables the double integral in (2.17) to be 
formally eliminated from the theory. This is es­
pecially valuable for numerical computations. 

Simplification of some Integrals 

We define IN(Wo) as 

_ 1" n2(r) 
IN(Wo) = -N L.J W _ ' 

.~l 0 e. 

and the limiting function I(Wo) == I.,(Wo) as 

I(Wo) = - J dr g(r)n
2

(r) • 
Wo - e(r) 

(2.18) 

(2.19) 

The negative signs are introduced to make I > O. 
Next, we consider the ground-state eigenvalue Wo of 
the one-electron Hamiltonian with the original im­
purity potential -vCR;) plus a perturbing one-body 
potential AO; ,0 added thereto, resulting in -vCR;) + 
AO; ,0' It may be assumed7 that we know Wo as a 
function of A, or conversely, that we know A(Wo) 

[this is of course easiest if vCR;) itself was nonvanish­
ing only at the origin, as in the example of the fol­
lowing section]. At any rate, we know Wo :::; e!. We 
may use the one-body Green's function to obtain 
the integral equation, 

_1_ = 110(0) 12 + 1.. L n
2
(r) 

>,(Wo) Wo - eo N .~l Wo - e. 
(2.20) 

by complete analogy to the preceding calculation. 
But now we have the advantage of knowing Wo and 
A(Wo), and thus can solve for 

IN(Wo) = 1fn(0) 12 __ 1_ 
W o - eo >,(Wo) 

(2.21) 

and we may also easily take the limit N -- CX) to 
obtain I(Wo) therefrom. Substitution into (2.17) 
yields the following, simplified, equation1o 

1. _ Ito(O) 12 J n2(r) 
U - >.CEo - eo) + dr g(r) >'(Eo - e.) , (2.22) 

10 For comparison with other results and recent theories, the 
following references may be useful: L. D. Fadeev, Mathemati­
cal A8pect8 of the Three-Body Problem in the Quantum Scat­
tering Theory (Danial Davey & Company, Inc., New York, 
1965); J. Callaway, J. Math. Phys. 5, 783 (1964), and Phys. 
Rev. 140, A618 (1965); G. V. Skorniakov and K. A. Ter­
Martirosin, Zh. Eksperim. i Teor. Fiz. 31, 775 (1956) 
[English trans!.: Soviet Phys.-JETP 4, 648 (1957»); L. 
Eyges, J. Math. Phys. 6, 1320 (1965). 
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which is the desired alternate, and fully equivalent 
version of (2.17). 

[Equation (2.22) may be (crudely) interpreted as 
an effective, Hartree-Fock type, one-body repulsion, 
given by a constant X(W), 

X = u 110(0) 12 

with the integral in (2.22) representing the 
effects of correlations. We see that the Hartree­
Fock approximation would be exact if U were 
replaced by a smaller interaction (the integral 
can be shown to be negative) 

0= {U- 1 
- J dr g(r)n2(r)/X(Eo - e(r»} -1 < U, 

but since this involves an integral over the "ef­
fective coupling constant" X, 0 is in general 
just as difficult to obtain as an exact solution to 
the problem. Note that, when v is much larger 
than the band width, the correlation energy 
becomes negligible and the Hartree-Fock theory 
is correct for all values of U.1 

3. LINEAR CHAIN AS EXPLICITLY SOLUBLE 
EXAMPLE 

The appearance of a localized magnetic moment 
in the one-dimensional case is all the more striking 
because of the theorems3 that the ground-state 
magnetic moment vanishes. For this reason, it would 
be of great interest to generalize the present analysis 
to examine the case of more than two electrons, but 
we have not completely succeeded in this as yet. 

We consider the nearest neighbor coupling, i.e., 
K(O) = 1 and K(±a) = -! corresponding to the 
band structure 

e(k) = 1 - cos ka, (3.1) 

and an attractive potential localized at the origin 

-vCR-) = -vo- 0 'J t, , v 2:: O. (3.2) 

The one-particle eigenfunctions with a node at the 
impurity are simply 

( 2 )i. 
!,(n) = ~ sm k,n 

with energies independent of the interaction, 

er = 1 - cos k., 

where periodic boundary conditions imposes 

sin kr(!N + 1) = sin k,( - iN), 
which results in 

(3.3) 

(3.4) 

Precisely because of the vanishing amplitude at 
the impurity, however, these functions do not ap­
pear in the equations for the ground state of the 
interacting system. The even eigenfunctions are 
of course derived from the cosine functions and, 
introducing the phase shifts <{J" may be written as 

!,(n) = C;i cos (kr Inl + «J,). (3.6) 

The energy is also given by (3.4), but the wave vec­
tors kr must be recalculated. This is done by study­
ing the n = 0 amplitude equation 

er cos <{Jr = cos cP, - cos (kr + CPr) - V cos <{Jr' (3.7) 

We use (3.4) to eliminate er and obtain 

tan <{Jr = v/sin k" o S <{Jr S 7r. (3.8) 

Periodic boundary conditions give a second relation 
between <{J and k 

kr = (27rr - 2<{J,)/(N + 1), r = 1,2, .,. t tN. (3.9) 

In the limit N ~ co the normalization constants 
Cr are independent of r, and are given by 

Cr = tN. (3.10) 

So far we have N out of the total N + 1 eigenfunc­
tions; the missing one is the bound-state solution, 
which decays exponentially from the origin and is 
therefore independent of boundary conditions for 
large N. For an infinite chain, it has the form 

Io(n) = C;;-i exp -a In!, a 2:: 0, (3.11) 

hence an energy, 

eo=l-cosha (3.12) 

a finite amount below the continuum. The eigen­
value is once more determined by the n = 0 ampli­
tude equation 

eo = 1 - exp (-a) - v, (3.13) 

which, combined with the preceding, yields 

sinh a = V (meaningful only for v 2:: 0) (3.14) 

or 

eo = 1 - (1 + v2)i (note that eo < 0). (3.15) 

Finally one determines the normalization constant 

Co = 1 + 2 2: exp -2an = coth a. (3.16) 
.. >0 

All these formulas are valid to within an error 
O(exp -aN), and so should hold, with a reasonable 
choice of parameters, for all but the shortest chains. 

k, = 27rT/(N + 1), r = 1,2, .. , tiN. (3.5) Equations (3.6) and (3.8)-(3.10) yield t~ (0) [Le., 
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n2(r)] for the continuum states r ~ 1. The bound­
state amplitude at n = 0 is given by Eqs. (3.11), 
(3.14), and (3.16). The results are 

110(0) 12 = v/(1 + v~' 

[ 2 J-l 
and n2(r) = 2 1 + ~k 

SIn r 
(3.17) 

Finally, we can readily obtain X(Wo) required for 
the simplified form (2.22) of the eigenvalue equation, 
and find 

X(Wo) = v - [(1 - Wo/ - 1]'. (3.18) 

The eigenvalue equation in question now reads 

1 v 
U = (1 + v2)i(v - {[2 - (1 + V2)t - Eo]2 - l}l) 

11" dk (1 + v2
jsin2 

k)-1 
+;;: 0 v - [(2 - cos k - Eo)2 - l]l 

and must be solved for Eo only in the range 

2 - 2(1 + v2)! ~ Eo ~ 1 - (1 + v2
),. 

(3.19) 

(3.20) 

As U is increased from zero to a value U., Eo in­
creases from the left-hand value of the inequality 

u 

u 

ell 
c 
0) 

o 
E 
c 
o 
c 

-T-- ':::::::::" / 
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I / 
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~--~------~----------______ ~v 

FIG. 2. Schematic solution of Eq. (3.22) for one-dimensional 
model. For v ~ Vo no finite 2-body repulsion can magnetize 
the impurity ground state, which will always have a 2-body 
S = 0 bound state. For v > Vo, the impurity can be ionized 
(acquiring 1 Bohr magneton in the ground state) by U > U., 
where U. is the solid line shown. (Dashed lines indicate the 
asymptotes.) Region of magnetic behavior is indicated by 
shaded region above the curve U., which has its minimum 
value Umin at Vmin. The points v±(U) are defined in Fig. 3. 

0) ... 
III 
C 
Q) 

0) 

c 
"0 
c 

FIG. 3. Schematic solution of Eq. (3.22) for fixed inter­
particle repulsive potential, U, and variable attractive 
potential, v. Compare with Fig. 2, especially the points 
v_(U) and v+(U). Note that v_(U) is always greater than the 
fixed point Vo, regardless of the magnitude of U, and that 
v+ and v_ straddle Vmill •• Finally, note that one can easily 
prove that dEo/dv, as well as Eo, is a continuous function 
of v, and therefore (dEo/dv) = (deo/dv) at v = v±. 

to the right-hand value. For U greater than U., 
Eq. (3.19) is no longer valid and we have, 

Eo == 1 - (1 + v2)'(indl of U for U ~ U.). (3.21) 

[This is but repeating the observations made fol­
lowing Eq. (2.14.).] 

To obtain the magnitude of U., we replace Eo in 
(3.19) by the upper bound in (3.20): 

1 1 1 
U. (1 + V2)t + ;;: 

1.. dk (1 + v2/sin2 k)-1 
X 0 V - {[I - cos k + (1 + V2)ty _ I} i' (3.22) 

The solution is shown in Fig. 2. From this figure, it 
is clear that, if v is smaller than a certain value 
(denoted vo), then the right-hand side of (3.22) is 
negative, signifying that no value of the interparticle 
repulsion will ionize the impurity. This is further 
illustrated in Fig. 3. 

4. SUMMARY 

In examining the ground state of two interacting 
electrons about an attractive impurity, we found a 
variety of possible behavior (as summarized in the 
first two figures). Generally, there exists a finite 
critical repUlsive interaction U. such that, if U 
exceeds U., the two electrons cannot be simultane­
ously bound in the neighborhood of the impurity, 
and one of them spontaneously ionizes in the ground 
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state. When this is the case, only one electron, with 
its single Bohr magneton, is found in this neighbor­
hood. For U not exceeding U., however, the electrons 
are both bound to the impurity which therefore has 
net spin S = 0 in the ground state. 

However, for the linear chain, we have also found 
that, when the attractive impurity potential v is 
8ujJicienUy small (less than an amount vo, as shown 
in Fig. 2), no finite electronic repulsion can ionize 
the impurity, i.e., U. = 00. The reason for this is 
intuitively obvious; when the impurity potential 
is weak, the bound-state orbits are very large so 
that the charge clouds of the two electrons have 
very little interaction. It then requires little cor­
relation energy to keep the two particles out of each 
other's way in this limit, and the result is a non­
magnetic ground state for all values of the inter­
action U. In the opposite limit of very large attrac­
tive impurity potential v, the electrons become very 
tightly bound and require U ;;:: v to be ionized. 
(Here the approximate Hartree-Fock theory5.6 
should be most reliable.) There exists an optimum 
magnitude of v (denoted by Vmin, Fig. 2) requiring a 
minimal interaction energy U (denoted by min) to 
become magnetic. The detailed nature of these re­
sults must be modified somewhat if they are to 

apply to three dimensions, as bound states do not 
exist for arbitrarily small v, but otherwise qualita­
tively similar comments can be made in three di­
mensions on the basis of our exact results, Eqs. (2.13) 
or (2.16) and (2.17), or (2.22). 

Considering the simplicity of the present model, 
such a variety of behavior is truly surprising, and 
illustrative of the virtue of exactly soluble models in 
the analysis of the complex phenomena of electronic 
magnetism. Extensions of the present model which 
have some appeal might include the extension to 
more than two particles and/or more than one 
impurity, and, closer to the present analysis, an 
explicit quantitative calculation of the eigenvalues 
and eigenfunctions in three dimensions, and a cal­
culation of the anomalous scattering cross section~ 
in the magnetic case when U > U •. 

The capture cross section of traps may also be 
related to the two-body interaction, which provides 
a mechanism whereby one electron may become 
bounded by releasing its energy to a second carrier. 
The scattering properties in our model are, in any 
event, expected to have considerably more structure 
than in the one-electron theory of solids because 
of the two distinct continua, Fig. 1. We hope to. 
return to these topics subsequently. 
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The problem of acoustic scattering from a curved interface between two homogeneous media is 
formulated as two integral equations relating the normal velocity and the velocity potential at the 
interface. The equations are so chosen as to minimize coupling. When 'Y the ratio of the densities goes 
to zero, the equations decouple, one becoming the equation of a soft-boundary problem, the other of 
a hard-boundary problem. For small 'Y, an approximate solution is constructed by perturbation 
methods from solutions to the related soft- and hard-boundary probletns. 

1. INTRODUCTION 

MANY p:ac~ical ~coustics probl~ms can be satis­
factonly IdealIzed to scattermg from an in­

terface along which two homogeneous fluids are in 
direct contact. Frequently one medium is much 
more tenuous than the other but not so tenuous 
that 1', the ratio of the densities,t can be set to zero 
in reflection calculations. In other cases, as when the 
media are a gas and a liquid, l' is negligibly small in 
reflection calculations but important in calculating 
the transmission from one medium into the other. 

Thus motivated, we develop here a general integral 
equation formulation of time-harmonic acoustic scat­
tering from an interface of arbitrary shape between 
homogeneous media. We then specialize to the case 
of small l' and, by perturbation methods, construct 
an approximate solution in terms of the solutions 
to related soft- and hard-boundary problems. 

For complicated interface geometries, especially 
for problems which must be solved by numerical 
methods, it is much easier to calculate the first 
few terms of the perturbation series than to solve 
the coupled equations directly. Furthermore, the 
perturbation solution gives us a physical insight 
into the effect of varying 'Y. 

In Sec. 2 we introduce the integral equations for 
scattering in a single medium and the boundary 
conditions at an interface. From these we construct 
in Sec. 3 the minimal coupling integral equation 
formulation of the two-medium problem. The per­
turbation technique for small l' is developed in 
Sec. 4. Then, in Sec. 5, we work out a simple example, 
scattering of a plane wave incident on a plane in­
terface from the tenuous side; in this case the 
perturbation series converges provided the angle of 
incidence is not too close to grazing. 

To avoid unnecessary mathematical detail, we 
limit our discussion a priori to well-defined physically 
meaningful problems with unique solutions. Further­
more, we consider only interfaces sufficiently smooth 
and source functions sufficiently well-behaved so 
that we can use without modification the theorems 
on limits of potentials given by Kellogg in his 
classical treatise2

; the most important constraint 
thus imposed is that the interface must have con­
tinuous curvature. 

Harmonic time dependence e-;"" is to be under­
stood everywhere. 

2. BASIC EQUATIONS AND BOUNDARY 
CONDITIONS 

The Field in a Homogeneous Region 

Consider a volume V bounded by surface S with 
outward normal no. Let the volume be filled with a 
homogeneous medium of density p in which the 

More specifically, we first formulate the general 
two-medium problem as two coupled integral equa­
tions, the unknowns being the normal velocity and 
the velocity potential at the interface. The formula­
tion is optimized to give minimal coupling of the 
two equations. When l' goes to zero, the equations 
decouple, one becoming the equation for the field 
in the dense medium with a soft boundary, the other 
becoming the equation for the field in the tenuous 
medium with a hard boundary. For smaH 1', the 
decoupling is not complete; however, by expanding 
the fields in formal power series in 'Y and collecting 
terms of the same order, we obtain a sequence of 
equations which can be solved one by one. The terms 
of the series for the normal velocity are solutions 
of soft-boundary problems, and the terms of the 
series for the velocity potential are solutions of 
hard-boundary problems. The formal series will con­
verge in some cases, but will, in general, be as­
ymptotic. 

I 9. 1;>. Kellogg, Foundations of Potential Theory (Dover 
1 Without loss of generality, we will always choose 'Y ~ 1. PublIcatIOns, Inc., New York, 1953), especially Chap. VI. 
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speed of sound is c. We define in the usual manner that for r on S these fields satisfy the integral 
a velocity potential U related to the particle ve- equation 
locity V and the pressure disturbance P by !pU - pUo 

V= VU, P = iwpU. 

This potential satisfies the Helmholtz equation 

where 

(2.1) 

(2.2) 

(2.9) 

obtained by taking the limit as r approaches S in 
Eq. (2.7). Similarly, taking the limit of Eq. (2.8) 
in the manner described in the Appendix, we find 

k = w/c (2.3) !p au /ano - p auo/ana 

is the wave number and Q(r) the source term. 
The field in V can be expressed in terms of its 

values on S with the aid of the Green's function 
for an unbounded volume, 

Go(r,r') = -(p/47rR)e"kB, R = Ir - r'l, (2.4) 

which satisfies 

c;;t~ + k2)Go = P oCr - r') (2.5) 

and obeys the radiation condition at infinity. We 
first define the incident field Uo as the field which 
would be produced in an unbounded volume by the 
sources in V; using the Green's function, this can 
be written3 

U~ = (1//) Iv dV' GoQ'. (2.6) 

Then, applying Green's second identity' to U and 
Go, we obtain the well-known equation 

p(U - Uo) 

= Is dS' [(aGo/an~)U' - Go(aU' janm, (2.7) 

valid at points r in the interior of V. 
Applying Green's first identity' to e· VU and 

Go, with e an arbitrary constant vector, we find 

= Is dS' [(no x VGo)·(n~ x V'U') 

+ eCno'n6)GoU'] 

-L dS' (aGo/dno) (aV' /an~), (2.10) 

where J Ii is the integral over the punctured surface, 
that is, the limit as A -t 0 of the integral over that 
part of S outside a sphere of radius A centered at r. 
This last equation was first derived by Maue, 5 

using a rather more complicated approach. 
We can obtain an alternative expression to (2.10) 

by multiplying Eq. (2.7) by (no' V) and letting r 
approach S. We find 

!p aU/ano - p auo/ano 

= r dS' {[~ (Go + ...L.)Ju, - aGo au,'} J a ano ana 47rR ana ano 

- :1r lim {a~o Is dS' [a~~ (fl) Ju'} , (2.11) 

where it can easily be verified that the first integral 
exists. Both forms (2.10) and (2.11) will prove 
useful below. 

It is convenient at this point to introduce the 
operators L; defined by 

p(VU - VUo) = Is dS' [-V'Go x (n~ x V'U') LaX = - fa dS' (1/ p)(aGo/an~)X', (2.12a) 

+ eGoU'n6 + (V'Go) aU' /an~l (2.8) 

at an interior point of V; the details of the deriva­
tion are given in the Appendix. 

Once U and au/ano are known on S, we can 
find U and VU everywhere from Eqs. (2.7) and 
(2.8). Thus the scattering problem reduces to deter­
mination of the two surface fields. It is well-known 

3 For simplicity we indicate functions of the integration 
point r' with a prime. Joint functions of rand r' are explicitly 
defined as such. In all other cases the observation point 
argument r is to be assumed. 

• J. A. Stratton, Electrorrutgnetic Theory (McGraw-Hill 
Book Company, Inc., New York, 1941), Sec. 3.3. 

LbX = Is dS' (1/ p)GoX', (2.12b) 

LeX = - L dS' (1/ p)[(no x VGo)' (n~ x V' X') 

+ e(no'n~)GoX'l 

= -Is dS' [an::n~ (Golp + I/47rR) JXI 
+ l1r lim {a~o Is dS' [a~~ (~) Jx,} , (2.12c) 

6 A. W. Maue, Z. Physik 126, 601 (1949). 
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(2.12d) 

Then Eq. (2.9) can be written in the compact form 

M = (! + La)U + Lb au/ano - Uo = 0, (2.13) 

and Eqs. (2.10) and (2.11) can both be represented by 

N = LeU + (! + La) aU /ano - auo/ano = 0. 
(2.14) 

It is clear that Eqs. (2.13) and (2.14) are not in­
dependent, for, if they were, we could solve them 
with no reference to boundary conditions; in fact, 
both are equivalent to Eq. (2.2) and thus to each 
other. 

Boundary Conditions 

Now let us consider two homogeneous media, m1 
occupying volume V1 and m2 occupying volume V2 , 

separated by a boundary S with unit normal 

n = n 01 = -n02 (2.15) 

directed from V1 to V2 • We assume that the media 
are in direct contact at S, that is, that the effect 
of the membrane or surface tension layer separating 
the fluids is negligible. Then pressure and normal 
velocity are continuous across S provided there 
are no boundary-layer sources. More generally, the 
boundary conditions are 

au2/an - au1/an = Va, 

P2U2 - P1 U1 = - (l/iw)P a, 

(2.16a) 

(2.16b) 

where the discontinuity in normal velocity Va (r) 
and the pressure discontinuity Pa(r) represent the 
effect of boundary-layer sources. 

3. MINIMAL COUPLING FORMULATION OF 
SCATTERING AT AN INTERFACE 

We are now ready to formulate the problem of 
scattering at an interface between two media. In the 
nondegenerate case, that is, when 

(3.1) 

the problem is effectively solved once the four 
functions U1, U2, au1/an, and aUdan are deter­
mined on S. The boundary conditions (2.16) supply 
two of the four equations necessary for this deter­
mination. 

The other two equations are not unique. We have 
available two pairs of equivalent equations M1 = 0, 
N 1 = 0, and M2 = 0, N2 = 0, obtained by writing 
Eqs. (2.13) and (2.14) for both media, and we may 
combine these four equations in an infinite variety 

of ways so as to produce two independent equations. 
Specifically, the formulation can be completed using 
any two equations of form 

M2 + aM1 = 0, 

N1 - {3N2 = 0, 

with a and {3 finite. 

(3.2) 

(3.3) 

Although all resulting formulations are mathe­
matically equivalent, they are by no means equally 
desirable for either theoretical or computational 
purposes. In fact, there is one specific formulation 
which in most situations simplifies both the ex­
pression and the solution of the two medium problem. 
This we call the minimal coupling formulation be­
cause (as we show below) in a very significant sense, 
it minimizes the coupling between the potential and 
the normal velocity. 

The minimal coupling formulation is obtained by 
setting 

a = 1, (3='Y (3.4) 

in Eqs. (3.2) and (3.3). Using Eq. (2.16) to eliminate 
U1 and au2/an, we then obtain the two basic 
equations for U2 and aUdan: 

HI + 'Y) U2 + (La2 + 'YLa1) U2 

+ L.(aUdan) = U"t2 + U"t1 (3.5) 

and 

HI + 'Y)(au1/an) + (Ld1 + 'YLa2)(aU1/an) 

+ 'YL,U2 = U"tn1 + 'YU"tn2. (3.6) 

Here the La and La are defined by Eqs. (2.12a), 
(2.12d), and (2.15); the other operators are given by 

L.X = (Lb1 - L b2)X 

= ~ f dS' eik+R[(sin k_R)/RJX' (3.7) 
211" s 

and 

L,X = (Le1 - L c2)X 

-~ f dS' ~ eik+R[(sin k_R)/R]X' 
211" s an an 

x {[(I - ik+R) sin k-R - k_R cos k-R] 

X [n·n' - (3 - ik+R)(n·s)(n'·s)] 

+ [(k-R)2 sin k_R - ik+R 

X (sin k-R + k_R cos k_R)](n·s)(n'·s)}X'; (3.8) 
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,and the source terms are [Lei - (,Bh)Lc21 for which the higher-order sin­
gularities in the kernels of the L. cancel. Only 

Ut2 = U02 + is dS' (G02/ P2) V~, 

U~l = UOl - jPdiwPl 

+ (l/iwp~) Is dS' (aGOl;an')P~, 

Ut .. 1 = aUot/an 

(3.9) L, has a kernel which can be integrated without 
introducing tangential derivatives or special limit­
ing processes as in Eq. (2.12c). Similarly L. is 
the only operator of form (aLb1 - L b2 ) for which 

(3.10) the singularities in the kernels of the Lb cancel. 

+ (l/iwp~) Is dS' [en x VG01)·(n' x V'PD 

(3.11) 

and 

Utrl2 = iJU02/an - tVA 

+ 18 dS' (1/ P2)(aG02/an) VL (3.12) 

In the expressions for L. and L" we have used 

k+ = !(k2 + k1), k_ = Hk2 - k1) (3.13) 

and 

s = (r - r')/R = VR = -V'R. (3.14) 

The first form of Eq. (2.12c) is used in obtaining 
Uti and the second form in obtaining L,; Chap VI, 
Theorem 10 of Ref. 2 is used to cancel the limit 
integrals in the latter calculation. 

In order to see the sense in which the above for­
mulation minimizes coupling and why this is impor­
tant, we must introduce some elementary ideas from 
the theory of integral equations. An equation is of the 
first kind in a variable if the variable appears only 
implicitly, that is, only under the integral sign. An 
equation is of the second kind in a variable if the 
variable appears both implicitly and explicitly. 
Either type of integral equation can be considered 
as equivalent to an infinite set of simultaneous linear 
algebraic equations. Equations of the second kind 
are thus preferable, in both analytical and numerical 
work, for the same reasons that a matrix with 
relatively large diagonal elements is preferable to 
(me with all elements of about the same magnitude. 

Now Eq. (3.5) is of second kind in U2 and first 
kind in aUllan, whereas Eq. (3.6) is of second kind 
in aUllan and of first kind in U2. If L. and L, 
were zero-which is indeed the case when k, = k2-

we would have two uncoupled equations of second 
kind. The terms L.(aUI/an) and 'YL,U2 can thus 
be thought of as coupling terms which complicate 
the solution of Eqs. (3.5) and (3.6). 

If now we compare the expressions for L, and Le , 

we see that Lr is the only operator of form 

Thus we can characterize the minimal coupling 
formulation as follows: 

The minimal coupling formulation involves 
lower-order singularities in the kernels of the 
coupling terms than does any other formulation 
generated from Eqs. (3.2) and (3.3).6 

The cancelation of singularities tends to minimize 
the overall effect of the coupling terms and to 
simplify both analytical manipulation and numerical 
solution of the equations. 

Let us turn now to the two degenerate cases 
P2 = 0 and PI = co, both corresponding to 'Y = O. 
When P2 = 0, the problem is characterized by the 
soft-boundary condition 

(3.15) 

The formulation reduces to the single equation 

(3.16) 

obtained by substituting Eq. (3.15) in Eq. (2.10). 
When PI = <Xl, the problem is characterized by the 
hard-boundary condition 

aUt/an = aU2/an - VA = 0, (3.17) 

and the formulation reduces to the single equation 

(t + L B2)U2 = Utz (3.18) 

obtained by substituting Eq. (3.17) into Eq. (2.9). 
We now readily see that, as 'Y approaches zero, S 

will look more and more like a soft boundary as 
seen from VI and more and more like a hard bound­
ary as seen from V 2 • Starting from this observation 
we obtain a perturbation technique for small 'Y in 
Sec. 4. 

4. THE PERTURBATION TECHNIQUE 
FOR SMALL 'Y' 

In the last section we noted the relationsip be­
tween the problem of scattering from an interface 

6 The analogous formulation for electromagnetic theory 
is given in C. Muller, Grundprobleme der Mathematischen 
TheONe Elektromagnetischer Schwingunge:n (Springer-Verlag, 
Berlin, 1957), Sec. 23. Coupling is not minimized in the 
acoustics formulation derived in J. Korringa, J. Math. Phys. 
6, 1107 (1965), Sec. 7; here one of the two basic equations is 
equivalent to Eq. (3.6), but the other corresponds to Eq.. (3.2) 
with a = 1/'y', a choice which does not lead to any SImplifi­
cations. 
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when,), is small and the problems of scattering from 
soft and hard boundaries. We develop now a per­
turbation technique in which we construct the solu­
tion to interface problems with small ')' from the 
solutions to related soft- and hard-boundary prob­
lems. First we present the formal derivation and 
then we discuss its validity and significance. 

The formal derivation is straightforward. First 
we write Eq. (3.6) as 

(t + Ldl)(aUI/an) = Utnl 

+ 'Y[Utn2 - (t + L d2)(aUI/an) - L,U2] (4.1) 

and Eq. (3.5) as 

(t + L a2)U2 = Ut2 + Uti 

- L,(aUI/an) - ')'(t + L al)U2. (4.2) 

Since none of the operators L. or source terms U~ 
and Uo'! depend on ,)" we have thus grouped together 
on the right all terms of order ')'. Next we introduce 
into the equations formal power series expansions of 
the unknowns, 

U2 = L ')';mj) , (4.3) 
i-O 

and collect terms of the same order in ')'. 
We thus obtain the equations of the perturbation 

technique, 

(t + Ldl)U!:) 

(t + LdV~j) 
U*(;) 

nl , (4.4) 
j ~ o. 

Here the effective source terms are given by 

and 

U~(O) 

(4.6) 
- [(t + Lal)m;-I) + L,U~:)], j ~ 1. 

The unknowns in Eqs. (4.4) must be solved for 
in the order U!~), U~O), U~~), U~l), etc. Then at each 
step we have a single equation with a known right­
hand side. Comparison with Eqs. (3.16) and (3.18) 
shows that each U!:) is the solution to a soft-bound­
ary problem and each U~j) is the solution to a hard­
boundary problem. Thus, when the formal series 
(4.3) converge or give a sufficiently accurate as-

ymptotic approximation, then the problem of scat­
tering from an interface can be reduced to the 
sequential solution of problems involving soft and 
hard boundaries. 

As,), -t 0, the limiting solutions for soft and hard 
boundaries are approached continuously i thus the 
perturbation theory must be valid, at least as­
ymptotically, for,), sufficiently small.7 The example 
of the next section shows that the perturbation 
series in some cases converges to the exact solution 
and in others gives rise to asymptotic approxima­
tions. 

In practice we frequently encounter problems in 
which UOI is the only source. Since aut/an is 
given to zeroth order by an equation of form (3.16) 
and UI = ')'U2 is of higher order, it is meaningful 
to characterize the situation as scattering from an 
"almost soft" boundary. Similarly, when U02 is 
the only source, then U2 is given to zeroth order 
by an equation of form (3.18) and au2/an is of 
higher order; we can characterize this case as an 
"almost hard" boundary problem. 

For a gas-liquid interface, ')' is very small and can 
usually be considered zero in reflection calculations. 
The field transmitted across an almost soft boundary 
into the gas m 2 can be calculated accurately from 
U~O) and U!~) = U~~) without reference to the value 
of ')'. The field transmitted across an almost hard 
boundary into the liquid ml is of order,), and can 
be calculated accurately from U~~) and U~l) = U~O). 

5. EXAMPLE. SCATTERING FROM AN ALMOST 
HARD PLANE INTERFACE 

Let us now investigate the nature of the perturba­
tion theory by applying it to the well-studied prob­
lem of a plane wave incident from the tenuous 
side on a plane interface. By proper interpretation 
of the results, we see how, in general, the perturba­
tion series can be either convergent or asymptotic. 
We also show that an impedance boundary condi­
tion does not satisfactorily describe scattering from 
an almost hard boundary. 

Let S be the plane z = 0, with z > 0 in V2 • 

Consider a plane wave incident from V 2 at angle 8.: 

U02 = Uo exp {tk2
orl 

= Vo exp {-ik2(X sin 81 + z cos 81) I. (5.1) 

7 This is not the same as requiring 'Y to be small compared 
to unity. The Un1(j) and U2(j) may be decreasing rapidly 
with j so that 'Y is sufficiently small while still greater than 
unity, or they may be increasing rapidly so that 'Y can be 
small compared to unity but still not small enough. The 
example of Sec. 5 illustrates this point. 
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Then it is well-known that at the interface 

pU = 1 -: K'Y P2UO exp {-ik2X sin 0,), 

au/an = 2iK'Y 
1 + K'Y k2 cos 0, 

U:(O) = U02 

= Uo exp {-ik2xsin 0,1. (5.5) 

To evaluate the higher-order terms we first define 

E = exp {-ik2(x' - x) sin 0, I (5.6) 

X Uo exp {-ik2X sin 0,), (5.2) and then evaluate the two integrals8 

with 

(5.3) 

We now show that for /K'Y/ < 1 this result can be 
obtained exactly from the theory of Sec. 4. 

This problem is especially simple because Lo = 
Ld = O. Thus Eqs. (4.4) reduce to 

(5.4) 

and the effective source terms are also greatly 
simplified. 

The zero-order effective sources are by inspection 

L.E = (I/4?r) 1'" dp' (e,k. P' - e'k,P') 

1
2,-

X 0 dq/ exp {- i(k2 sin 0,) p' cos 1/>' I 

= tck2 sin O,)-! {O dp' (pT'(e,k. P' _ e'k,p'), 

J ol(k2 sin O,)p'][(k2 sin O,)p']! 

1 .(1 - K)(k 0 )-1 = -"2t ~ 2 cos, , (5.7) 

and 

L E - .i.12
,.. d ' 1'" d ' [ik+ sin k_p' + ~ (sin k_ p')] {'[k' - (k . 0 A..') ']1 f - 2 I/> p , a ' , exp t +p 2 SIn ,cos.,.. P 

7r 0 0 P P p 

-ik_ + C~) k2 sin 0, 1'" dp' (1/ p') sin (k_p')e,k+P
' L .... dl/>" cos 1/>" exp {i(k2 sin O,)p' cos 1/>" I 

-ik_ + i(k2 sin O,)! 1'" dp' (p,)-t sin (k-p')e,k+P
' J 1 [(k2 sin O,)p'][(k2 sin O,)p']! 

-!i(l - K)k2 cos 0,. 

Using these results we obtain 

U~I(l) = aU02/az - 2L,U02 = -ik2 cos O,U02 

- 2U02L,E = -iKk2 cos O,U02 , (5.9) 

and the difference equations for the succeeding terms, 

1 K U*(i) 

U*Ci-l) +. - nl - t---
2 K k2 cos 0, ' 

(5.lOa) 

U~l(j) - U~/;-l) 

+ i(I - K)k2 cos O,Uf(j-]). (5.IOb) 

The pair of equations (5.10) is readily solved to give 

j ~ 1; 

U~1(j) = i( -K)ik2 cos O,U02 , 

We thus find 

'" 

i ~ 2. 

pU = 2p2U02 L: (-K'Y/, 
i-O 

'" 
aU/an = 2ik2 cos O,U02 L: (-K'Y)i, 

i-1 

(5.11) 

(5.12) 

which indeed converge to Eqs. (5.2) for IK'YI < 1. 

(5.8) 

We can acquire considerable insight into the 
nature and limitations of the perturbation technique 
by a study of the above results. First we note the 
ratio 

(a u/an)/pU 

= -i'Y(kd P2) [(k1/k2) 2 
- sin2 O,]!. (5.13) 

In general k is smaller in the dense medium, so 
that, no matter how small we make "I, the ratio 
depends strongly on 0,. Thus, even in this simple 
case where there are no internal reflections, the 
almost hard boundary condition cannot satisfactorily 
be replaced by a standard impedance boundary 
condition au/an = XU. Such a condition may, 
however, be valid for the associated almost soft 
problem. 

We next note that for fixed "I we can choose 0, 
close enough to grazing so that IK'YI > 1. If we 

8 In this evaluation we use Ref. 4, Eq. 6.8 (37), and 
A. Erd~lyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, 
Table of Integral Transforms (McGraw-Hill Book Company 
Inc., New York, 1954), Vol. 2, Eq. 8.2 (18) [for Eq. (5.7)] and 
Eq. 8.4 (15) [for Eq. (5.8)]. 



                                                                                                                                    

INTERFACE ACOUSTIC SCATTERING 2059 

admit complex angles of incidence (!11" + i8r), then 
we see that IKyl > 1 also holds for complex angles 
near grazing. Thus the plane wave spectrum of a 
general source distribution in V2 will contain a band 
around grazing for which the perturbation series 
does not converge. If a given source distribution 
contains sufficient spectral energy in this band, 
then the perturbation series for this source also 
will not converge. Therefore, in general, the perturba­
tion technique gives rise to an asymptotic approxima­
tion. 

Furthermore, for a concentrated source distribu­
tion we would expect best accuracy on that part 
of the plane below the sources, where grazing waves 
are least important. By extension, for scattering 
from a finite body we would expect best accuracy 
in the "illuminated" region. 

6. CONCLUDING REMARKS 

The most significant material presented here is 
the minimal coupling formulation of scattering at 
a smooth curved interface, given in Sec. 3, and the 
perturbation technique for the special case of small 
1', given in Sec. 4. The minimal coupling formula­
tion is the more fundamental result, for it is the 
best way to set up most two-medium problems for 
any range of 1'. It can be used as the basis for a 
numerical approach to the exact problem and as 
the starting point in developing other approxima­
tions, such as for the treatment of small interface 
irregularities. 

The perturbation technique, on the other hand, 
is of greater immediate importance. It gives a 
physical insight into the interface scattering prob­
lem, a way of directly observing the effect on scat­
tering of changes in 1'. Thus we have found with 
very little effort that transmission from a liquid 
into a gas is independent of l' and transmission in 
the opposite direction is proportional to 1'; we have 
also shown that scattering from an almost hard 
surface cannot be described by a simple impedance 
boundary condition. 

The perturbation technique furthermore reduces 
the scattering problem to the point where it can 
be solved numerically for fairly complicated inter­
face geometries using existing methods for soft- and 
hard-boundary problems.9 In these methods the 
integral equation is replaced by a finite set of 
algebraic equations, and the amount of computa­
tion necessary to solve the problem varies roughly 

g R. P. Banaugh and W. Goldsmith, J. Acoust. Soc. Am. 
35, 1590 (1963) (two-dimensional case); G. W. Soules and 
R. P. Banaugh, Northrop Ventura Report 3515 (1964) 
(three-dimensional case). 

as the cube of the number of algebraic equations. 
For a given accuracy, the exact interface problem 
requires twice as many equations as a hard- or 
soft-boundary problem. Thus, for example, the trans­
mission across a gas-liquid interface can be cal­
culated by the perturbation technique with about 
one fourth the work necessary for an exact solution. 
When more than one value of l' is to be considered, 
the computational savings are of course much greater. 

The perturbation series converges to the exact 
solution in some cases but is in general asymptotic. 
Perturbation solutions with larger domains of con­
vergence and improved rates of convergence can 
be constructed from this series by various mathe­
matical strategems, such as those discussed by Morse 
and Feshback. 10 Indeed, we have effectively done 
this in Sec. 5, where we analytically summed a 
series, valid for IK1'1 > 1, to get a result valid for 
all K1'. 

We have assumed throughout that the media 
are in direct contact. Although this is often a good 
approximation, there actually must always be a 
surface-tension layer, membrane, plate, or other 
separation along the interface to prevent mixing 
of the fluids. Frequently the dynamics of this sep­
arating layer affect the acoustic scattering sig­
nificantly; in some cases, such as structural vibra­
tion problems, the response of this layer to an 
acoustic wave is of direct interest. It appears that 
the theory of this paper can be generalized to take 
into account such layers, and work along these lines 
is now under way. 
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APPENDIX. DERIVATION OF EQUATIONS 
FOR V U AND aU/ano 

If we apply Green's first identity· to e· V U 
and Go, use Eq. (2.5) to eliminate \l2Go, and then 
evaluate the integral containing the 8-function, 
we obtain 

e·(pVU) = e· is dS' (aGo/an~)V'U' 

+ e· Iv dV' k
2
GoV'U' 

- Iv dV' V'Go,V'(e·V'U'). (AI) 

10 P. M. Morse and H. Feshbach, Methods of Theoretical 
Physics (McGraw-Hill Book Company, Inc., New York, 
1953), Pt. II, Sec. 9.1. 
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To simplify this we require the easily established 
relationships + Iv dV k

2
V'(GoU') 

V'(e·V'U') = (e·V')V'U' = e(Q'/p - k2 U') 

- V' )( (e )( V'U'). (A2) 

Iv dV' V'Go' [V' )( (e )( V'U')] 

= -Iv dV' v'· [V'Go )( (e )( V'U')] 

= e· i dS' (n~ )( V'GO) )( V'U' • 

and 

VGo = -V'GO. 

Using these in Eq. (AI) gives 

e>(pVU) = e'{L dS' r(n~. V'GO)V'U' 

+ (n~ )( V'Go) )( V'U'] 

JOURNAL OF MATHEMATICAL PHYSICS 

(A3) 

(A4) 

+ V Iv dV' (I/P)GoQ I
}. (A5) 

Since this must hold for all values of e, we can 
suppress the factor (e·). From Eq. (2.6) we see 
that the term involving Q' is just V(pUo). The 
other two integrals can be reduced to the form 
given in Eq. (2.8) by straightforward application 
of standard vector identities, and the proof of that 
equation is then complete. 

Now let us multiply Eq. (2.8) by (no», make the 
substitution (A.4), and take the limit as r approaches 
S. Since the singularity in Go is of form l/R, the 
limit can be evaluated using Kellogg's results,2 
specifically Chap. VI, Theorems IV-VI, and the 
discussion leading up to Theorem V. The result 
is Eq. (2.10). 
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The usual differential form Po for the quantum-mechanical momentum operator P which is conju­
gate to a generalized coordinate q (01 S q S (3) is, in atomic units, Po = - i(g-i) a/aq (gl ), where g is 
the Jacobian of the transformation from Cartesian to generalized coordinates. However, Po is not 
always self-adjoint on the domain :D of physically acceptable bound-state wavefunctions, as a proper 
quantum-mechanical operator should be. An integral form is proposed for P, defined by 

Pf(q) = (21r)-i g-i(q) i: exp (ikq)kF(k) dk, a ~ q ~ fl, 

where 

f E !D. 

The effect of this integral operator (which is suggested by the ideas of Fourier transforms) differs from 
that of Po only at the end-points of the range of q. In a sense, it is formally equivalent to an operator 
(suggested by Robinson and Hirschfelder) which is obtained by adding certain delta-function terms 
to Po, but it suffers from none of the defects, since delta-functions do not appear explicitly. Various 
properties of the integral operator a.re derived. Some discussion of the domain :D is presented as an 
appendix. 

1. INTRODUCTION 

T HE customary differential form Po for the 
quantum-mechanical momentum operator P 

which is conjugate to a real generalized coordinate 
q is, in atomic units, 

(1) 

g being the Jacobian of the transformation from 
Cartesian coordinates to generalized coordinates. 
Let us suppose that the physically relevant range 
of the coordinate q is a ~ q ~ fl. Then the inner 
product (u, v) of any two functions of q is defined by 

(u, v) == I: u*vg dq. (2) 
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It follows from (1) and (2), after integrating by 
parts, that 

(u, Pov) - (Pou, v) = -i[guv]~_a. (3) 

In order that Po should be a proper quantum­
mechanical operator, it is required to be self-adjoint 1 

on the domain ~ of physically acceptable bound­
state wavefunctions (some discussion of this domain 
is given in the Appendix). A necessary condition 
for the self-adjointness is the vanishing of the bound­
ary term on the right-hand side of Eq. (3) when u 
and v are functions belonging to ~. However, such 
boundary terms do not always vanish. 

There are thus three possibilities. Firstly, the 
domain ~ could be restricted so as to exclude func­
tions for which the boundary term in Eq. (3) does 
not vanish. This is not realistic, as a simple example 
of nonvanishing boundary terms arises when u and 
v are O"-type hydrogen-atom wavefunctions expressed 
in parabolic coordinates.2.3 Secondly, the generalized 
momentum operator P may not be a proper quan­
tum-mechanical operator representing an observable. 
This might well be the case, but it does not seem 
too unreasonable to suppose that generalized mo­
mentum components can, in certain circumstances, 
be measured, even if the required apparatus has to 
be rather complicated. Thirdly, the differential op­
erator Po may not be a true representation of the 
quantum-mechanical operator P. It is this third 
possibility which is pursued in this paper. 

An attempt to find a self-adjoint form for P has 
been made by Robinson and Hirschfelder.3 They 
suggest an expression PI for P, where 

(4) 

the delta-functions being similar to Dirac's except 
that their effects inside an integral are, respectively, 

i ' f(q) 5+(q - a) dq = f(a) , a < t :::; (J, 

and 

1,11 f(q) L({J - q) dq = f({J), a :::; t < {J. (5) 

[The inclusion of the delta-function terms is based 
on the fact that a more fundamental form of (1) 
is - i I a jaq + ! div (hq) I, where h is the metric 

1 M. H. Stone, Linear Transformations in Hilbert Syace 
(American Mathematics Society Publications, New York, 
1932), Vol. 15, Chaps. IV and V. 

I L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book 
Company, Inc., New York, 1955), 2nd ed., Chap. IV. 

a P. D. Robinson and J. O. Hirschfelder, J. Math. Phys. 4, 
348 (1963). 

scale factor corresponding to q, and q is the unit 
vector in the direction of q increasing. The delta­
functions arise naturally in the interpretation of 
div (hq) at the end-points where q is ill-defined.] 
It is easy to see that PI is formally self-adjoint, 
insofar as 

(u, Plv) = (PIU, v), 

irrespective of the boundary values of u and v. 
However, in spite of this, and notwithstanding the 
fact that PI (like Po) satisfies the necessary com­
mutation requirements, the form (4) is not really 
satisfactory. Indeed, PI is not strictly an operator 
at all. The delta-function terms are only strictly 
meaningful when appearing inside an integral over q, 
and it is not possible to interpret expressions such 
as P~, or give meanings to inner products like (Plu, 
PIV) without an artificial convention defining the 
square of a delta-function. 

These considerations lead us to propose an integral 
form for the operator P which has the same effect 
as Po when Po is self-adjoint, and otherwise is, in a 
sense, equivalent to Pl. This integral operator does 
not suffer from the same shortcomings as does PI, 
because delta-functions do not appear explicitly. 

We develop the integral form in Sec. 2, and derive 
some of its important properties in Sec. 3. Finally, 
in Sec. 4, the relationship between corresponding 
integral and differential operators is discussed. We 
concentrate on the situation which arises when the 
end-points a and (3 are both finite; this is potentially 
the most unpleasant case. Modifications are obvious 
if q extends to infinity at either or both ends of its 
range. 

2. THE INTEGRAL FORM FOR P 

Weare led to the integral form for P by consider­
ing the situation in what is effectively generalized 
momentum space. The starting point is Fourier's 
integral theorem. Let f(q) E ~ be a wavefunction, 
and let F(k) be the 'finite' Fourier transform of 
f(q)gl(q), defined by 

F(k) = (2'l/r1 J: exp (-ik~)f(~)g!(~) d~i (6) 

F(k) can be regarded as the ordinary Fourier trans­
form of a function rp(q) defined by 

rp(q) = {f(q)gl(q), a:::; q :::; {J, (7) 

0, - ex:> < q < a or {J < q < ex:>. 

[Should a be - CD or fJ be + ex:>, then the appropriate 
part of Eq. (7) can be omitted.] In Eq. (6) we use 
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~ as a dummy variable instead of q; this practice is 
adopted throughout the paper whenever an integra­
tion over the whole range of q is involved, thus 
avoiding confusion with any q representing a cur­
rent value. 

We make the following assumptions concerning 
a function f E ~: 

(a) J: IfC~) Il(~) d~ < ex>; (8a) 

(b) J: IU(~) Il(~) d~ < 00; (Sb) 

(c) (f, f) == J: If(~) 12 g(~) d~ < ex>; (Sc) 

(d) t(~)gtw is of bounded variation in the neigh-
bourhood of ~ = q. 

Condition (a) ensures the existence of F(k) for 
any finite k. Conditions (a) and (d) ensure that 
Fourier's integral theorem holds (see Titchmarsh4), 
so that 

f(q) = (2'1I-r1g-!(q) i: exp (ikq)F(k) dk, 

a < q < {3. (9) 

[Even if (a) and (d) do not hold, but (c) does, 
modified forms of Eqs. (6) and (9) are still available 
with convergence in mean replacing actual equality.4] 
By Parseval's formula/ (c) is equivalent to 

(10) 

which is one of the conditions which f must satisfy 
in order that it should belong to ~ (see the Ap­
pendix). Condition (c) is inserted to justify a change 
in the order of integration in Sec. 3A below. 

Because of the possible discontinuities at a or (3 

in the function cf>(q) defined by Eq. (7), a factor! 
must be inserted4 on the left-hand side of Eq. (9) 
if it is to be true when q = a or q = (3. Thus Eq. (9) 
does not hold at the end points unless f(a)gt(a) or 
f({3)gi({3) is zero. Although this frequently happens, 
we do not wish to restrict the function f(q) in this 
way. In fact, if !(a)gfCa) = f({3)gt({3) = 0, then the 
usual differential form Po as given in Eq. (1) is 
self-adjoint (see Sec. 4), and no difficulties arise. 
Equation (9) can be regarded as an "expansion" 
of f(q) in terms of the formal eigenfunctions 
g-l(q) exp (ikq) of the operator Po, with F(k) playing 
the role of a wavefunction in k-space. 

'E. C. Titchmarsh, Introduction to the Theory of Fourier 
Integrals (Oxford University Press, Oxford, 1948), 2nd ed. 

Operating on Eq. (9) with Po, we have 

PotCq) = -ig-t a (glf) = (21rflg-!(q) 
aq 

x i: exp (ikq)kF(k) dk, a < q < {3. (11) 

We assume that the integral in Eq. (11) is convergent 
(see the Appendix); it is a uniformly continuous 
function of q, and so the differentiation under the 
integral sign is permissible. Equation (11) is not 
true in general at the end points a and fJ because 
of the discontinuities in the function cf>(q); it does 
however hold there if f(a)gt(a) = f«(j)gi({3) = 0, 
and possibly under other circumstances mentioned 
in Sec. 4. It is readily shown (see Sec. 3B) that the 
integral operator on the right-hand side of Eq. (11) 
is self-adjoint, and so we take it as our definition 
of P; it agrees with the usual form Po except at the 
end points. Thus we stipulate that, for every f(q) E ~, 

Pf(q) = (211"rlg-i(q) 

x L: exp (ikq)kF(k) dk, a ~ q ::; {3. (12) 

It must be emphasized that Eq. (12), which 
defines P, holds good for the closed interval a S 
q S fJ, whereas Eqs. (9) and (11) are in general 
merely truc in the open interval a < q < (3. 

3. PROPERTIES OF THE INTEGRAL OPERATOR P 

We now demonstrate some important properties 
of the integral operator P, defined by Eq. (12). 

A. The Commutator [P, q] is Pq - qP is -i 

It follows from Eqs. (6) and (12) that 

P(qf) = (21rF 1g-!(q) i: exp (ikq)k dk 

X J: exp (-ik~)H(~)g!(~) d~. (13) 

Conditions (8a) and (8b) ensure that the ~-integrals 
in Eqs. (12) and (13) converge uniformly with 
respect to k over any finite interval; thus the order 
of integration can be changed. Doing this, we find 
that 

P(qf) - qPf = (211")-lg-!(q) J: t(~)g!m d~ 
X i: exp /ik(q - ~) J k(~ - q) dk. (14) 

The k-integral gives 
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-i i: exp lik(q - m dk 

+ irk exp {ik(q - ~) I r:." 
and thus, using Eqs. (6) and (9), Eq. (14) becomes 

P(qf) - qPf = -if + ig-!(q)[k exp (ikq)F(k)]~.,. 
(15) 

Assuming that the boundary term in Eq. (15) 
vanishes (this matter is discussed in the Appendix), 
it follows that the operators [P, q] and -i are 
equivalent when operating on a function f(q) E !D. 
Thus the usual commutation rule for a momentum 
operator is satisfied. 

B. P is SeH-Adjoint 

To show that P is self-adjoint, we must prove 
that (u, Pv) = (Pu, v) whenever u, v E !D. Denoting 
the finite Fourier transforms of u(q)g!(q) and 
v(q)g!(q) by U(k) and V(k), we have 

(u, Pv) = (211")-1 J: u*(q)l(q) dq 

X i: exp (ikq)k V(k) dk, 

(Pu, v) = (211")-1 J: v(q)gt(q) dq 

X i: exp (-ikq)kU*(k) dk. 

Changing the order of integration in each case (this 
is justified as in Subsection A above ), we see that 

(u, Pv) = (Pu, v) = i: kU*(k) V(k) dk. (16) 

c. The Expectation Value of P for a Real State is Zero 

We must show that the expectation value of P 
for any real state f(q) is zero. This should be so, 
because the probability current density, being pro­
portional to (fVf* - I*V/), is identically zero, and 
thus the mean value of all momenta should be zero. 
It is enough to show that (f, Pf) vanishes whenever 
I is real and f E !D. 

If I is real, then F*(k) = F( -k). Thus from Eq. 
(16) with u = v = I, we have 

(f, Pf) = i: kF( -k)F(k) dk = 0, (17) 

by symmetry. 

D. The Meaning of a Function of P 

Because of the unitary nature of the transforms 
(6) and (9), Eq. (11) implies that an operation by 

Po in q-space is unitarily equivalent to a multiplica­
tion by k in k-space, provided that a < q < (3. 
Thus, formally, an operation by a function x(Po) 

in q-space is equivalent to a multiplication by x(k) 
in k-space, again provided that a < q < {3, i.e., 

x(Po)f = (211"g)-1 i: exp (ikq)x(k)F(k) dk, 

a < q < (J. (18) 

Analogy with the pair of equations (11) and (12) 
therefore leads to the conjecture that x(P) may be 
defined by 

x(P)f = (211"g)-l i: exp (ikq)x(k)F(k) dk, 

a ~ q ~ (J, (19) 

in those cases where x(Po) is not self-adjoint. Just 
as in Subsection B above, it can be shown that 
x(P) is formally self-adjoint if X is a real function. 
Corresponding to Eq. (16), we have 

(u, x(P)v) = (x(P)u, v) 

= i: x(k) U*(k) V(k) dk. (20) 

Equation (20) can also be used to give a meaning 
to inner products like (Pu, Pv), since methods 
similar to those in Subsection B indicate that (Pu, 
Pv) = (u, p 2v). 

4. THE RELATIONSHIP BETWEEN THE 
INTEGRAL AND DIFFERENTIAL OPERATORS 

It is possible to derive a formal relationship be­
tween integral and differential forms for the op­
erator P. We already know that the integral form is 
equivalent to the usual differential form Po in the 
open interval a < q < (3. 

Integrating (6) by parts, we have 

F(k) = -(211")-t~J~ exp(-ik~).E..(fl')d~ 
k a a~ 

+ (211")-l ~ [exp (-ik~)fgt]!. (21) 

Thus, from (12) it follows that 

Pf(q) = -i(211")-1 g -!(q) i: exp (ikq) dk 

f
~ a 

X a exp (-ik~) a~ (fg!) d~ 

+ i(211")-lg-i(q) i: exp (ikq) 

X {exp (-ik{3)f«(3)gl(fJ) - exp (-ika)f(a)gl(a)} dk. 

(22) 
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The first term on the right-hand side of Eq. (22) 
simplifies to Pof(q); the second term, which vanishes 
if f(a)g!(a) = f«(3)gf(f3) = 0, can otherwise be 
expressed formally in terms of delta-functions, viz: 

Pf(q) = Pof(q) + ig-l(q){o(q - (3)f«(3)g'((3) 

- o(q - a)f(a)gt(a)} 

= Pof(q) - it o(q - a) - o(q - (3) If(q) 

= Pof(q) - !i{o+(q - a) - 0_«(3 - q)lf(q). 

(23) 

Expression (23) involves the delta functions men­
tioned in Sec. 1. So we see that the integral form 
for P is in a sense equivalent to the operator P l 

proposed by Robinson and Hirschfelder; if either 
f«(3)gt«(3) or f(a)gt(a) is zero, then the corresponding 
delta-function term is omitted. 

We may also omit the delta-function terms in 
(23), or strictly the last term in Eq. (22), if P is 
only to be associated with functions belonging to the 
sub-domain :Do of :D on which the usual differential 
form Po is self-adjoint. In order that Po be self­
adjoint, it is necessary that g«(3)u*«(3)v«(3) = 
g(a)u*(a)v(a) when u, v E :Do [cf. Eq. (3)]. Thus, if 
f(q) E :Do, we must have gl«(3)f«(3) =g!(a)f(a) exp (i-y), 
where "Y is a real constant. Equation (22) shows 
that the inner product (u, Pv), for instance, is then 
the same as 

(u, P ov) + !i {g((3)u*((3)v((3) - g(a)u*(a)v(a) I , 

and SO (u, Pv) = (u, Pov). Thus if the usual form 
Po is self-adjoint, we can take it as the definition 
of P; it is only when Po is not self-adjoint (Le., 
when we are concerned with functions belonging to 
:D but not to :Do) that the integral form (12) is 
necessary for the definition. The integral operator is 
a kind of extended definition of the usual differential 
operator; this concept of extended definition has been 
discussed by Friedman,6 employing the delta-func­
tion approach. 

Similar formal expressions involving delta func­
tions and their derivatives can be developed to 
represent powers of P. For example, p 2 is defined 
by [c.f. Eq. (19)] 

p 2f(q) = (211r'g-t(q) i: exp (ikq)k2F(k) dk, 

a ~ q ~ (3. (24) 

6 B. Friedman, The Principles and Techniques of Applied 
Mathematics (John Wiley & Sons, Inc., New York, 1956), 
Chap. III. 

After integrating expression (6) for F(k) twice by 
parts and substituting in (24), it is found that 

P 2f(q) = P~f(q) + (211"flg-t(q) 

X i: exp (ikq)[ik exp (-i~)fgi 

+ exp (-ik~) :~ (lgi)]! dk. (25) 

The last term in (25) can formally be written as 

g-t(q{ {;q o(q - ~)}f(~)gt(~) 
+ o(q - ~)~ {f(~)gi(~) I J:-a 

and it can be omitted althogether if we are dealing 
with functions with respect to which P~ is self­
adjoint. The special case when P~ happens to be a 
kinetic energy operator is an example, for kinetic 
energy operators are all self-adjoint on the domain 
:D. This happens when P~ = _g-iii/oq2(gi ) is the 
same as 

L == _g-l i.. {fL i..} 
aq hZ oq 

(26) 

(h being the metric scale factor corresponding to q), 
as for instance when q is a spherical polar radial 
coordinate. But, generally P~ is not self-adjoint 
on the domain :D, and the integral form (24) must 
be used for p2. 

APPENDIX. THE DOMAIN ~ 

In theory, there is no ambiguity about the domain 
:D containing all physically acceptable bound-state 
wavefunctions, but in practice, the conditions that a 
function should belong to :D are often hard to apply. 
Kato 6 shows that :D is the domain of the closure of 
all Laplace operators, i.e., of all kinetic energy 
operators, all such operators being self-adjoint on 
this domain. Kato also gives precise conditions in 
terms of Fourier transforms under which a wave­
function belongs to :D. If, for example, ",(r) is a 
wavefunction describing the behavior of a particle 
at the vector position r, then the conditions are 

(AI) 

and 

(A2) 

• T. Kato, Transl. Am. Math. Soc. 70, 195 (1951). 
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where w(k) is the Fourier transform of 1/!(r), defined 
by 

w(k) = (21r)-J J exp (-tk·r)1/I(r) dr. (A3) 

The integrations in (Al)-(A3) are respectively taken 
over all k-space and all r-space. Generalizations of 
these conditions hold for wavefunctions of many­
particle systems. 

The conditions that a wavefunction f(x) of a 
single Cartesian coordinate x should belong to 1> 
take the simple forms 

(A4) 

Equation (AS) simplifies to 

(211') -t J: f*(q)gf dq 

X L: {~arkr}F(k) exp (ikq) dk < Q), (A9) 

where the coefficients a. are functions of q depending 
on g(q), k(q), and their derivatives. Condition (A9) 
most probably implies that 

L: krF(k) exp (ikq) dk < Q), 

r = 0, 1,2,3,4, (AIO) L: 1S=(k) 12 dk < Q), 

L: k4 1S=(k) 12 dk < Q), 

but we cannot be absolutely certain of this without 
(A5) knowing details of g(q) and k(q). 

where 

5'(k) = (21r)-j L: exp (-ikx)f(x) dx. 

Equation (AIO) must hold when r = 1 in order 
to make equations (11) and (12) meaningful and P 

(A6) well-defined. It is also necessary that 

Unfortunately, the situation is not so straight­
forward for a function f(q) of the generalized co­
ordinate q. The condition (A4) has its analog in 
Eq. (10) of the text, which, in the equivalent form 
(Sc), is just the condition that I(q), being a bound­
state wavefunction, should be normalizable. How­
ever, (A5) has no immediate counterpart. This 
latter condition is equivalent to saying that 

(L.,f, L.J) = (f, L!f), (A7) 

where L,. == - fl/ fJx2 is effectively the kinetic energy 
operator. The appropriate kinetic energy operator 
which corresponds to q is L, given by (26), and, 
instead of (A5), we have 

(211')-' J: f*(q)g dq 

X L: F(k)L2 1 g-i exp (ikq)} dk < Q). (AS) 

[kF(k) exp (ikq)]; __ ., = 0 (All) 

if the commutation rule [P, qJ = -i is to be satisfied 
[vide Eq. (15)1. (All) surely holds if (AIO) is true 
for r = 0, 1, 2, 3, 4. However, it seems probable 
that we cannot definitely assert that conditions 
(AI0) with r == I and (All) are satisfied, given 
that I(q) E 1>, and so we must be content with 
assuming that these conditions are fulfilled in order 
that the operator P be a proper quantum-mechanical 
operator. 
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A pseudovirial theorem is derived for time-independent particlelike solutions of finite energy (sin­
gularity-free and spatially localized time-independent solutions) to field theories associated with an 
action principle. It is shown that a nseful necessary condition for the existence of such particlelike 
solutions is generally obtainable as a corollary to the pseudovirial theorem. This necessary condition 
is in fact sufficient to preclude existence of any well-localized particlelike solution for all but special 
field theories with the more common forms of algebraic interaction. On the other hand, strong satis­
faction of the necessary condition can lead to model field theories with rigorous closed-form particlelike 
solutions as shown by example for a class of Lorentz-covariant theories which feature a real scalar 
field in i~teraction with a two-component complex Weyl spinor field. Some of the latter particlelike 
solutions to the scalar-spinor theory are energetically stable with respect to spatial dilatations, hence 
likely to be stable in the dynamical sense. A counter example to the more general sufficiency of the 
strong satisfaction condition is presented, showing that strong satisfaction of the pseudovirial thea. 
rem's corollary does not always guarantee the existence of singularity-free particlelike solutions. 

I. INTRODUCTION 

CONSIDERABLE recent interest has been at­
tached to particlelike solutions to model Lor­

entz-covariant nonlinear field theories. l
-

a The idea 
for such a research program is fostered by the well­
known and serious practical deficiencies of struc­
tureless point-particle representations in classical 
and quantum field theory. Further motivation for 
the study of particlelike solutions to model non­
linear theories is provided by the still enigmatic 
content of unified field theories, where only the 
manifold of properly bounded and singularity-free 
solutions is postulated to be of physical significance, 4 

an essentially recondite manifold of solutions. 
It is the purpose of the present paper to consider 

the more general question of existence for singularity­
free and spatially localized time-independent solu­
tions. Our main result appears as a necessary condi­
tion for the existence of any particlelike solution 
of finite energy, applicable to all field theories as­
sociated with an action principle and presented here 
as a corollary to apseudovirial theorem. This pseudo­
virial theorem and its corollary are global relation­
ships, like the laws of conservation of total field 
energy or momentum, but unlike the other more 
venerable global relationships, the pseudovirial the­
orem and corollary express nontrivial conditions 
which must be satisfied by a time-independent solu­
tion. The corollary is in fact sufficient to preclude 

1 U. Enz,-Phys. Rev. 131, 1392 (1963), and works cited 
therein.'· .... 

2 G. H. Derrick, J. Math. Phys. 5,1252 (1964). 
a G. Rosen, J. Math. Phys. 6, 1269 ~~965). . . 
4 A. Einstein, The Meaning of Relatwtty (Prmceton Uru-

versity Press, Princeton, New Jersey, 1955), pp. 164-165. 

existence of any well-localized particlelike solution 
for all but certajn special field theories with the more 
common forIns of algebraic interaction. 

In the subsequent section of this paper, we consider 
a restricted class of Lorentz-covariant model theories 
obtained by satisfying the pseudovirial theorem's 
corollary in the strongest possible (local) way for 
a real scalar field in interaction with a two-com­
ponent complex Weyl spinor field. Rigorous closed­
form singularity-free particlelike solutions are ob­
tainable for this restricted class of model theories. 
Also noteworthy is the fact that some of the particle­
like solutions to the Lorentz-covariant scalar-spinor 
theories are energetically stable with respect to 
spatial dilatations, and so it is possible to conjecture 
their complete dynamical stability. 

In the final section of the paper, we consider a 
related class of theories which feature a real scalar 
field in interaction with a four-component complex 
Dirac spinor field. For a restricted class of the latter 
theories, it is demonstrated that strong satisfaction 
of the pseudovirial theorem's corollary is insufficient 
to admit any singularity-free particlelike solution. 
Thus, we see by example that the strong satisfac­
tion condition is not always sufficient to guarantee 
such localized solutions. 

ll. THE PSEUDOVIRIAL THEOREM AND 
ITS COROLLARY 

Time-independent solutions to field theories as­
sociated with an action principle satisfy equations 
of the form 

oEjof(x) = 0, (1) 

where the energy functional E = E[f(x)] depends 

2066 
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on (real and/or complex) fields represented in (1) 
by the generic quantity f(x). Let us make a linear 
decomposition of E, 

E = EE(w), (2) 
(w) 

in which E(") is a functional of "weight" w with 
respect to changes in the form of f(x) due to spatial 
dilatations, 

E(w) = E(W)[j(x)] = X -WE(W) [j(Xx)] (3) 

for all real X > 0. Then the pseudovirial theorem 

E wE(w)[j(x)] = ° (4) 
(w) 

follows immediately from (2) and (3), because the 
equation 

(5) 

is a direct consequence of the Eqs. (IV 
Each of the quantities E(")[f(x)] must be finite 

in order for (4) to be meaningful, and hence the 
pseudovirial theorem applies to spatially localized 
time-independent solutions with no serious sin­
gularities. For such "particlelike" solutions, it is 
generally possible to eliminate all spatial derivatives 
of the fields which appear in the E(w)[f(x)] by 
evoking the equations (1). A useful corollary to the 
pseudovirial theorem is thereby obtained in the form 

(6) 

where ff(J(x» is a purely algebraic function of f(x). 
Hence, we use the local Eqs. (1) first to establish 
the global pseudovirial theorem and then again to 
eliminate spatial derivatives in the global relation 
provided by the theorem, and in this wayan impor­
tant property of the particlelike solutions to Eqs. 
(1) is obtained. 

It is remarkable that Eq. (6), a necessary condi­
tion for the existence of a particlelike solution, is 
in fact sufficient to preclude existence of such solu­
tions for all but special field theories which feature 
the common form of algebraic interaction, as il­
lustrated by the following examples. 

Example 1: Static particlelike solutions for a self­
interacting real scalar field. 

E = E(-l) + E(-3) , 

where 

E(-l) = J (VOl d3x, 

Ii The well-known virial theorems for periodic particle 
motion in classical mechanics and stationary particle states in 
quantum mechanics can also be established by the spatial 
dilatation invariance argument used in our proof. 

(g and p positive constant parameters). Equation 
(1) takes the form 

'\j20 + !gp 1011>-2 0 = 0, 

and we can bring the statement of the pseudovirial 
theorem (4), 

J [-(VO)2 + 3g 101"] d3x = 0, 

into the form of Eq. (6), 

(p - 6) J 101" d3x = 0, 

which implies that a nontrivial particlelike solution 
can exist only if p = 6, a special case studied pre­
viously and shown to admit rigorous singularity­
free particlelike solutions.3 In order to make the 
manipulations meaningful, we require a o (x) of 
function class C2 for all x and such that 

lim [lxl 3/o O(x)] = 0, s=min{p,6}. 
1:1:1_<» 

Example 2: Stationary particlelike solutions for 
a self-interacting complex scalar field. 

E = E(2) + E(O) , 

where 

J Vif;*'Vif;d
3
x 

E(2) = ------
J if;*if; d3

x 

-g J (if;*if;)1>/2 d3x 
E(O)= -------

J if;*if; d3x 

(g and p positive constant parameters). Since the 
pseudovirial theorem gives E(2) = 0, we conclude 
immediately that the nonlinear eigenvalue equa­
tion 

'\j2if; + [!gp(if;*if;)i"-l + EN = ° 
has no nontrivial solution if;(x) of function class C2 

for all x and such that 

lim [lxi' IVif;I] = 0, 
lxi_co 

lim [lx1 3/1 1if;1] = 0, t = min {p, 2}. 
lxi_co 

Example 3: Static particlelike solutions in non­
relativistic quantum electrodynamics. 

E = E(-ll + E C- 3) , 

where 

E C
-

ll = J [l (Vc/»2 +!.L Vif;*'Vif;] d3x & 2m ' 
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(h, m, e positive physical constants). Equations 
(1) take the forms 

:: \j21/; + e4>1/; = 0, 

and so we find that E(-l) = _!E(-3) while the 
pseudovirial theorem produces E(-l) = - 3E(-3). 

Hence, there is no nontrivial solution with cp and 1/; 
of function class C2 for all x, and such that 

lim [Ixl r cp(x)] = 0, lim [Ixl" 11/;(x)l] = 0, 
1:1:1_0) 1::z:I-H:O 

lim [lxl! IV1/;(x)l] = 0, 
lxi_co 

(r + 28) ~ 3. 

Example 4: Static particlelike solutions 
ativistic quantum electrodynamics. 

E = E(-ll + E(-2) + E(-3) , 

where 

III rel-

Here, 1/; is a four-component complex Dirac spinor 
field, 1/;t is its Hermitian adjoint, and a, {J are 
Hermitian Dirac matrices. In this case, Eqs. (1) are 

\j2cp + 47re1/;t1/; = 0, -iha·V1/; + (m{J - e4»1/; = 0, 

and allow the statement of the pseudovirial theorem 

J [ -8: (Vcp)2 + 2ih1/;ta •V 1/; 

+ 3 (e4> v/ 1/; - m1/; t{J1/;) ] d3x = 0 

to be brought into the general form prescribed by 
Eq. (6), 

This physically interesting condition does not pre­
clude the existence of a rigorous particlelike solu­
tion, and whether or not such a solution can be 
obtained remains an open question.6 

6 A numerical integration calculation has recently been 
applied to the classical Dirac-Maxwell static field equations 
by M. Wakano, Progr. Theoret. Phys. (Kyoto) 35, 1117 
(1966). This work supports the existence of a rigorous particle­
like solution, but with the total classical field energy E nega.­
tive. 

m. STRONG SATISFACTION OF THE 
NECESSARY CONDITION: A CLASS OF 
SOLVABLE MODEL FIELD THEORIES 

Let us turn to a more general class of Lorentz­
covariant field theories associated with a Lagrangian 
density of the form7 

.£ = (f - (V (J)2 + i 1/; t if; + iy; t d' V1/;+ £, (7) 

where (J is a real scalar field, 1/; is a two-component 
complex Weyl spinor field (1/;t its Hermitian adjoint, 
d the Pauli matrices), and the interaction Lagrangian 
density is a generic function 

£ = £«(J, p), where 
t 

P == 1/; 1/;. (8) 

For time-independent solutions, the energy func­
tional is 

E = E(-O + E(-2) + E(-3) , (9) 

where 

E(-l) == J (V(J)2 d3x, E H
) == -i J 1/;td' V 1/; d3x, 

so the field equations (1) are given by 

\j2(J + !(o£/o(J) = 0, id' V1/;+ (o£/op)1/; = O. (10) 

The latter equations can be used to reduce the 
statement of the pseudovirial theorem 

J [_(\j(J)2 + 2iy;td•V 1/; + 3£] d3x = ° (11) 

to the form of Eq. (6) with 

5' = -!(J(o£/o(J) - 2p(o.c/iJp) + 3£. (12) 

Now consider the restricted class of scalar-spinor 
theories for which Eq. (6) with (12)-a necessary 
condition for the existence of particlelike solutions­
is satisfied in the strongest possible way, namely 
by having the quantity 5' vanish identically, ir­
respective of the fields for all x. Then according 
to (12), the" strong satisfaction condition" 5' == 0 
implies that the interaction Lagrangian density takes 
the form 

G = G(,,), ,,== p/(J\ (13) 

7 Although Lorentz-covariant classical model theories 
featuring a Weyl spinor field have not been studied heretofore, 
the literature contains several seemingly related (but not 
exactly solvable) nonlinear model theories. Interesting work 
along these lines was initiated by: N. Rosen, Phys. Rev. 55, 
94 (1939); A. C. Menius, Jr., and N. Rosen, Phys. Rev. 62, 
436 (1942), and extended by: R. J. Finkelstein, Phys. Rev. 
75, 1079 (1949). The pseudovirial theorem actually precludes 
the rigorous existence of singularity-free and spatially localized 
static or stationary solutions to some of the simpler nonlinear 
model theories which have been considered in the literature. 
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and Eqs. (10) become 

\7
2 8 + (3G - 2H)1/I\f;8 = 0, (14) 

id·V1/I + H~1/I = 0, H = H(K) == G + K(dGjdK). 

Note that the arbitrary differentiable real function 
G, the related function H, and their common argu­
ment K = 1/ItYt/fl all have the dimensions of (en­
ergy)-l. 

Concentrating attention on the restricted class 
of scalar-spinor theories with the time-independent 
field equations (14), we find that the rigorous sin­
gularity-free spherically symmetric solution is ob­
tainable and expressed in closed form by 

8 = ±(3aH-l)1(lxI2 + a2)-t, 

1/1 = 3aKtH-1(lxI 2 + a2)-!(id'X + a)u, 

provided that the equation 

(15) 

H2 + 3K(2H - 3G) = 0 (16) 

admits a real positive root K = const for which 
H ~ O. In (15), the constant Weyl spinor u is 
normalized to unity, utu = 1, and the "size pa­
rameter" a has the same sign as H but is otherwise 
a free (nonzero) constant of homology, stemming 
from the scale invariance of Eqs. (14): 

8(x) ~ )..t8(Xx), 1/I(x) ~ }..1/I(Xx) 

for all real }.. > O. It is a simple matter to verify 
that (15) satisfies (14) with K a constant real positive 
root of (16), although there is no systematic pro­
cedureforobtainingthis rigorous solution by straight­
forward integration of the nonlinear coupled equa­
tions. 

All of the energy terms in (9) are finite and 
evaluated easily with (15), 

E(-l) = 1911"2 IH-11, E(-2) = 12711"2KH-1 IH-11, (17) 

E(-3) = -12711"2KG IH-31, 
the pseudovirial theorem reproducing the condition 
(16). The total energy or "particle rest mass" is 
thus 

E = !1I"2(1 + !KH- 1
) IH-11, (18) 

while the second variation of the energy functional 
with respect to spatial dilatations is evaluated as 

a2E == {(d2 jd}..2)E[8(Xx), 1/I(Xx)]!x-l 
-3 

= E (w2 - w)E(1D)[8(x), 1/I(X)] 
10--1 

= 2E(-l) + 6E(-2) + 12E(-3) 

= _ 911"2 (1 + 3KH- 1) IH-11, 
2 

(19) 

the sign of the latter quantity relating the energetic 
stability or instability of the "particle" with respect 
to changes in the functional form of the solution 
(15) induced by infinitesimal spatial dilatations. 
It should be noted that in order for both (18) and 
(19) to be positive, H evaluated at the root of (16) 
must satisfy the bounding relation - 3K < H < 
-!K, and thus, as a consequence of (16), G evaluated 
at the root of (16) must satisfy the bounding relation 
-K < G < -!K. 

Qualitatively speaking, stability or instability in 
the dynamical sense is likely to be determined solely 
by a spherically symmetric perturbative mode.3 

Therefore, we may conjecture that "energetic sta­
bility" of a particlelike solution, expressed by (19) 
as positive, also indicates the dynamical stability 
of the solution. Support for this tentative mathe­
matical conjecture is provided by the general sig­
nificance of energy in the dynamics of physical 
systems, although a formal proof of this conjecture 
(which must certainly involve complicated qualify­
ing conditions for admissible perturbative modes) 
is difficult to establish, mainly because admissible 
dynamical perturbations of the coupled fields can­
not be wholly independent, but only independent 
modulo all conservation laws of the theory implied 
by the action principle. 

We conclude this section with some examples 
for G = G(K) and brief discussions of the salient 
properties of the associated particlelike solutions 
(15). 

Example 1: G == m -\ where m is a positive 
constant (dimensions of mass). Obviously this is 
the simplest admissible form of G. It gives H = m-1 

and we find that the root of (16) is K = (3m)-1. 
The particle rest mass (18) is E = (f,r2)m, a positive 
quantity, while the second variation of the energy 
functional (19) is negative, a2E = -911"2m, showing 
that the particlelike solution is energetically un­
stable. 

Example 2: G = 'Ym-2
K-

1 
- m-\ 'Y and m(~ 0) 

constants. This is the most general form of G for 
which the interaction Lagrangian density is com­
posed entirely of terms in positive integer powers 
of 8 and 1/It 1/l : .£ = 'Ym- 2 fl - m-11/lt 1/l82

• In this 
case, we have H = _m-1 and find that the root 
of (16) is K = (3'Y - I)m-\ requiring that either 
'Y > t, m > 0 or 'Y < t, m < 0 for a solution. The 
particle rest mass (18) is E = (h2

) (1 - 3'1' )m, a 
positive quantity if either 'Y < I, m > 0 or 'Y > i, 
m < 0, the latter possibility excluded by the require­
ment that K be positive. For (19) we have e/E = 
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(tx-2) (9'Y - 2)m, a positive quantity if 'Y > -fi- with 
m > O. Hence, K, E, and 02E are all positive jf 
t < 'Y < !, m > o. 

Example 3: G = gK-\ g a positive constant. This 
is the form of G for a self-interacting scalar field 
and a free spinor field, a singular case that requires 
the special treatment provided elsewhere.3 The par­
ticlelike solution, however, can be obtained formally 
from Eqs. (15) by putting 3 IH-11 = g-t and K = 0, 
the correct expressions for (18) and (19) also being 
given by this substitution. E is positive but 02 E is 
negative. 

Example 4: G = gKt, g a positive constant. This 
is the form of G for a self-interacting spinor field 
and a free scalar field, also a singular case that 
requires special treatment. Once again the particle­
like solution can be obtained formally from Eqs. (15), 
in this case by the limiting procedure H- 1 ~ 0, 
3KiH-1 ~ 2g-\ the correct expressions for (18) and 
(19) also being secured by this limiting procedure. 
E is positive but 02 E is negative. 

Example 5: G = _gK1J
+l, g and p positive con­

stants. Here we have H = -g(p + 2)K,,+1 and the 
unique positive root of (16) is 

K = [3(2p + l)jg(p + 2)2]1/". 

The particle rest energy 

E = [911'2pj4(2p + 1)] IH-11 

is a positive quantity, while 

02E = [911'2(1 - p)j2(2p + 1)] IH-11 
is a positive quantity provided that p < 1. 

Example 6: G = 'YK. By virtue of (16), the 
particlelike solutions are obtainable only if the di­
mensionless coupling constant 'Y = -1. In this 
case K is a free positive parameter, the total energy 
(18) vanishes, and the quantity (19) is positive, 
02E = 311'2K-1. 

Example 7: G = 2m-2K-1[1 - (1 - mK)t] -
3m-\ m a positive constant. This seemingly com­
plicated example is of interest because it gives 
H = -3m-1[1 - (1 - mK)t], and therefore the 
condition (16) is satisfied identically (that is, as a 
differential equation). Hence, all positive values of 
K ~ m-1 are admissible. The particle rest energy 
E = (11'2 j 4)m, a quantity independent of K, and the 
second variation of the energy functional 02 E = 
(111'2) 11 - (1 - mK)-tl-1 m are both positive for 
K < m-1

• 

IV. INSUFFICIENCY OF THE STRONG 
SATISFACTION CONDITION FOR A RELATED 

CLASS OF THEORIES 

Strong satisfaction of the pseudovirial theorem's 
corollary leads to rigorous particlelike solutions for 
the class of Lorentz-covariant field theories dis­
cussed in the preceding section, but the strong 
satisfaction condition is not always sufficient to 
guarantee such localized singularity-free solutions. 
To show by example that the strong satisfaction 
condition can be insufficient, we consider the Lor­
entz-covariant theories which feature a real scalar 
field in interaction with a four-component complex 
Dirac spinor field, a class of theories closely related 
to those discussed previously with a Weyl spinor 
and the generic Lagrangian density (7) with (13). 

Time-independent solutions to the class of theories 
with a Dirac spinor and the strong satisfaction condi­
tion are derived from an energy functional of the form 

E = E(-ll + E(-2) + E(-3) , 

where 

E(-l) == f (VO)2 d3x, E(-2) == -i f v/o;'Vlf d3x, 

E(-3) == - f 02lft{NG d3x. (20) 

[G = G(K) is a real differentiable function of K == 
lftfJ1f/04

.] Here, If is a four-component complex 
spinor with 0; and fJ the Hermitian Dirac matrices. 
Equations (1) take a form similar to Eqs. (14) in 
the case of (20), 

\120 + (3G - 2H)lf
t
fJl/I0 = 0, 

(21) 
io;'Vlf + H02fJI/I = 0, H == G + K(dGjdK). 

Now let us require the otherwise arbitrary G to 
be a function such that H is of definite sign for all 
(positive or negative) values of K (e.g., G = m-t, 
a nonzero constant). Then it follows from the 
relation 

V'(il/ltfJo;l/I) + 2H02lftlf = 0 (22) 

obtained from the field equations (together with 
fJ2 = 1 and o;fJ = - fJo;) that no singularity-free 
and well-localized nontrivial solution exists for Eqs. 
(21) (with K not necessarily constant), because we 
have 

(23) 

if 
lim [lxl 2 lftl/l] = O. (24) 
Ixl_oo 

Hence, the strong satisfaction condition is insufficient 
to guarantee particlelike solutions for this class 
of field theories with H of definite sign. 
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Nonexistence of Localized Periodic Solutions to Nonlinear Field Theories 
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A simple proof is given which precludes the existence of any spatially localized and temporally 
periodic singularity-free solution to the c-number field equation for a physically interesting Lorentz~ 
covariant self-interacting scalar theory. 

I T has been proved by J6rgens1 that the non­
linear c~number field equation 

for a scalar function 6 = 6 (x, t) (either complex­
valued or real-valued and C2 for all x and all t 2:: 0) 
has a global solution for suitably smooth prescribed 
initial data, if 2 < p < 6 with m2 and g nonnegative 
constant parameters. Does this global existence the­
orem lend some rigorous mathematical support to 
the quantum theory models which feature a self­
interacting complex or real scalar field and a La­
grangian density 

Eq. (4) works out to give 

iT J [-3 jlW + jV6j2 

+ 3m2 j IJj2 + 3g \ IJ\"] d3x_dt = 0, (5) 

provided that the x integrations converge over all 
space2

; an alternative way to derive Eq. (5) is 
to multiply Eq. (1) by X· VIJ* and integrate the 
real part of the resulting equation over all x and 
over the range 0 to T for t. On the other hand, if 
we work out 

(dI[~6(X' t)]) = 0 
d~ ~-1 ' 

(6) 

(2) or if Eq. (1) is multiplied by 6* and integrated,!we 
obtain 

of the form associated with Eq. (1)1 It is shown 
here that the classical field equation (1) has no 
global solutions which are localized in space and 
periodic in time if p 2:: 2. Hence, there can exist no 
stationary state in a quantum field theory based 
on a Lagrangian density (2) with p ;::: 2 that would 
correspond in the classical limit h ~ 0 to a spatially 
localized and temporally periodic solution to Eq. (1). 

To prove the nonexistence of any localized periodic 
solution to Eq. (1) with g ;::: 0 and p ;::: 2, we first 
note that the action principle 

H/lJ6 (x, t) = 0, (3) 

I = I[IJ(x, t)] = 1'1' J .c d3x dt 

for a solution periodic in time, IJ(x, t + T) = IJ(x, t), 
implies the global condition 

(
dI[6(AX, t)]) = O. 

d'A ),-1 
(4) 

1 K. Jorgens, Z. Math. 77, 295 (1961). 

1'1' J [- jtW + jVIJj2 

+ m2 jIJj2 + !gp jIJjP] d3x dt = 0, (7) 

again provided that the x integrations converge 
and T is the period of the solution. Finally, by 
subtracting! of Eq. (5) from Eq. (7), we get 

iT J [i \V6\2 + (!p - 1)g \6\"J d3x dt = 0, (8) 

a global relation which implies the necessary condi­
tion p < 2 for existence of a localized periodic 
solution with g > O. Therefore, all such global 
solutions are precluded in a classical field theory' 
with g 2:: 0 and p 2:: 2. 

I F?r time-independ~nt solutions, Eq. (5) holds with 
T arbItrary and exemphfies the general pseudovirial theorem 
discussed by the present author in J. Math. Phys. 7 2066 
(1966). ' 

'. If the words ,:'such global.solutions" are read "rigorous 
statIOnary states, the conclUSIOn stated here is believed to 
produce a valid correspondent in the associated quantum 
field theory. For a pertinent result in this regard, see, G. 
Rosen, Phys. Rev. Letters 16, 704 (1966). 

2071 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 7, NUMBER 11 NOVEMBER 1966 

Some Observations on Enveloping Algebras of N oncompact Groups* 

JOE ROSENt AND PAUL ROMAN 

Department of Physi~, B08ton University, Boston, Massachusetts 
(Received 31 March 1966; revised manuscript received 4 Apri11966) 

In order to provide the particle physicist with useful mathematical tools (and a large number of inter­
~sting identities), the enveloping algebras of. the non.compact homogeneous O(p, q), U(p, q), and 
mhomogeneous IO(p, q), IU(p, q) groups are discussed m some detail. The construction of the genera­
tors of O(p, q + 1) and O(p + 1, q) from the enveloping algebra of IO(p, q) and the analog result for 
the corresponding pseudo-unitary groups are also presented. 

I. INTRODUCTION 

ONE of the most intriguing and promising recent 
developments in elementary-particle physics 

is the recognition of the importance of noncompact 
groups and Lie algebras. Noncompact groups appear 
to play various roles, both in the classification of 
hadron-supermultiplets and, more generally, in di­
verse attempts to reformulate quantumdynamics. 
For a review of these emerging novel ideas we refer 
the reader to Refs. 1-3 . Some of the more specific 
developments are illustrated in Refs. 4-6. 

In addition to the study of the representations 
of the noncompact groups and their Lie algebras, 
it appears that a thorough knowledge of the envelop­
ing algebras will constitute a most important tool. 
For one thing, the Casimir invariants are particular 
elements of the enveloping algebra, and, apart from 
their direct relation to physical observables, their 
knowledge is a necessary requirement when one 
seeks the systematic classification of representations. 
Furthermore, as pointed out vividly by Sudarshan, l 

every dynamical variable of a quantized system 
can be identified with an element of the enveloping 
algebra of the noninvariance group.5.7 Moreover, 
the primitive dynamical variables may be defined as 

* This research was sponsored by the United States Air 
Force under Grant No. AF-AFOSR-385-65. 

t On leave of absence from Tel-Aviv University, from 
which a travel grant is gratefully acknowledged. 

1 E. C. G. Sudarshan, in the Proceedings of the Fourth 
Eastern U. S. Theoretical Physics Conference (Stony Brook 
1965), and Syracuse University Preprint 1206-SU-45. ' 

2 Y. Ne'eman, in the Proceedings of the Pacific Summer 
School in Physics (Honolulu, 1965), and Tel-Aviv University 
Preprint TAUP-2-65. 

a Y. Ne'eman and Y. Dothan, in the Proceedings of the 
Athens (Ohio) Conference on Resonant Particles (1965). 

4 Y. Dothan, M. Gell-Mann, and Y. Ne'eman, Phys. 
Letters 17, 148 (1965). 

i N. Mukunda, L. O'Raifeartaigh, and E. C. G. Sudarshan, 
Phys. Letters 15, 1041 (1965). 

a A. O. Barut, Phys. Rev. 135, B839 (1964); 139, Bl433 
(1965); A. O. Barut and A. Bohm, Phys. Rev. 139, Bl107 
(1965). 

7 E. C. G. Sudarshan, N. Mukunda, and L. O'Raifeartaigh, 
Phys. Letters 19, 322 (1965). 

certain suitable elements of this enveloping al-, 
gebra. I

•
8 

In view of these remarks, we believe that it would 
be useful to work out commutation relations in­
volving some lower-degree elements of the envelop­
ing algebras of the most promising noncompact 
groups, i.e., of the homogeneous and inhomogeneous 
pseudo-orthogonal and pseudo-unitary groups. A col­
lection of such expressions will be of value for the 
physicist applying the new notions related to the 
role of noncompact groups in particle physics, and 
to provide these formulas is the purpose of the 
present paper. When constructing these elements 
of the enveloping algebras, we found a number of 
interesting identities, and the awareness of such 
simplifying relations is bound to shortcut many 
computations. 

After general remarks in Sec. II, Sec. III treats 
the enveloping algebras of the pseudo-orthogonal 
groups O(p, q). Section IV discusses the enveloping 
algebras of the inhomogeneous pseudo-orthogonal 
groups IO(p, q) and shows the construction of the 
generators of O(p, q + 1) and O(p + 1, q) from 
elements of the enveloping algebra of IO(p, q). 
Sections IV and V treat the enveloping algebras of 
the pseudo-unitary groups U(p, q) and the inhomo­
geneous pseudo-unitary groups IU(p, q) respectively, 
the latter section showing the construction of the 
generators of U(p, q + 1) and U(p + 1, q) from 
elements of the enveloping algebra of IU(p, q). 

n. DEFINITIONS AND GENERALITIES 

Let A be a Lie algebra of order m characterized 
by the relation9

,lo 

8 E. C. G. Sudarshan, in the Proceedings of the Toronto 
Conference on Symmetries (1965). 

9 Sum~ati?n is to be performed over pairs of equal upper 
and lower mdlces. 

10 For real forms of Lie algebras, our structure constants 
are always real. We fully concur with the view of R. Hermann 
Lie Groups for ?hysicists, (W. A. Benjamin, Inc., New York; 
1966), that the mtroductlOn of factors of i masks the algebraic 
structure without offering any real advantage. 
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(1) 

among the elements of a basis Xl, , X m • The 
enveloping algebra of A, to be denoted by G" con­
sists of all products of all degrees of the elements 
of A with themselves. For a basis of G, one can take 
the linearly independent set11 Xi, XiX j , XiXjX k , 

... , (i, j, k, ... = 1, ... ,m and i :::; j :::; k :::; ... ). 
G, is thus of infinite order. It can be shown by 
induction and Eq. (1) that the commutator of two 
basis elements of G, from the above sequence is 
always of the form 

adXi(qth-degree basis elemnts) 

= linear combination of (p + q - l)th-

and lower-degree basis elements. (2) 

If A is represented by complex or real n X n 
matrices, the corresponding representation of G, is 
not faithful, since it can be at most a representation 
of the Lie algebra of the complex or real general 
linear group in n dimensions [GL(n, C) or GL(n, R)]. 
Thus, care must be exercised to distinguish between 
those algebraic relations within G, which are true 
generally and those which are representation-de­
pendent. 

The algebra A as a vector space serves as the 
representation space of the adjoint representation 
of A, where the basis element Xi is represented by 
the linear transformation adX i whose action on the 
basis vectors of A is 

(3) 

Similarly, G, serves as a representation space for 
A. This representation is reducible, but in general not 
completely reducible, since, according to Eq. (2), 
the subspace spanned by all basis elements of a 
certain degree and less is invariant under adXi: 

adXi (qth-degree basis element) 

= linear combination of qth-

and lower-degree basis elements. 

ID. PSEUDO-ORTHOGONAL GROUPS 

The n-dimensional pseudo-orthogonal group 
O(p, q), p + q = n, is the real linear group in n 
dimensions preserving the pseudo-Euclidean metric 
[+1, ... , +1(p times), -1, ... , -1(q times)]. A 

11 A pth-degree product of X's whose factors are not ordered 
as indicated can be shown to equal a pth-degree basis element 
plus a linear combination of lesser-degree basis elements 
by use of Eq. (1). 

basis of the corresponding Lie algebra [of order 
!n(n - 1)] is provided by the elements M~. = 
-M.I' obeying 

[M~., Mp~] = g"pM.~ - g.pM,,~ 

+ g,,~Mp. - g.~M,,., (5) 

where all Greek indices run from 1 to n, gl1 = 

grn> = -gp+l p+l = ... = -g,.,. = 1, and g". = 0 
for J.I. :;e p. Raising and lowering of indices is per­
formed, as usual, with g". and g"', where g'''g,p = c'l:. 

The second-degree basis elements of the envelop­
ing algebra M".Mp~ obey 

[M a/J, M".Mp~] = g",,,M(J.Mp~ - g(J"M a.M,~ 

+ g",.M,,(JMp~ - g(J.M"",Mpa + g",pMI'.M(J~ 
- g(JpMI'.M",~ + g",~M".Mpll - g(J~M".Mp",. (6) 

Certain linear combinations of these are of interest: 

(a) The antisymmetric (MpaM~-M ~aM~)/(n-2) 
equals M ~p. 

(b) The symmetric 

Sp~ = !(Mp",M'" ~ + M~",M~) (7) 

obeys 

[M"., Sp~] = g"pS .. - g.pS". + g,,~Sp. - g.~Sp". (8) 

( c) The scalar 

(9) 

obeys 

(10) 

and is therefore a second-degree Casimir operator12 

of O(p, q). 

In the defining (n X n) representation of the Lie 
algebra of O(p, q), the matrix13 M2 is (n - 1) times 
the unit matrix, and the S~, = 2S"./(n - 2) obey 
Eq. (8), with S~. substituted for S"., andl4 

[S~" S~~] 

From Eqs. (5), (8), and (11) it then follows that 
the matrices M ". and S;, represent a basis of the 
Lie algebra of GL(n, R) (of order n2

). This can 

12 See E. G. Beltrametti and A. Blasi, Phys. Letters 20, 
62 (1966), concerning the number of Casimir operators as­
sociated with any Lie algebra. 

11 Vje use a bar to indicate a matrix representation of a 
quantity. 

14 This relation does not hold for the algebra elements in 
general, but only for the matrices representing them here. 
See comment in Sec. II. 
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perhaps more easily be seen from the commutation 
relations of 

C", = -!O",,(S~, + M".)(no summation over p,): 

[CI"! Cp~] = op,C"v - o"vCp>' (12) 

In addition, the matrices M", and iS~. represent 
a basis of the Lie algebra of the pseudo-unitary 
group U(p, q) (to be discussed in Sec. V). 

IV. INHOMOGENEOUS PSEUDO-ORTHOGONAL 
GROUPS 

The n-dimensional inhomogeneous pseudo-orthog­
onal group IO(p, q), p + q = n, consists of all 
elements of O(p, q) (see the preceding section) 
together with all translations in the pseudo-Eucli­
dean space. a A basis of the corresponding Lie 
algebra [of order !n(n + 1)1 is obtained with the 
elements M", = -M." and PI' obeying Eq. (5) and 

[M"" Pp] = O"pP, - O,pP", (13) 

[P", P,] = O. (14) 

The second-degree basis elements of the envelop­
ing algebra, M",Mpv, M",Pp, PpM"., and P"P., obey 
Eq.I(6) and 

[Mall' M",Pp] = Oa"MIl,Pp - OIl"Ma,Pp 

+ Oa.M,,?p - OfJ.M"aPp 

+ OapM",PfJ - OfJpM".P a, 

[MafJ' PpM",] = OapP/lM", - UfJ~aM", 

+ U",,,PpM/l' - O/l"PpM "" 

+ O""PpM,,/l - UfJ.PpM" a , 

(15) 

(16) 

obeys 

[M"" P 2
] = [PM p 2

] = 0, (22) 

so that it is a second-degree Casimir operator of 
IO(p, q). 

(b) The n-vector (P"'M"", - M"",P"')/(n - 1) 
which, however, equals P ". 

(c) The n-vector 

J" = !(P"M"a + M"",p
a
) (23) 

obeys 

[Ma/l, J,,] = Oa"J/l - O/l"J" , (24) 

[P '" J,,] = P "P" - O""P\ (25) 

[J", J,l = _p2M"" (26) 

[J", M2] = J"M"" + M""J", (27) 

[P", M2] = 2J". (28) 

Combining second-degree elements to obtain higher­
degree ones, one has: 

(d) The scalar P" J" + J"P" is identically zero. 
(e) The scalar 

J2 = J"J" = _[pap/lSa/l + Hn - 1)2P2
] (29) 

obeys 

[M"" r] = 0, 

[P", r] = _2p2 J", 

(30) 

(31) 

[J", r] = -P2(J"'M"" + M".,Ja). (32) 

(f) The scalar 

(33) 

By Eqs. (10), (22), (28), (30), and (31) this obeys 

+ O",'p"P/l - O/l'P"P a, 

[P a, M",Mpv] = -O""P,Mpv + U,,,P,,M pv 

- OpaM",Pv + Uv",M",P., 

(17) [M"" Z] = [PM Z] = 0, (34) 

making Z a fourth-degree Casimir operator of 
IO(p, q). In addition, by Eqs. (27) and (32) or 

(18) just from Eq. (34), it obeys 

(19) 

(20) 

Interesting linear combinations of these, in addi­
tion to those presented in the preceding section, are: 

(a) The scalar 

(21) 
16 For a discussion of 10(1, 3), the inhomogeneous Lorentz 

(or Poincare) group, see, e.g., Yu. M. Shirokov, Zh. Eksperim. 
i Teor. Fiz. 33, 861 (1957) [English transl.: Soviet Phys.­
JETP 6, 664 (1958)]. 

[J", Z] = o. (35) 

We define now 

(36) 

N - N _ {JI'/( _P
2
)! for On+l n+l = +1, 

" ,,+1 - - "+1" - J,,/(+p2)! for 
~ O"+ln+l=-I. 

(37) 

The inverse square root in Eq. (37) is assumed to 
be suitably defined through a power series. In any 
case, it is clearly meaningful in any irreducible 
representation of the Lie algebra, since by Schur's 
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lemma p 2 is then just a multiple of the unit matrix. 
(This is, of course, meaningless in a representa­
tion for which p2 = 0.) No ordering problem arises, 
as J" and p2 commute. One then finds that 

[Nab, Ned] = gaeNbd 

- gbeNad + gadNeb - gbdNea , (38) 

where a, b, c, d = 1, ... , n + 1, i.e., then Nab 
form a basis of the Lie algebra16 of O(p, q, +1) or 
O(p + 1, q). The scalar 

and is therefore a first-degree Casimir operator of 
U(p, q). 

The second-degree basis elements of the envelop­
ing algebra are E".Epa, E".Fpa, F".Epa, and F".Fpa. 
Interesting linear combinations of these are: 

(a) The antisymmetric (Ep"E~ - Ea"E~)j(n - 2), 
which, however, equals Eap. 

(b) The symmetric 

Tpa = !(Ep"E";, + Ea"E~), (46) 

(39) which obeys [cf. Eq. (44)] 

therefore obeys 

(40) 

since it is the second-degree Casimir operator of 
O(p, q + 1) or O(p + 1, q). On the other hand, one 
finds 

N 2 = M2 + rjp2 = ZjP\ (41) 

where a remark similar to the one following Eq. 
(37) holds. This demonstrates the consistency of 
Eq. (40) with Eqs. (34) and (35). Equation (41) 
also shows the relation between the second-degree 
Casimir operator N 2 of O(p, q + 1) or O(p + 1, q) 
and the fourth-degree Casimir operator Z of IO(p, q). 

v. PSEUDO-UNITARY GROUPS 

The n-dimensional pseudo-unitary group U(p, q), 
p + q = n, is the complex linear group in n dimen­
sions preserving the pseudo-unitary metric 

[+1, ... , +1(ptimes), -1, ... , -1(qtimes)]. 

A basis of the corresponding Lie algebra (of order n2
) 

is obtained with the elements E". = -E." and 
Fl" = F." obeying 

[E"., Epa] = g"pE.a - g.pE"a + g"aEp. - g.aE.,., (42) 

[F"., Fpa] = g"pEva + g.pE"a - g"aEp. - g.aE.,., (43) 

[E"., Fpa] = g"pF.a - g.pF"a + g"aFp. - g.aFp", (44) 

where all Greek indices run from 1 to n, and again 
gu = ... = grJ1' = -g.,+I.,+1 = ... = -gnn = 1, 
g". = 0 for p, ~ p. Comparing with Eqs. (5), (8), 
and (11), one justifies the remark following Eq. (12) 
at the end of Sec. III. From Eqs. (43) and (44), 
it follows that the contraction Fa" obeys 

[E"., Tpa] = g"pT.a - g.pT"a + g"aTp• - g.aTp". (47) 

(c) The antisymmetric (Fp"F~ - F a"F~)j(n + 1) 
which equals Epa. 

(d) The symmetric 

U pa = !(Fp"F~ + Fa"F~), (48) 

which obeys [cf. Eq. (44)] 

[E"., Upa] = g"pU.a - g.pU"a + g"aUp• - g.aUp". (49) 

(e) The symmetric 

which obeys [cf. Eq. (44)] 

[E"., V pa] = g"p V.a - g.p V"a + g"a V p• - g.a V p". (51) 

(f) The antisymmetric 

W pa = l(EpaF~ + Fp"E~ - EaaF~ - Fa"E~), (52) 

(g) and the symmetric 

Dpa = !(Upa - Tpv) 

= i:(Fp"F~ + Fa"F~ - Ep"E~ - Ea"E~), 

which obeys 

[E"., W pa] = g"pW.a - g.pW"a 

+ g"vWp• - g.aWPII 

[cf. Eq. (42)], 

[cf. Eq. (44)], 

(53) 

(54) 

[Em F" "] = [F"., F" "] = 0 (45) [ef. Eq. (43)], and 

18 This construction was performed in general by A. [W F] D D 
Sankaranarayanan, Nuovo Cimento 38, 1441 (1965), and "., pa = g"p .a - g.p "a 
for 0(4.1) by M. Y. Han (preprint, Syracuse University and 
University of Pittsburgh, 1965). See also A. Bohm,Phys. Rev. + g"aDp. - g.aDp. (57) 
145, 1212 (1966), and C. FronsdaJ, Rev. Mod. Phys. 37, 211 
(1965). ref. Eq. (42)]. 
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(h) The contraction 

obeys 

[E~., E2] = 0, 

[F~., E2] = 4 V p •• 

(i) The contraction 

obeys 

[Ep " F2] = 0, 

[Fp., F2] = 4Vp •. 

(j) The quantity 

(58) 

(59) 

(60) 

(61) 

(62) 

(63) 

D,," = E2 - F2 = l(E"tJEh 
- F"iJFiJ") (64) 

therefore obeys 

[Ep., D" "] = [Fm D" "] = 0 (65) 

and is a second-degree Casimir operator of U(p, q). 
(k) The contraction V" " is identically zero. 

VI. INHOMOGENEOUS PSEUDO-UNITARY 
GROUPS 

which obey 

[Ep., Q2] = [Em QR] = [Ep., R2] = 0, (74) 

[Fm Q2] = -2(QpR. + RpQ.) , (75) 

[Fm QR] = 2(QpQ, - RpR.), (76) 

[Fp., R2] = 2(Q~R. + R~Q.). (77) 

(b) The quantity 

Q2 + R2 = Q"Q" + R"R" (78) 

obeying 

[Ep., Q2 + R2] = [FI'" Q2 + R2] = O. (79) 

It also commutes with Q~ and Rp (Eq. (70)] and is 
therefore a second-degree Casimir operator of 
IU(p, q). 

(c) The quantity HEI'"Q" - Q"EI''' + FI'"R" -
R" FI''') equals QI" 

(d) The quantity HEp"R" - R"E~" - FI''' Q" + 
Q"FI''') equals Rp. 

(e) The quantities 

AI' = l(EI'"Q" + Q"E~" - Fp"R" - R"FI''')' (80) 

B~ = HEI'"R" + R"EI''' + FI'"Q" + Q"FI''') (81) 
The n-dimensional inhomogeneous pseudo-unitary obey 

group IU(p, q), p + q = n, consists of all elements 
of U(p, q) (see preceding section) together with all 
translations in the pseudo-unitary space. A basis 
of the corresponding Lie algebra [of order n(n + 2)] 
is obtained with the elements Ep. = -E.p, Fl" = 
F.I" Qp, and RI' obeying Eqs. (42)-(44), and 

[Ep., Ap] = gppA. - g.pAI" 

[Ep., Bp] = gppB. - g.pBp, 

[Fp., Ap] = -gppB. - g.pBI' I 

[Fp., Bp] = gppA. + g.pA~ 
(66) [ef. Eqs. (66)-(69)], 

(82) 

(83) 

(84) 

(85) 

[Em R,] = gl'pR. - g.flp, (67) [A p, F" "] = 2B~I (86) 

[F,.., Qp] = -gl'pR. - g.pRp, (68) [BpI F" "] = -2Ap (87) 

[Fp., Rp] = gppQ. + g.pQp, (69) [cf. Eqs. (71), (72)], 

[QI" Q.] = [QI" R.] = [Rp, R.J = O. (70) [QpI A,,] = QpQ" _ RI'R" _ gl',,(Q2 + R'), (88) 

Also 

[QI" F" "] = 2RI" 

[Rp, F" "] = -2Qp. 

(71) 

(72) 

The second-degree basis elements of the envelop­
ing algebra are Ep.Ep~, Ep.Fp~, Fp.Ep~, Fp.Fp~, Ep.Qp, 
QpEp., Ep,Rp, RpE~., Fp.Qp, Q"F~., F~.Rp, RpFp" 
QpQ., Q~R., RpR.. Interesting linear combinations 
of these, in addition to those presented in the 
preceding section, are: 

(a) The quantities 

Q2 = Q"Q", QR = Q"R", 

[QI'I B,,] = [RI'I A,,] = QI'R" + RpQ" , (89) 

[RI" B,,] = RpR" - Q"Q" - gl',,(Q2 + R~, (90) 

[QpI D" "] = 2ApI 

[RI'I D" "] = 2B/" 

(91) 

(92) 

[A p, D" "] = EI'"A "+A "Ep,,- Fp"B" -B"FI''''' (93) 

[BI'I D","] = EpaBa+B"Epa+FpaA"+AaFpa, (94) 

(95) 

(96) 
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where 

A = !(Q"B .. + B"Q" - R" A" - A"R") (97) 

= 2Q"RPE"p + (Q"QP + R"'R~FaP. 
Taking higher-degree elements, one has: 

(f) The quantities 

obeying 

[EI''' A 2) = [Em AB] = [E"" B2
J = 0, (99) 

[FI'" A2] = -2(AI'B. + B"A,) , (100) 

[F .. ., AB] = 2(A .. A. - B,.B.) , (101) 

[cf. Eqs. (74)-(77)]. 
(g) The quantity 

(102) 

,A2 + B2 = A"A" + B.,B", (103) 

which obeys 

[EI''' A2 + B2] = [Flip! A2 + B2] = 0, (104) 

[QI" A2 + B2) = _2(Q2 + R2)AI' + AR .. + R"A, 
(105) 

[RI" A2 + B2) = _2(Q2 + R2)B" - AQ,. - Q,.A, 
(106) 

[A,., A2 + B2] = (Q2 + R2)(Fp.,B" + B"F"" 

- EI'"A" - A "E",,) + AB" + BI'A, 

by Eqs. (S6), (87), (112), and (113) or by Eq. (115). 
(j) The quantity 

A = (Q2 + R2)2D" a 

(117) 

obeys 

by Eqs. (65), (91), (92), (104)-(106), (109)-(111). 
showing that it is a sixth-degree Casimir operator 
of IU(p, q). In addition, by Eqs. (93), (94), (107), 
(108), (112), (113) or just by Eq. (118) it obeys 

[A ... A] = [B", AJ = O. (119) 

Define now 

(120) 

G,,"+1 = -G"+1 I' = AI'/[ -S(Q' + R2)]t, (121) 

H" .. +1 = Hn+1 " = B,./[-S(Q2 + R2)]t, (122) 

Hn+l .. +1 = -A/S(Q2 + R2), (123) 

gn+l .. +l = e = ±1, (124) 

where a remark similar to the one following Eq. 
(37) holds. One then finds 

[Gob. G.d ] = g •• Gbd - gb.GoG 

+ gOdG.b - gbdG ••• (125) 

[B .. , A2 + B2] = _(Q2 + R2)(F"aA " + A "'Fpa - yadG.b - ybdG.IS ! (126) 

+ EI'"B" + B"El'a) - AAI' - A .. A. (lOS) [G.b, He"] = g.eHbd - Yb.Had 

(h) The quantity A defined in Eq. (97) obeys + YOdH.b - YbdH... (127) 

[E,." Al = [Fl'r. A] = 0, 

[QI" A] = 2(Q2 + R2)Rp , 

[R". Al = _2(Q2 + R2)Q,.. 

[A .. , A] = 2(Q2 + R2)B", 

[B .. , A] = _2(Q2 + R2)A". 

(109) 

(110) 

(111) 

(112) 

(113) 

(i) The quantity 

o = (Q2 + R2)F,," - A (114) 

obeys 

[E,.., 01 = [Fp., 0] = [QI" 0] = [Rp , 01 = 0, (115) 

according to Eqs. (45), (70)-(72), (79), (107)-(109), 
and is therefore a third-degree Casimir operator of 
IU(p, q). It also obeys 

[AI" OJ = [BI" 0] = 0 (116) 

where a, b, c, d = 1, '" , n + 1. Thus, the G. b 

and Hob form a basis of the Lie algebra of U (p, q + 1) 
or U(p + 1, q}. The quantity H: therefore obeys 

(12S) 

since it is a first-degree Casimir operator of 
U(p, q + 1) or U(p + 1, q). On the other hand, 

H: = Fa" - A/(Q2 + R2) = 0/(Q2 + R2), (129) 

where a remark similar to the one following Eq. (37) 
holds, showing the consistency of Eq. (12S) with 
Eqs. (115) and (116). Eq. (129) also exhibits the 
relation between the first-degree Casimir operator 
H: of U(p, q + 1) or U(p + 1, q) and the third­
degree Casimir operator 0 of IU(p, q). In addition, 
the quantity 

G2 
- H2 = t(G.bGb

• - HabHba) (130) 
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obeys 

since it is a second-degree Casimir operator of 
U(p, q + 1) or U(p + 1, q). On the other hand, 
one finds 

G2 _ H2 = Da. a. + (A2 + B2)/(Q2 + R2) 

- A2/2(Q2 + R2/ = t:./(Q2 + R2)2, (132) 

where a remark similar to the one following Eq. (37) 
holds, demonstrating the consistency of Eq. (131) 
with Eqs. (118) and (119). Equation (132) shows 

the relation between the second-degree Casimir 
operator G2 

- H2 of U(p, q + 1) or U(p + 1, q) 
and the sixth-degree Casimir operator t:. of IU(p, q). 

VI. OTHER GROUPS 

Other groups, such as the real and complex gen­
eral linear groups, [GL(n, R) and GL(n, C)] and 
their inhomogeneous counterparts [IGL(n, R) and 
IGL(n, C)], can be treated similarly to the above 
procedures, but will not be treated here in detail. 
We only note that GL(n, R) is especially analogous 
to U(p, q), p + q = n, since both are real forms of 
GL(n, C). 
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Analytic Properties of a Class of Potentials 
and the Corresponding J ost Functions 
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Analytical properties of the potential obtained by Newton's method in the inverse scattering 
problem at fixed energy are thoroughly investigated. It is found that r V(r) is analytic in the neigh­
borhood of r = 0 and can be continued in the r complex plane as a meromorphic function, the poles 
of which are of order at least equal to 2. An explicit formula is given to yield the Jost functions for 
any complex value of the angular momentum p. They appear to be meromorphic functions with poles 
located at the negative integers on the real axis. The zeros of !2("), for large II'I and for Re v and 1m 
" > 0, are located on a curve which is the boundary of a domain previously shown to contain no Regge 
pole. The interpolated scattering amplitude is unitary. It behaves for v -> -i 00 as e.- I ' l . An important 
result of this paper is that the class of potentials obtained by Newton's method is much more re­
stricted than one might think. This led the author to look for a more general approach to the inverse 
scattering problem, which is the subject of a forthcoming publication. In order to illustrate the method 
of this paper, a detailed study of an example previously introduced by R. G. Newton is given. In the 
last Appendix, a very remarkable property of the potentials involved in this example is given: the 
scattering amplitude corresponding to these potentials can be given an exact closed form. Since the 
corresponding potentials are strongly energy-dependent, it is very likely that this is only a mathe­
matical curiosity. 

IN a previous paper,l we studied the asymptotic 
behavior of the potentials derived from a given 

set of phase shifts in the framework of Newton's 
method.2 We showed, in particular, that, if the 
phase shifts fulfill a very weak condition,3 namely 
1811 < Cl-a-., as l ~ 0:>, there is one potential, 
and only one, which goes to zero faster than r-2

+. 

as r ~ 0:>. All the potentials equivalent to this one 
go to zero like r -I as r ~ 0:>. 

The purpose of this paper is to study the class 
of potentials which can be found by Newton's 
method. Therefore, we investigate successively the 
analytic continuation of these potentials V(r) in 
the complex r plane, and the corresponding Jost 
functions in the complex 1 plane. The results for 
the potentials are the following: 

(1) The function rV(r) can be continued in the 
complex r plane as a meromorphic function, 
with poles of order at least equal to 2. 

(2) There is no pole in a nonvanishing circle 
centered at the origin. 

(3) Potentials with poles on the real positive 
axis are only special cases. 

In a forthcoming paper, we see another partic­
ularity of the potentials obtained by Newton's 

1 P. C. Sabatier, J. Math. Phys. 7, 1515 (1966). This 
paper is hereafter referred to as I, followed, as the case may 
be, by the number of the formula. 

sR. G. Newton, J. Math. Phys. 3, 75 (1962). 
8 Throughout this paper, by E we mean a positive number, 

which can be made arbitrarily small, but not equal to zero. 
We use C as a general constant. Both are not meant to have 
the same value every time they are used. 

method: they cannot be even analytic functions. 
The Jost functions have the following properties: 

(1) They can be continued as meromorphic func­
tions in the complex v plane (v = l), with 
simple poles fixed at the negative integers. 

(2) They are bounded by C exp I t'll"V I on any ray. 
(3) In the upper half-plane Mv) has infinite zeros, 

which, in general, are distributed for large 
Ipl on the curve: 

1m v = 'II"-lq Log IRe vi, 
where q is a positive integer. This curve 
is the boundary of a domain (described by 
Martin4

), where Regge poles are excluded. 

The analytic continuation of the scattering am­
plitude, while satisfies the unitarity condition, also 
exhibits Regge poles in the upper half-plane. Further­
more, it behaves on the ray 

Arg v = ii'll" as exp \'II"pl. 

Therefore the conditions of Carlson's theorem are 
not fulfilled. This is not surprising, since there is 
an infinity of equivalent potentials. 

Those properties led us to look for a method of 
approach to the inverse scattering problem at fixed 
energy more general than that of Newton. We have 
obtained5 such a method by taking nonvanishing 

4 A. Martin, Progress in Elemenw,ry Particle and Cosmic 
Ray Physics (North-Holland Publishing Company, Amster­
dam, 1965), Chap. I, p. 54. 

~ This method has been given in the autaor's Doctoral 
dissertation for Faculte des Sciences, Orsay, and is to be 
published in J. Math. Phys. 

2079 
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c! for arbitrary real values of l (not necessarily 
integers). This, however, is the subject of a forth­
coming paper. 

1. ANALYTICAL CONTINUATION OF THE 
POTENTIALS DERIVED FROM THE 

PHASE SHlFTS IN NEWTON'S METHOD 

In Newton's method, the potential is given by 
the formula 

VCr) = -2r- 1 {d[r-1K(r, r)]/dr}, (1.1) 

where K(r, r) is a particular value of K(r, r'), 
which in turn is defined by 

K(r, r') = fer, r') - [ K(r, p)f(p, r')p-2 dp, (1.2) 

where the function fer, r') can be obtained from the 
knowledge of all the phase shifts through its coeffi­
cients Cz: .. 

fer, r') = L czuz(r)uz(r') , (l.3) 
1-0 

where 

(1.4) 

The derivation of the coefficients Cz from the values 
of tan 01 is studied thoroughly in I. We showed in 
particular (Sec. I, 3.2) that, if the phase shifts go 
to zero as l tends to infinity faster than Z-4/S-., 
the coefficients Cz are bounded as l ~ cx>. We see 
in Sec. 2 that a slightly weaker condition is necessary 
to legitimate the method used to relate the phase 
shifts to the C/. However, the analyses of Sec. 1 
are submitted only to a much weaker assumption: 

Assumption I: 

3p =? W"czl < C. 

We now introduce the two functions: 

tpr(r') == tp(r, r') = (rr,)-lf(r, r'), (1.5) 

Kr(r') = (rr'rIK(r, r'), (1.6) 

which enable us to write (1.2) more conveniently 
in the form 

Kr(r') = tpr(r') - [ drt Kr(rt)tp(rt, r'). (1.7) 

1.1. Analytic Continuation of rV(r) in the Neighborhood 
ofr= 0 

We use the notation z (resp. z') in place of r (resp. r') 
when we consider these variables in their respective 
complex plane. We also speak of the complex plane, 
where z and z' are considered only as points in a 

complex plane. For a given (real) r, Eq. (1.2) is a 
Fredholm equation. Its kernel, ",(r, r'), is continued 
straightforwardly through (1.3) into ",(z, z'). ",(z, z') 
is an entire function of z (resp. z') for any finite 
value of z' (resp. z), and therefore is an entire 
function of z and z'. This results readily from the 
bounds of the functions lu,,(z) I « C I!zl"+l/p!) 
given for instance in I (Appendix 1), and from the 
Assumption I on the coefficients C/. For any couple of 
values of Zl and Zz lying inside a circle (0, ro) of the 
complex plane, 1",(zlJ zz) I can be bounded by a finite 
positive function C(ro) 

(1.8) 

Since C(ro) goes to a finite limit as ro ~ 0, it is pos­
sible to find rM for which the following formula holds: 

C(r)rM < 1, "i/ r ::; rM' (1.9) 

Now, the Neumann series for (1.7) is 

Kr(r')=",(r,r')- {dr1tp(r,rl)",(rl'r') + ... (-1)" 

X { ... f drl ... dr" tp(r, r1) '" ",(r", r'). (1.10) 

A lower bound for the radius of convergence of the 
series (1.10) can be obtained by replacing each 
term by its modulus, and tp by a majorant. The 
general term is bounded by 

r"[C(r)]"C(ro) , (1.11) 

where ro is a number larger than rand r'i hence 
the series (1.10) certainly converges for rC(r) < 1, or 

(1.12) 

Suppose now that rand r' are complex and there­
fore denoted by z, z'. Any term of the series (1.10) 
is an analytic function of z and z', and its value is 
independent of the contour (0, z). Using a well­
known inequality for complex integrals,6 and choos­
ing rays issued from the origin as contours of integra­
tion, it is easy to see that the bound (1.11) holds, 
with r replaced by Izl, if z and z' lie inside the circle 
(0, ro). Hence the series (1.10) is uniformly con­
vergent, and K.(z') is an analytic function of z 
(and an entire function of z'), if z lies inside the 
circle (0, rM - e). zV(z) is therefore analytic inside 
this circle. 

1.2. Analytic Continuation of zV(z) for Any Finite z 

For any finite value of r [except when -1 happens 
to be an eigenvalue of (1.7)], it is possible to write 

6 E. C. Titchmarsh, Theory of Functions (Oxford University 
Press, London, 1932). 
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the solution of this equation in terms of Fredholm 
determinants? 

Kr(r') = cp(r, r') + [1>(r)r1 
[ cp(r, p) i:>r(P, r') dp, 

o (1.13) 

where 
.. 

1>(r) = 1 + L: (m!)-l 

(1.14) 

'" 
Dr(p, r') = - L: (m!)-l 

... -0 

1
r 1r (p r 1 •• , r ) X . .. K,' m dr1 ··• drm , 

o 0 r,r1"'r", 
(1.15) 

and we recall that the symbol K stands for the 
following determinant: 

K(Xl ••• z .. ) _ 
Yl ••• y", 

CP(Xl, Yl), CP(Xl' Y2) .•. CP(Xl' Ym) 

CP(Xm, Yl), cp(xm, Y2) ... cp(x"" Ym) 

(1.16) 

From Hadamard's theorem and (1.8), it follows that 

(1.17) 

(1.18) 

Consequently (and this is a well-known fact), the 
series (1.14) and (1.15) converge for any finite value 
of r. Suppose now that rand r' take complex values 
z and z'. Any term in the series (1.14) or (1.15) is 
an analytic function of z and z'. Choosing rays is­
sued from the origin as contours of integration, and 
since Hadamard's theorem is valid also for deter­
minants with complex elements,S the bounds (1.17) 
and (1.18) hold if only r is replaced by Izl, when z 
and z' lie inside the circle (0, r). 

The series (1.14) in the complex form is therefore 
uniformly convergent for any finite value of z, so 
that 1>(z) is an entire function of z. Let us now define 
1> (z, z') to be 

7 F. G. Tricomi, Integral Equations (Interscience Pub­
lishers, Inc., New York, 1957). 

8 F. Riesz and B. Sz, Nagy Le90ns d'analyse fonctionneIIe 
lAcademie des Sciences de Hongrle, 1955). 

1>(z, z') = 1" cp(z, p) D.(p, z'). (1.19) 

1>(z, z') is an entire function of z and z'. K.(z') 
may therefore be continued in the z complex plane, 
and, for any finite value of z', as a meromorphic 
function of z. Its poles, which are necessarily zeros 
of 1>(z) , are independent of z'. Conversely, a clas­
sical argument9 which can easily be extended here, 
shows that all the zeros of !D(z) are poles of K.(z'). 

1.3. Poles of zV(z) 

Equations (1.1) and (1.6) enable us to get the 
analytic continuation of VCr) 

V(z) = -2z-1 {d[zK.(z)]/dz}. (1.20) 

Since the only singularities of K.(z) for finite z are 
poles, the only singularities of z V (z) are poles of 
order at least equal to 2. Since the c" are real, 
if Z; is a pole, z~ is also a pole. Now let Z; be a pole 
of K.(z') (z' ¢ z). For Z = Zi, the homogeneous 
integral equation derived from (1.7) has at least a 
nontrivial solution: 

x.;(z') = -1" dZ1 X.J~l)CP(Zl' Z'). (1.21) 

This solution is an entire function of z'. The existence 
of such a nonvanishing solution could lead us to 
question the validity of Newton's method. Indeed, 
in this method the following step makes use of the 
vanishing of such a solution. Let us retrace the argu­
ment. Do(r) is the differential operator r2(o2/or2 + 1). 

From the partial differential equation verified by 
fer, r'): 

{
[Do(r) - Do(r')]f(r, r') = 0, 

f(O, r') = fer, 0) = 0, 
(1.22) 

and from the integral equation (1.2), it is shown 
in the above method that the function, 

Hr,r') = {D(r) - Do(r')}K(r,r'), (1.23) 

where 

D(r) == Do(r) - r2 V(r) , (1.24) 

is a solution of the homogeneous form of (1.2), 
which is equivalent to (1.21). The proof of this 
statement makes use of (1.2) and (1.22), together 
with straightforward but tedious differentiations and 
integrations by parts. The vanishing of Hr, r') 
shows then that K(r, r') is a solution of a partial 
differential equation, from which all the equations 
of the method follow. We see therefore that the 

g Reference 8, p. 174. 
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method is not valid at the points Z = z,. However 
~his is not a difficulty, since these are isolated point~ 
ill the Z complex plane. For Z = Z,' ~(z, z') is a 
~onvanishing function, so that the solution (1.21) 
IS not equal to zero in L 2 • But in the whole Z com­
~lex plane (except at these isolated points), ~(z, z') 
18 ze:o, so that there is one and only one analytic 
8ol~twn of (1.2), and the existence of Hz, z') at 
Zi 18 only another aspect of the nonanalyticity of 
K(z, z') at these points. Therefore, all the equations 
of Newton's method hold provided that there is no 
pole on the real axis. Besides, it is clear that if such 
a pole, which would be of order 2 or more existed , , 
the scattering problem might have, strictly speaking, 
no physical meaning. It is remarkable that the 
formula (1.3) and those relating the CI to the 0, 
enable us to define the scattering problem even in 
this case, if we choose for all the integrals a contour 
which does not cross any pole, and provided that 
there is no pole at + 00. This may give a way of 
studying some special classes of singular potentials. 

The absence of a pole at + 00 is certainly true 
in general, i.e., ~(r) can be zero for r = + 00 only 
for particular sets of C/. On the other hand there 

. ' are certainly two cases for which there is no pole 
at +00. 

(1) When all the c, are small enough, the Neumann 
series converges for the solutions of (1.2) [or (1.7)] 
so that there is no pole on the real axis. 

(2) When all the l for which CI ~ 0 are of the 
same parity, it is possible to write down the solu­
tion g(r, r') of the equation obtained from (1.2) by 
replacing the upper bound r of the integral by + 00. 

This is due to the orthogonality of the sets U21 or 
U2I+l. One obtains 

'" 
g(r, r') = L: g21U:zI(r)u21(r') (1.25) 

o 

or 
'" 

g(r, rl) = L: g21+1u21+1(r)u21+1(r'), (1.26) 
o 

where 

(1.27) 

We showed in a previous paper! that the solution 
K(r, r') of (1.2) is also a solution of 

K(r, r') = geT, r') + 1'" p-2 dp K(r, p)g(p, r'). (1.28) 

If the coefficients gn are bounded in such a way that 
g(r, r') belongs to one of the three classes studied 
in I, Ig(r, r')1 is bounded by 

C(rr')' X [1 + Ir - r'lrt . 

For large values of r, the Neumann series converges 
and defines Ker, r') from g(r, r'). Ker, r') is equivalent 
to g(r, r') for large values of rand r', so that in 
the same conditions, lKr(1"') \ is bounded. It foll~ws 
that the solution of (1.2) cannot have a pole at + (X) 

in these conditions. As we see in the following ex­
ample, there can be a pole at + 00 if these conditions 
are not fulfilled, for example, if one of the g.. is 
not finite. 

1.4. A Simple Example 

Newton has considered a very simple example 
where all the phase shifts are easy to calculate 
exactly. We investigate the properties of the po­
tentials involved in this case. It is assumed that 
only one Cl is nonvanishing. The following formulas 
are straightforwardly derived 

where 

fez, z') = CI,UI,(Z)UI,(z'), 

cJ>I,(Z) = [1 + cl.L::(Z)r 1UI,(Z) , 

K(z, Z') = CI.cJ>I.(Z)U/,(z'), 

cJ>/(z) = u/(z) _ c"u,,(z)LUz) 
1 + c1.L::(z) , 

L:'(z) = 1" UI(P)U/,(p)p-2 dp. 

The potential V(z) is equal to 

V(z) = -2z-1cl. iL {Z-l [uZ,(Z)]2 }. 
dz 1 + cl.L;:(z) 

(1.29) 

(1.30) 

(1.31) 

(1.32) 

(1.33) 

(1.34) 

The phase shifts are given exactly by the following 
formulas: 

tan 01 = 0 for Il - lol even 
(I.35) 

tan 01 = cl.(lo - l}-1(1 + Io + 1)-1 

X 11 + !·n{cl.!(210 + 1)] rt, 
for Il - lol odd. 

Let us now study the analytic properties of the 
potential (1.34). It is analytic for z = 0 if 10 ~ 1. 
For lo equal to zero, zV(z) is analytic in a non­
vanishing circle, with its center at the origin. The 
function L::(r) is odd, increasing monotonously from 
- i'lI-j (210 + 1) to +!1r / (2lo + 1) when r increases 
from - 00 to + 00 • 

Therefore, the potential (1.34) has no pole on 
the real axis only if 



                                                                                                                                    

ANALYTIC PROPERTIES OF POTENTIALS 2083 

If c'o is not bounded as in (1.36), and according to 
its sign, there is one pole either on the negative 
or on the positive real axis. 

Poles in the Right Upper Half-Plane 

We prove now that the potential (1.34) exhibits 
an infinity of poles in the first quarter of the Z com­
plex plane. For this, let us write the denominator 
of (1.34) in the following form: 

D = 1 + !11" 2loC+ 1 - C/o J.'" dp P -2[U/ o(p)]2. (1.37) 

Well-known formulas10 for spherical Bessel func­
tions lead to 

u/.(z) = sin (z - lO!1I")[1 + El(Z)] 

(1.38) 

where ZE1(Z) and ZE2(Z) are polynomials of Z-I. 
Suppose now that both Re Z and 1m Z go to + <Xl • 

The formula (1.38) is equivalent to 

u/.(z) = exp [-i(z - lo!'n-)][l + Eo(Z)], 

Eo(Z) is analytic for Z ~ 0, whereas ZEo(z), Z2 EHz), 
lE~'(Z) remain bounded as Re Z and 1m Z ~ <Xl. 

Integrating twice by parts and evaluating the 
rest on a parallel to the real axis, we can write D 
in the following form: 

where ZE(Z) is analytic, and remains bounded as 
both Re Z and 1m Z tend to + <Xl. Let us now call 
Zu a zero of 

-2i:r 

D - 1 + 1 C Zo 1 ( 1)/' e_ 
o - '211" 2lo + 1 - "iCZ. - Z2 

(1.40) 

where (x, {J, -yare convenient constants. It is easy 
to see that Do exhibits an infinity of zeros in the 
first quarter, located on the curve: 

2 1m z = f3 + Log [(Re Z)2 + (1m Z)2] 

at the points 

Imz 
Re z = _'!-y - Arc tan -- + k1l". 

2 Rez (1.41) 

This curve and these points go asymptotically to 
the following ones: 

10 Higher Transcendental Functions, A. Erdelyi, Ed. (Mc­
Graw-Hill Book Company, Inc., New York, 1953), Eq. 7.11 
(1). Hereafter referred to as HTF, followed by the number of 
the formula. 

{
1m Z r-J Log Re z, 

Rez r-J -h + k1l". 
(1.42) 

We now show that if feZ) and e'(z) are bounded 
by lEI in a circle Iz - zol < CE, D - Do(zo) has a 
zero in this circle. It is sufficient to show that the 
property holds for 

{Z;;-2e-2i. o _ z-2e-2iZ[1 + e(z)]} , 

or for 

fez) = 1 - e-2i (Z-'O)[1 + 1/(z - zo)], 

where hi and Id1)/dzl are bounded by E in the circle 
Iz - zol < 2E, and analytic in this circle. To show 
this point, we have only to evaluate the following 
integral: 

which is equal to the number of zeros of fez) in 
the circle (Iz - zol ;t5. 2E). Since we have on the 
boundary of this circle, up to order E2, 

3e < !fez) I < 5e, 
dz = 2E dB, 

1 - 2E < ! If'(z) I < 1 + 2e, 

it is clear that there is one (and only one) zero in 
the given circle. Now, it is easy to see that the 
properties of E(Z) enable us to obtain majorizations 
of this kind, so that the zeros of D(z) go asymptoti­
cally to the zeros of Do(z). Therefore, D(z) exhibits 
an infinity of zeros, which go asymptotically to the 
points (1.42), and which are poles of the potential. 

Asymptotic Behavior of the Potential 

The formula (1.34) shows readily that VCr) de­
creases as r- 2 when r ~ <Xl, provided only C'. be 
different from -2(2lo + 1)/11". 

The Case of a Pole at + <Xl 

If c'o is equal to -2(2lo + 1)/11", VCr) behaves 
like Cr-1 sin 2r for large r, and this is not sufficient 
to give sense to the scattering problem. It is not 
surprising to see that, in this case, tan lh and A/ 
are infinite for odd (l - lo). 

Other Examples 

Similar examples can be found if we take a finite 
number of nonvanishing C/. These examples lead 
to Pincherle-Goursat kernels in the fundamental 
Fredholm equation, so that it is easy to obtain an 
exact solution of it. 
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2. DEFINITION AND ANALYTIC PROPERTIES 
OF JOST FUNCTIONS 

In this section, we first show that the regular 
solutions of the SchrOdinger equation for any value 
/I of l in the complex half-plane (Re /I > -1) can 
be obtained from K(r, r') through a formula which 
readily interpolates the formula giving the u/(r). 
We then use the asymptotic form of this relation 
to get the Jost functions. These can be continued 
in the whole /I plane as meromorphic functions with 
poles at the negative integers, and the expansions 
we obtain are their Mittag-Leffler expansions.lI The 
result is used to show the unitarity of the interpola­
tion of the scattering amplitude. We give then 
formulas which enable one to study the properties 
of Jost functions either from the asymptotic prop­
erties of the coefficients c! or from the asymptotic 
behavior of the phase shifts. 

These formulas enable us to get at the location 
of Regge poles for large values of 1/11. We show that, 
for large lvi, the zeros of /2(/1) in the right half-plane 
are located on a curve of zero slope in the first 
quarter. This curve is on the boundary of a domain 
described by Martin,4 which cannot contain any 
Regge pole. On the other hand, it is known, from 
a work of Bessis,12 that, if the potential is holo­
morphic and bounded by a decreasing exponential 
in the right r half-plane, there cannot be any pole 
in the /I plane with Re v -+ + <Xl. The existence 
of poles in the present case shows that the potentials 
built through Newton's method cannot fulfill these 
interesting conditions. Besides, the example we 
give exhibits an infinity of poles in the right r 
half-plane. 

2.1. Definition of the Jost Functions 

Let us now recall that u,(r) is an eigenfunction 
of Do(r) 

Do(r)u.(r) = /I(v + 1)u.(r). (2.1) 

From K(r, p), we define, for any value of /I such 
that Re v > -1, the function 

4>.(r) = u.(r) - [ K(r, p)u.(p)p-2 dp. (2.2) 

Applying the differential operator D(z) to (2.2), 
performing two integrations by parts, and using 
(2.1) and (1.23), show that, for z ~ Zi, 4>,(z) is an 
eigenfunction of D(z) 

D(z)4>.(z) = v(/I + 1)4>.(z). (2.3) 

11 C. Caratheodory, Theory of Functions of a Complex 
Variable (Chelsea Publishing Compa.ny, New York, 1958). 

12 D. Bessis, Nuovo Cimento 23, 797 (1964). 

Furthermore, it follows from (2.2), (1.2), and the 
well-known properties of u,(r) that 4>.(r) is the 
regular solution of (2.3) if Re /I > -1, since 

(2.4) 
4>,(r) '" r,+1 + O(r,+2). 

Let us now recall the expansion of K(r, r') (in 
Refs. 1,2) 

'" 
K(r, r') = L cz4>l(r)ul(r'). (2.5) 

1-0 

Substituting this result in (2.2), we obtain 

4>,(r) = u.(r) - L L~'(r)c!'4>I,(r), (2.6) 
I' 

where 

In order to obtain the Jost functions, we let r -+ 

+ a) in (2.6). Then13 

(2.8) 

Formula (2.6) is valid for any finite value of r, 
modulo the Assumption I of Sec. 1. To replace the 
functions by their asymptotic expansion in (2.6), 
it is necessary that the series (2.6) converge for 
any real positive value of r, including + <Xl. 

Now, the well-known results yield 

d d 
u.{r) d-u!,(r) - ul·(r) d-u.(r) 

Ll'() r r 
, r = l'(l' + 1) - /1(/1 + 1) (2.9) 

We showed in I that IUI(r)1 and luHr) I are bounded, 
for any real positive value of r, by Cli. If there is 
no pole on the real axis, so that Kr(r') is bounded 
for any real positive value of r and r', it follows 
from (2.2) that I¢.(r) I is bounded by C/lt for any 
real positive value of r, and, with some algebra, 
it is easy to get the same bound for 14>:(r)!. Con­
sequently, the series (2.6) and the differentiated 
series are convergent for any real positive value of 
r if 

(2.10) 

Modulo this important condition, we can replace 
the functions in (2.6) by their asymptotic behavior 
(2.8), and obtain 

II E. J. Squires, Complex Angular Momenta ana Particle 
PhY8ics (W. A. Benjamin, Inc., New York, 1963). 
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f ( :\ -iir' " sin (v - l')!'lI" 
1 vI = e - f.-' V(V + 1) - l'(l' + 1) 

X a,,(1 + itan lil,)e-iil''', (2.11a) 

1 ( :\ ii... " sin (v - l')!'lI" 
2 vI = e - -f.-' v(v + 1) - l' (l' + 1) 

X a,,(1 - i tan li,,)e+,il'r, (2.11b) 

where we put, as in I, 

al = c,A , cos li l , (2.12) 

It follows from the bounds of the functions rp that 
A I is bounded by Cli. Furthermore, it follows from 
the analysis of I [I, (3.2)] that A, approaches 1 
as l ~ IX), if, for instance, the phase shifts go to 
zero faster than l-3- •. Since the a, are bounded 
in the same conditions, the condition (2.10) is 
obviously fulfilled and Newton's method is self­
consistent. 

2.2. Properties of the Jost Functions and the 
Scattering Amplitude 

2.2.1. Unitarity 

We first remark that the unitarity condition 

S(v)[S*(v*)] = 1 (2.13) 

holds for any value of v in the complex plane, since 

S V 
= eii"'Mv) 

( ) e-i .... Mv) , (2.14) 

and since it is obvious in (2.11) that 

[Mv*)]* = Mv). 

2.2.2. Analyticity 01 II '2(V) 

(2.15) 

We see readily from (2.11) that Mv) and Mv) 
can be continued for any value of v in the complex 
v plane, except for negative integers -l - 1, for 
which 11(v) and 12(v) have simple poles, with residues 
a,(1 ± i tan li,)(±i) 1/( -2l - 1). Mv) and Mv) 
are therefore meromorphic functions, with fixed 
simple poles, and the expansion (2.11) is their 
Mittag-Leffler expansion. 

2.2.3. Another Expansion 01 the Jost Functions 

Several properties of the functions which we are 
to study are related to the asymptotic behavior of 
the expansion coefficients in (2.11). Since the phase 
shifts li, go to zero as l ~ IX) , the asymptotic behavior 
of the expansion coefficients in (2.11) is simply 
related to that of coefficients CI, i.e., to VCr). It 
would be interesting to have a formula similar to 
(2.11), where the asymptotic behavior of the ex-

pansion coefficients would be readily related to 
that of the phase shifts. It is not difficult to find 
such a formula when lliz! is bounded by Cl- 3

-. 

as l ~ IX). We show in Appendix AI that it is possible 
to obtain in this case the formula 

(2.16) 

where the components of A' have the same as­
ymptotic behavior as the phase shifts li

" 
i.e., the 

ratio of the lth component of A'to li l is bounded. 
Substituting this result in (2.11) and using the 

formulas (AII7) and (AIII6) from Appendix II, 
we obtain for 12(v) 

Mv) = e!i ... - a I: L~'vI,e-i!'!r 
I' 

. "LI' iI'!r + ~ £.oJ • ai' tan li l , e -
I' 

where the C!' are given by 

C!,,+l = -(-1),,4'l1"-\2p + !) 

" I' • £.oJ C. d /·, 
I' 

X [rep + !)r(!v + !)]2L2P+l 
rep + l)r(!v + 1) . , 

C!" = -i( -1)"4'1I"-1(2p + !) 

and 

X [rep + !)r(!v + I)J-'2L2P 
rep + l)r(!v + !) ., 

(2.17) 

(2.18) 

L: = [(v + W - (p. + wr l sin (v - p.)!r. (2.19) 

As we see later, the second term in the right-hand 
side of (2.17) can be calculated exactly. The ex­
pansion of Mv) can be obtained from that of Mv) 
through the formula (2.15). It is clear that the 
expansion (2.17) is very similar to the expansion 
(2.11), but once we have computed the term which 
could be done so exactly, the expansion coefficients 
of the remainder decrease like li l • We can therefore 
study the properties of Mv) by using either one of 
the expansions (2.11) and (2.19). For the sake of 
simplicity, we limit ourselves here to (2.11). 

2.2.4. Asymptotic Location 01 Regge Poles 

The Regge poles are given by the zeros of 12(v). 
We try to find their positions in the v complex 
plane for large values of Ivl. The coefficients of 
L!' in (2.11b) are written as follows: 

a2 .. (1 - i tan li2 .. ) = ail2n + a2 .. , (2.20) 
a2n+l(1 - i tan li2 .. +1) = (3il2R+1 + a2,,+1! 

and the an are assumed to go to zero as n -. IX) faster 
than n -I. According to an analysis of I [Sec. I, (3.2)], 
this condition is related to a bound cr1

/
3
-. for 
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the 0,. Insertion in (2.llb) of the formulas (2.20) 
leads us to consider (2.l1b) as the sum of five terms, 
Tl) T2, ... , Ts, where T} is eli ... , and the others 
are now considered separately. T2 and T 4 , which 
contain, respectively, the terms i12n and i12,,+1 of 
(2.11), can be calculated exactly, using formulas 
for the i1" given in I and well-known formulas, 

-a-IT2 = I: L!''1,'''i12n 
It 

= (!71-)i La> J.+i(p)Jo(p)p-! dp 

_ ! r(tv + !)r(!v + !) ~ (2.21) 
- 2 r(!v + l)f(!v + 1) cos V2 1r, 

so that, as Ivl -> (X) , with IArg vi < 7f 

T2 "" -v-Ia cos v!1r exp [_!v-1 + *v-2J. (2.22) 

In the same way 

T .~ '" L 2,,+1- -2" 
4 = -~" £...J • J.l.21J+l~ 

" 
_ 1 'R f(!v + l)f(!v) . ~ 
- -'2'/'" r(!v + !)f(!v + !) sm V2

1r , (2.23) 

so that, as Ivl -> (x), with IArg vI < 1r 

T . -1~' 1 [~ -1 1 -2] 
4 t'J -~v "sm v'21r exp - 2V - aV • 

Let us now study the terms Ta and T5 which contain 
the aft, and which can be put together into the form 

(2.25) 

In order to avoid possible difficulties coming from 
the real axis, we first exclude from our study a 
strip 11m vi < Eo, where Eo is a fixed number. Let 
us write (2.25) in the form 

/J"" t,: 2i[(v + !)2a~ (l' + !y~] 
(2.26) 

Suppose now the an are bounded in the following way: 

la,,1 < Cn-k (k > 1), (2.27) 

a well-known identity enables us to write 

'" iii' 
~ (v + !)2 - (~' + W 
_ al' { (ll + j)2 . . . [~J2"-2} - f: (v + !) 2 1 + (v + j)2 + + V + ! 

_ [l' + !]2P 
+ f,: al' (v + !)2,,[(V + !)2 _ (l' + !)2] (2.28) 

Let us make p equal to E[!(k + 1 - e)], in order 
that the following condition should hold: 

-1 ::; 2p - k < 1 - E. (2.29) 

The condition (2.29) and the results of Appendix 
AnI show readily that the remainder in (2.28) 
is of the order of Ivl-k- 1

+< as Ivl -> co (with EoV -> co), 
so that the last term in the brace of (2.28) is larger 
than the remainder. If the same work is done on 
the second term of (2.26), we get for (Ta + Ts) 
the expansion 

T + T li ... { T~ + T! + 
3 5 = e (v + !)2 (v + !)4 ... 

+ ~ + O( -k-l+.)} 
(v + !)2" V 

- e+n{(v ~: !)2 + (v ~:. W + 

+ (v !\)2" + O(v -k-l+')}, (2.30) 

where the coefficients T: and T!. are linear combina­
tions of the ti" Besides, the terms T2 and T4 can 
be combined to give 

T2 + T4 = _!v-1e- tv-' 

+ e-iiU[(a - {3) + t(a + (j)v- 2 + O(v-a)]. (2.31) 

If we compare T I (= eli .. ,) to the other terms for 
large lvi, we see that TI is larger in the lower half­
plane, so that there cannot be zeros of /2(V) for 
large Ivl in the lower half-plane. When v lies in the 
upper half-plane and Ivi is large, it is necessary that 
1m v and Log IRe vi be of the same order so that 
(Tz + Ta + T4 + Ts) is of the same order as T1• 

Therefore, we may limit our study to the large 
values of Re v and 1m v. According to the values 
of the 01 and a, we may encounter one of the fol­
lowing cases: 

(1) a ~ (3 Mv) can be put in the form 

Mv) = eli ... - iv -\a - (j)e-!i"'[1 + f(V)], (2.32) 

(2) a = (j fz{v) can be put in the form 

Mv) = eli ... - (v + !)-ZTe-t ; .... [1 + E2(V)], (2.33) 

where T is obtained from T ~ and the coefficient 
of v-2 in the terms Ta + T4 • T may happen to 
vanish. This means that the Cz, or, equivalently, the 
phase shifts, are related by a definite constraint, 
so that the potential is restricted to a subclass of 
the class we study in general. The terms (Ta + 
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Ta + T4 + T 5 ) are then of the order of (a + (:3)v-a 

which is zero if (and only if) (:3 = 0 (since a = (:3). 
This method is applicable up to terms of the order 
of v- b

, if we limit ourselves to more and more 
restricted subclasses of potentials, or of phase shifts. 
If k is CD, P is + CD. If we limit our study to the 
cases where there is a nonvanishing coefficient of 
index q lower than k, the function Mv) can be 
studied starting from the form 

Mv) = e"'" - v-oT<ole-""'[l + E2(V)]. (2.34) 

This form is similar to the form (1.40) of Sec. 1, 
and can be studied in a similar way. If T (0) = 
e,,+i·, we find that f2(v) has an infinity of zeros in 
the upper half-plane, which, for large lvi, approach 
the points (Re v = T + 2k) on the curve 

Im v = 'II"-1 q Log IRe vi. (2.35) 

This curve is the boundary of a domain described 
by Martin which should not contain any Regge 
pole. It is not surprising to find Regge poles at + CD 

in the right half-plane. Only in the case of a potential 
which is holomorphic and bounded by a decreasing 
exponential in the right half of the r complex plane 
has Bessis shown that there could be no pole in the 
right half of the v complex plane. Their existence 
in our problem proves that the conditions imposed 
on the potential are not fulfilled. As for the strip 
11m vi < Eo, which we did not study up to now, it 
is easy to show, with the help of Appendix III, 
that it does not contain any zero of 12(v) for large 
Ivl if Re v > o. It is possible that there are zeros 
in this strip for Re v < 0, which are not interesting. 

2.2.5. Analytic Properties of the Scattering Amplitude 

From the above study and from formula (2.14), 
we see that S(v) is a meromorphic function of v. 
As v-'>-i CD, S(v) behaves as Cv-oeirv. This behavior, 
and the existence of poles for Re v = CD, exclude 
any possibility of applying the Carlson theorem. 
We now show that Newton's potentials cannot 
include "good" superpositions of Yukawa potentials. 
Indeed, a "good" superposition of Yukawa potentials 
exhibits two important features 

(1) c}z decreases exponentially as 1 -'> co. 

(2) There is no Regge pole as Re v -'> + co • 

Now, in the formula (2.17), if the 01 decrease 
exponentially, it is possible to impose to the phase 
shifts an infinity of constraints in order to avoid a 
behavior of the Jost functions like (2.34). More 
precisely, we have to impose the vanishing of all 
the linear combinations 

.. 
L A(l + !)(l + t)20 = 0, (2.36) 
o 

where q = 0, 1, ... , co, and the coefficients A(l + t) 
behave asymptotically like the 01. If 01 decrease 
exponentially, we can write 

(2.37) 

Let us now introduce a generating function g(x) 
for A(l + !) 

.. 
g(x) = '11"-1 :E A(l + t) cos (l + !)x, 

o (2.38) 

A(l + !) = 10''' cos (l + !)xg(x) dx. 

It is clear that g(x) is analytic in the strip (1m x) < r. 
Furthermore, g(x) is an even function, and it follows 
from (2.36) that all its even-order derivatives are 
equal to zero. g(x) is therefore equal to zero and so is 
A(l + !). This means that, at least from l = lo, 
all the 01 are equal to zero, and that, even for 
lo ~ 0, 12(v) is equal to e,irv, so that the only po­
tential consistent with these properties is VCr) = o. 

Remark: One can show that if there are several 
equivalent potentials, and if S (v) cannot increase 
faster than e l "VI, it is necessary that, for all these 
potentials, except maybe one of them, S(v) should 
have an infinite number of poles and zeros in the 
right half-plane. Indeed, suppose that S(v) is holo­
morphic and different from zero for Re v > A. 
It would then be possible to calculate the function 
[S(v)]' in this domain, which would fulfill the ap­
plicability conditions of Carlson's theorem, and this 
can happen for only one of the equivalent potentials. 

APPENDIX I 

Our aim is to obtain for the asymptotic behavior 
of the coefficients al more precise formulas than 
those derived in 1. We start with the fundamental 
formula 

tan Ae = Ma + tanA M tanA a, (All) 

where M is the matrix: 

Mr = {[l'(l' + 1) - l(l + 1)]-1, if l' - l is odd, 

0, if l' - l is even. 

The inverse matrix M-1 of M is equal to 

M- 1 = p,Mp" 

(A 12) 

(AI3) 
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where Jl is a diagonal matrix, whose elements are 
equal to 

il2J>+1 = 2,..-I(2n + !)[r(n + !)/r(n + 1)]2 

CAI4) 

4 -1 ,.....,,.., for n -t Q). 

In order to transform (All), we should first study 
the conditions in which the products MM- 1x and 
M-1Mx are associative, that is to say, are equal to x. 
Using (Al3), (AI4), and bounds given in the Sec. 1.2 
of I, it is easy to show that all the double series in 
M(M-1x) are bounded by summable positive series, 
and therefore summable, if 

(a) 

(b) 

Xl. even < C1;', (AI5a) 

CAI5b) 

The Fubini theorem leads us straightforwardly to 
the result 

M(M- 1x) = MM-Ix = x. (A 16) 

It should be noticed that the condition (AI5b) is 
necessary to allow the application of M-1 to x. 

It is easy to see in the same way that M- 1Mx 
is associative if 

Xloeven < CZ;', 
(A 17) 

Let us now return to Eq. (All). The summabiHty 
conditions in this equation are 

(AlS) 

If, more precisely, we suppose that W+'OI! is bounded, 
the operator M- 1 may be applied to all the terms 
of (All). According to (AI5) and (AI6), recalling 
that the vector v is annihilated by 111, we deduce 
from (All) the equation 

M- 1 tan A e + aV = (1 + M-1 tan A M tan A)a 

= (1 + R)a. (A 19) 

This equation was given by Newton':l and studied 
in detail by the author,1 but the validity conditions 
had not been fully investigated. If l'/3+'OI is bounded, 
the analysis given in I shows that it is possible to 
get a set of az which are bounded. We see here that 
this analysis is consistent with the above conditions. 
It is assumed hereafter that 

8> O. (AIlO) 

Equation (A19) IS equivalent to the following 
set of equations: 

(a) aV = (1 + R)(av + c), 

(b) M- 1 tan Ae = (1 + R)b, (A Ill) 

(c) a = b + e + aVo 

According to (AIlO) and the results in (3.66) of I, 
and since R connects only components of the same 
parity, the following orders hold: 

a2r = CXV2r + OCr-'), 

C2r = OCr -'), 

Ib2r ! < CCr-'), 

C2r+l = 0, 

The last two inequalities enable us to "Tite 

b = M- 1 tan A cot A Mh. 

(AI12) 

(A Il 3) 

Since tan A and cot A are diagonal matrices, it is 
clear that the associativity of the product in (AIl3) 
is ensured by the associativity of MM- 1

• Equa­
tion (AI11b) may therefore be written as 

M- 1 tan Ae = M- 1 tan ACI + R*) cot .:l Mh, (AI14) 

where 

R* = Mtan A M-1 tan A. (All 5) 

If we notice that the vector p. -IV is annihilated by 
M-\ we deduce from (AIl4) the equation 

e - 'Y cotA P. -IV = (1 + R*) cotA Mh. (AIl6) 

A comparison between the asymptotic behaviors of 
the two sides in (AIl6) shows that'Y = O. Proceeding 
carefully as above, we get from (AIl6) a formula 
for b 

(AI17) 

The same technique enables one to derive e through 
the following steps: 

-Rav = (1 + R)e, 

e = M- 1 tan A cot A Me, 

-aM tan Av = (1 + R*) cot A Me. 

(AIlS) 

(A 119) 

(A120) 

From (Allla), (AIl7) , and (AI20) , we derive the 
value of a 

a = aV + M-1 tan ACI + R*)-I[e - aM tan.:l v). 

(A121) 

We now have to study the equation 

Yo = Xo - R*yo = Xo - p. -IRp,yo (A 122) 



                                                                                                                                    

ANALYTIC PROPERTIES OF POTENTIALS 2089 

or 
(AI23) 

We see that this problem is equivalent to the 
problem of the inversion of (1 + R), which has been 
treated in I, but that the application of the operator 
(1 + R)-1 may involve some new difficulties, since 
(p,X), behaves asymptotically as Z2. From I we know 
that the solution of 

y=x-Ry (AI24) 

where 

!D (-y) = 1 + m~ (-:n~)'" J 
X J ['Yo(81 ' 81) ••• 'Yo(81 , 8m)J d8

1 
••• d8",. (AI28) 

'Yo(8"" 81) ••• 'Yo(8"" 8",) 

All the integrations are taken between 0 and !1r. 
The functions 'Yo and 'Y~ are bounded for any value 
in the domain of integration if Z4/3+'5, is bounded. 
V=:!~ is given by (AI27), provided we replace 'Yo 
by 'Yl, 'Y~ by 'Y~ everywhere. If :D happens to be equal 
to zero, either for'Y = 'Yo or for'Y = 'Yl! the inversion 
of (1 + R) is not possible. AB in I, we discard the 
particular sets of phase shifts for which this happens. 
{Jl is given by 

{Jl = 1 +' ~ " ~ U2,,+1 , 
£.oJ 0"2'+1 £.oJ 2r+l!l2p+l 

(AI29) 

" 
where 

0"2r+l = tan 52.+ 1 L M~;+1!l2. tan 52 •• (AI30) 

Now, if Z4/3+. is bounded, it is clear that V=: or 
V::!~ are bounded by Cpl/3. According to (Al25) , 
(AI26), (AI29), and (AI30), ,a condition sufficient 
to ensure the convergence of all the series is that 
pl/3+' Itan 5"x,,1 be bounded as p -+ co. If we return 
to (AI22), we see therefore that this equation can 
be solved if lIO/3+'5, is bounded. If this condition 
is valid, then (AI21) holds and we can write this 
equation in the equivalent form 

18 

Y2r = X2. + L V~~ tan 52pX2p( -IY, 
p (AI25) 

Y2r+1 = L U;~~!(X2P+I - {JI!l2P+I) , 
p 

where 

U~:!~ = 5i:!~ + vi:!~ tan 52,,+1(-1)". (AI26) 

vi: is defined, in function of the operators 'Yo and 
'Y~ defined in I, by 

d81 ••• d 8", , (AI27) 

a = OIV + M-1 A', (AI31) 

where A' is a vector the components of which behave 
asymptotically as tan 5,: 

.1~ '" tan MI + O(Z-2)], as l -+ co. (AI32) 

APPENDIX II 

The matrices L!' and M- 1 being defined by (2.7) 
and (Al3), we compute the elements of 

CI - ~ LI' tH'r I 
• - £.oJ. e 'YI'· (AlII) 

" 
For l = 2p + 1, C! is equal, according to (I, 3.27), 
(I, 3.28), and (I, 2.3), to 

C:,,+I = -(-I)"I1r 1"" J.+t(p)p-1A(p) dp, (AII2) 

where 

A(p) = 21r!l2p+1(P + 1)(P + 1) 1'" J2p+I(PI)P~l dpl 

X L !l2 .. J 2fO+i(Pl)J2 .. +i (P). (AII3) 
• 

Using for the series in the right-hand side of (AII3) 
the form given in I [I, (AlI3)], we can write A(p) 
as 

r12 

X 1 Jo(p sin 01) sin a dOt 

X 1"" JO(PI sin 0I)J2P+t(Pl)P~l dpl. (A 114) 
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Using now the well-known formulas,14 we can com­
pute the integral in (AII4) and obtain 

A( ) - 4- rep + 2) (1 )1 
P - J.i.2p+1 r(p + t) 'iP 

1
,,/2 

X 0 Jo(p sin a)P2p+1(COS a) sin ada. (AII5) 

Inserting this result in (AII2) and performing the 
integral over p with the help of the well-known 
formulas,15 we obtain 

C2"P+I = -(-1)"2(2 +.3.) rep + !). r(tv + t) 
• p 2 r(p + 1) r(tv + 1) 

1
,,/2 

X 0 P 2P+I(cos a)P.(cos a) sin ada. (AII6) 

A well-known formula l6 yields then the result 

C2p+I _ -(-1)"2(2 + .3.)[rCp + !). retv + t)]2 
• - P 2 r(p + 1) r(tv + 1) 

X sin hev - 2p - 1) 
t1l"(v - 2p - 1)(v + 2p + 2) 

(AII7) 

For l = 2p, C! can be written, with the help of 
formulas (3.27), (3.28), and (2.3) of I, as 

(AIlS) 

where 

B(p) = ilzp L ilzr+lJar+!(p)( -1)' 
r 

+ 21l"il2PP(P + t)( -1)" 1'" J 2P+.(p') 

X L il2r+lJzr+!(p)J2r+1(P'). (AII9) 
r 

Using for the series in the right-hand side of (A1l9) 
integral expressions given in I [see (2.8) with a = !, 
and (AII7)], we obtain for B(p) the formula 

B(p) = ilz,,(2/1l")lpiJ1(p) + 4p(p + t)(-I)"il2PP; 

1
,,/2 

X 0 J 1(p sin a) sin a da 

X 1'" JI(p' sin a)J2p+!(p/)pd dp'. (AIHO) 

We denote, respectively, by Bl and B2 the :first and 
the second term in (AIHO). The last integral in 
B2(P) can be transformed with the help of the well­
known formulas17 and B2(P) takes the form 

14 HTF 7.7 (29). 
15 HTF 7.7 (29) and HTF 3.2 (20). 
18 HTF 3.12 (15). 
17 HTF 7.7 (29), HTF 2.11 (10), HTF 2.8 (20), and HTF 

3.2 (14). 

After inserting this result in (AIlS), and computing 
the integral over p in the same way as above, we 
get for the contribution of B2(P) to c!p: 
l' ( 1)"- rep + 1) r(tv) 
4't1l" - J.i.2" rep + t) r(tv + !) 

11 2 d d 
X 0 (1 - x) dx p.(x) dx P2P(x) dx. (AIH2) 

Integrating by parts and using the Legendre dif­
ferential equation readily yields the following for­
mula, in which we have replaced il211 by its expression 
in [I, (3.28)]: 

2i( -I)"(2p + 1.) rep +!) r(tv) 
2 r(p) r(tv + !) 

X [ p.(x)P2p(x) dx. (AIlI3) 

With the help of a well-known formula,18 we get 
the result corresponding to B2(P): 

1 ._ r(tv) reI + tv) 
-'i~J.i.2p r(tv + !) r(t" + t) 

2p(2p + 1) . 1 

X (2p _ ,,)(2p + v + 1) sm 'iP1l". (AIlI4) 

The contribution of B I (p) is much easier to compute: 
a known formulal9 readily yields the result 

1. ._ r(tv + 1) r(tv) . 1 

2 t J.i.2p r(tv + t) r(t" + !) sm 'i1l"P. (All 15) 

If we add (AII14) and (AllI5), we find the expression 
of C!p 

C2p = -i(-W2(2p + 1.)[r(p + t) r(tv + I)J2 
• 2 r(p + 1) r(!v + !) 

X sin !1l"(v - 2p) 
t1l"(v - 2p)(" + 2p + 1) 

(AIl16) 

All the convergence proofs, and, in general, the 
validity of the mathematical derivation result readily 
from the mathematical studies given in I. 

APPENDIX III 

We study here the asymptotic behavior for large 
values of Ivl of the series 

s - t 'Y. 
- ,,-0 (v - q) (v + q + a) , 

a> 0, (AIIIl) 

18 RTF 3.12 (15). 
19 HTF 7.7 (30). 
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where the I'Y.I are bounded by Cq-fJ ({3 > -1) and 
where v takes its values in the complex plane, except 
the neighborhood of the real axis. For the sake of 
simplicity, we more precisely exclude the strip 
11m vi < Eo, where Eo is a fixed number. Let A be 
the real part and p. be the imaginary part of (v + a). 
The modulus of S can be bounded as follows: 

'" 
lSI ~ L !'Y.! {[A2 + p.2 _ (q + a)2]2 

.-0 
(All 12) 

or 
'" 

lSI:::;; L' I'Y.I [(A2 + l) - (q + a)2rl 
.-0 

(AIII3) 

where the prime on the sum means that we excluded 
from the summation the two values of q nearest 
to q + a = (A2 + p.2)1. 

According to a study given in I [I, (AI3)], lSI 
is therefore bounded by (C Ivl-1- fJ +< + C Ivl-2). 
From the present study, it is easy to deduce the 
asymptotic behavior of the following series for 
large values of v in the complex plane (including the 
positive real axis) 

{s 
- . 1 ~ 'Y2n 

1 - sm "2111r ~ (v _ 2n) (v + 2n + a) , 
(AI 114) 

S - 1 ~ 'Y2n+l 
2 - cOS"2

111r ~ (v _ 2n - 1)(v + 2n + 1 + a) 

where, according to (1.35), 

cot 01 = a- 1[(lo + W - (l + !)2] 

for 11 - lol odd, <X> otherwise. 

1. 10 odd 

(AIV4) 

From (AIV3), (AIV4), and the well-known re­
sults,20 we derive readily the following relation: 

f(O) = . (b
7rak

-:)l 1'" Jb(X)X-1 dx 
sm -"2"27r 0 

'" 
X L (2l + !)( -1)1 J 21 + i(x)P2 1 (cos 0) (AIV5) 

o 

= sin (b - !H7r(27r)t 

X 1'" Jb(x) cos (x Icos ol)x-l dx. (AIV6) 

This Weber-Schafheitlein integral can be calculatedlf. 
as 

-7rak-1rct + !b) 
f(O) = 2r(!)r(! + !b) sin (b - !H7r 

X 2Fl(t + !b, t - !b; !; cos2 
0). (AIV7) 

It is possible to express the result (AIV7) in terms 
of Legendre functions21 

f(O) = (2 cos b7rfl7rak-1{2Fl(! + b, ! - b; 1; 8in2 iO) 

+ 2Fl(! + b, ! - b; 1; cos2 to)} 
or Proceeding exactly as above, and excluding from 

the sums the terms with index nearest to I!vl, we f( 0) = (2 cos b7r)-I7rak-1 {P (b-l)(COS 0) 

find, for example, for SI + P (b-l) [cos (7r - 0)] I. (AIV8) 

ISll < Isin !1I1r1 [C Ivl-fJ-
1
+. + C Ivl-2], 

for 11m vi > Eo, 

lSI I < C Ivl-fJ-
1
+. + C Ivl-\ 

for 11m vi < Eo. 

APPENDIX IV 

(AI 115) 

It is remarkable that, for the special example 
given in (1.4), the scattering amplitude (and the 
cross section) can be given an exact closed form. 
To show this point, let us first introduce the fol­
lowing notations: 

a = c,.(1 + !7rcd2lo + 1)-1, (AIVI) 

b = [(lo + !)2 - ia]l; Re b > O. (AIV2) 

We can write the scattering amplitude as 

'" 
f(O) = (ik)-1 L (21 + 1)(1 + i cot OI)-IPI(COS 0), 

o (AIV3) 

2. 10 even 

With the help of the well-known fonnulas,22 we 
obtain, in the same way as above, 

-7rak-1 cos Or(!b + !) 
f(O) = r(!)r(!b + t)sin (b - !H7r 

X 2Fl(! + !b, ! - !b;!; cos2 
0). (AIV9) 

A quadratic transfonnation21 enables us to express 
this result in terms of the Legendre functions22 

f(O) = (2 cos b7r)-I7rak- 1 {P(H)(COS 0) 

- P(H) [cos (7r - 0)]1. (AIVlO) 
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This paper presents an exact solution to the equations of radiative transfer for a generalization of the 
Uniform-Picket-Fence model discussed in a previous work. Here the absorption coefficient is allowed 
to take N different values over the frequency spectrum. Case's method is used to construct the normal 
mode solutions to the set of N coupled integral equations. Then half-range completeness and orthog­
onality theorems are proved that enable one to solve typical half-space problems. Explicitly, the 
asymptotic solution to the Milne problem is developed, including the extrapolated end point, while 
implicitly the complete solution is available. 

I. INTRODUCTION 

I N a previous paperl (hereafter referred to as I) 
we presented exact solutions for the equations 

of radiative transfer with local thermodynamic 
equilibrium for a particular model of the absorption 
coefficient K, (uniform picket-fence model). In this 
model, K, was assumed to take only two values 
Kl and K 2 • In the present paper, we generalize 
the results of I to the case where K, can take on 
N values. The derivation of the basic (matrix) 
transport equation follows similar lines of reasoning 
as that of I. However, we briefly give the cogent 
points in the derivation below with a slight gen­
eralization of the case treated in I; namely, we 
include a scattering term in the transport equa­
tion which we neglect in order to obtain an explicit 
solution. 

We begin, then, with the equation for radiative 
transfer 

p. iJ"',~:, p.) + p(z)(K, + S.)",,(z, p.) = p(z)K.,8,[T(z)] 

+ p(z)S, J "',(z, p.')f,(o.' .0.) do.'. (1) 

Here, as in I, we assume plane symmetry (co­
ordinate z), where p. is the cosine of the angle be­
tween the photon velocity vector and the z axis; 
"', is the angular energy density of frequency v; 
p(z) is the material density, and 

• This work is based on a Ph.D. thesis subInitted by one of 
the authors (C.E.S.) to the Universi~y of Michigan. 

t United States AtoInic Energy Commission Pre-doctoral 
Fellow with a leave of absence from the Department of 
Nuclear Engineering, the University of Michigan. Present 
Address: Department of Nuclear Engineering, North Carolina 
State University, Raleigh, North Carolina. 

: On Sabbatical leave, acadeInic year, 1964-1965, from the 
University of Michigan. 

1 C. E. Siewert and P. F. Zweifel, Ann. Phys. (N. Y.) 
36, 61 (1966). 

,8,[T(z)] = (2hv3 N)[exp hv/kT(z) - 1r l 

is the Planck black body function for the "local 
temperature" T(z). This equation is identical to 
Eq. (1) of I except that here a monochromatic 
scattering term is included; S. is the scattering 
coefficient, and 

J f(o.' .0.) dO.' = J f(o.' .0.) dO. = 1. (2) 

We now assume that the frequency spectrum can 
be divided into ranges ~Vi in each of which K, and 
S, take on the same N different values (Kl' K 2 , •• , , 

K N; SI, S2, ... , SN) and that the fractional width 
w,,(i) of ~Vi over which K, and S. have the same 
values is the same for all ~Vi.2 Further, we must 
assume that B.[T(z)] can be taken independent of 
v over the range ~Vi' The meaning of these assump­
tions may be clarified by examining Fig. 1. If these 
assumptions are not reasonable in detail (uniform 
model) they may be so on the average (random model). 

Keeping in mind these assumptions, we integrate 
Eq. (1) over the frequency range ~ in which K, 
and S, have values K" and S,,' respectively (this 
includes contributions from all ~Vi)' to obtain 

iJ 
p. iJz ",,,(z, p.) + p(z)(K .. + S")",,, 

p(z)K..B,,[T(z)] + p(z)S" J ", .. (z, p.')f(o.'.o.) dO.' , 

where 

n = 1, 2, .,. ,N, (3) 

",,,(z, p.) ~ r dv "'.(z, p.), lAo (4) 

and B,,[T(z)] has a similar definition. The Schwarzs-

2 We have assumed that the steps for K, and 8, always 
occur at the same value of II. Also when K, has the value 
K", 8, has the value 8 ft • 

2092 
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I:s I 
5s -.I 

U, ~ K.jKN' (UN = 1), 

(C)'j = uiujw,/2 f UaWa, 
a-1 

and 

(9b) 

(10) 

(11) 

Even for isotropic scattering [f(Q'. Q) == (411T1] 
we do not know how to obtain explicit solutions 
to this set of equations [det (C + C') ¢ 0]. However, 
if the scattering term may be neglected, we obtain 
a transport equation of the form 

a 11 p, '!l'F(x, p,) + 1:'F(x, p,) = C 'F(x, p.') dp.', (12) 
ux -1 

FIG. 1. Generalized picket-fence model, N = 5. We see that where 
K. (solid lines) and S. (dashed lines) take on 5 different 
values in AVi and that the frequency ranges over which K. 
and S. have constant values are the same. Further, the 
fractional width w .. (i) of AI'i covered by K. and S. is the same 
for all i. 

child condition,1 which states local energy conserva­
tion, is 

1'" K,.B.[T(z)] dv = ! 1'" K. dv 11 ",.(z, p.') dp.'. 
o 0-1 

(5a) 

In the present model, it takes the form 
N N 1 

E K,.B .. [T(z)] = ! E K" [ ",,,(z, p.') dp.'. (5b) 
A-I n-1 • -1 

Our uniformity assumptions (cf. Fig. 1) easily lead 
to the result 

B .. [T(z)] = w" 1'" dv B.[T(z)] 

= (w .. u/Ir)T4(z) , 

(6a) 

(6b) 

(U is the Stefan-Boltzmann constant) so that Eq. 
(5b) can be written in the form 

uT4
(z) N 1 N 11 " -- E K .. w" = "2 E K" ", .. (z, p. ) dp. . 

~ ,,-1 .-1-1 
(7) 

We can now eliminate B .. [T(z)] among Eqs. (3), 
(6), and (7), and obtain (dx ~ p(z)K~z; KN ~ K" 
i < N): 

a 11 p. '!l'F(x, p.) + 1:''F(X, p,) = C 'F(x, p.') dp.' 
ux -1 

+ C' J 'F(x, p,')f(Q' .Q) dQ', (8) 

where 

(9a) 

(1:);; = Ui ~ij. (13) 

We note 

det C = 0 (I4a) 

and, in fact, 

detM = 0, (14b) 

where M is any minor of any rank> 1 of C. Equation 
(12) can be solved explicitly by an extension of the 
technique described in 1. The procedure is described 
in the subsequent sections. 

II. THE EIGENVALUES AND EIGENSOLUTIONS 

As in I, translational invariance suggests we seek 
solutions of Eq. (12) in the form3 

'F(17, x, p,) = e-'/~F(17, p.). (15) 

Substituting this ansatz into Eq. (12), we obtain 
an equation for 

F(17, p,), (1: - ph E)F(17, p,) = C l1 F(17, p,') dp.', 

(16) 

where E is the unit matrix. First, we consider the 
continuum solutions, i.e., 17 E [-1, 1]. In I it was 
necessary to divide this range into two subranges. 
Here, as we shall see, there are N such subranges 

Region 1: 17 E [-1/0'1' I/O'd; (I7a) 

Region 2: 17 E [-1/0"2' -1/0"11 and [1/0"1> 1/0'21; (17b) 

thus, in general, 

Region i: 17 E [-1/0';, -1/O";_d and 

[1/0'._1, I/O'i]' i > 1. (17c) 

a K. M. Case, Ann. Phys. (N. Y.) 9, 1 (1960). 
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The eigensolutions for the ith-region take the form 

F{i)(1J, p.) = (Pi + A,)C fl F(i)(1J, p./) dp.', (18) 

where 

and 

(A,}ik = X}i)(1J) o(Uj1J - p.) O,io (19b) 

Here the X~i} (1J) are unspecified functions that must 
be selected so that Eq. (18) is consistent. We note 
that for j < i the symbol "P", denoting the Cauchy 
principal value in Eq. (19a), is superfluous because 
the denominator can never vanish. Similarly X~i} (1J) 
may be taken to be zero for j < i since the argument 
of the delta function never vanishes. Thus, we see 
---~ ------------<--

(Ui-I1J - fJ.)-l17Ci_I. a 

that F(i)(1J, fJ.) contains (N + 1 - i) unknown 
functions X: il (1J). In addition, there are N unknown 
functions A;i)(1J) in Eq. (16), defined by 

[
a~i)(17}] 

i~ F('\1J, fJ.') dfJ.' = A(i)(-Q) = : . 

a1;)(1J) 

(20) 

Thus the solutions F (l) (17, fJ.) are (N + 1 - i)­
fold degenerate. There are (N + 1 - i) linearly 
independent eigensolutions in region i, which are 
denoted by 

a = i, i + 1, ... ,N. (21) 

(For notational convenience we run a from 
ito N rather than from 1 to N + i - 1.) 

It is a straightforward matter to obtain the explicit 
form of the F~i)(1J, fJ.). We find ['T(x) ~ tanh-lex)] 

P(U;1J - p.)-l1JC;a - 217Cia 'T(Ui17)0(U,1J - p.) 

(22) 

[ 
i-I ( I )] P(Ua 17 - p.)-l1JC",. + I - 21JCaa'T(Ua17) - 21J L: C~p'T - o(u,,1} - fJ.) 
13-1 U~1} 

P(U"+l1} - p.)-11}Ca +l.,. - 21}C .. +1 ,,.'T(Ua +11J - p.) 

Although the derivation of Eq. (22) is tedious, it is 
easy to verify that it is a solution. In doing so, the 
relation 

CjaC ak = CjkC at> (23) 

must be kept in mind. 
Next, we consider the discrete spectrum, i.e., 

1} EE [-1, 1J. Thus from Eq. (16) we obtain 

F(1}, fJ.) = DC i: F(1}, p.I) dp!, (24) 

where 

(D);; = (u;1} - fJ.fl1} Oij. (25) 

The eigenvalues are obtained by integrating Eq. (24) 
and noting that nontrivial solutions exist only if 

fl(z) ~ det (E - ~C) = 0, (26) 

where 

(27) 

To evaluate Eq. (26), we write' 

det (AE - ~) = XN - Tr (~)XN-l 

+ ~XN-2 + ... + aN' (28) 

Here, the coefficients of XN
-

k
, k = 2, 3, ... , N 

are defined as the sum of all the k by k minor deter­
minants that can be formed using k of the diagonal 
elements of ~C (there are N!jk!(N - k) I such 
determinants). One easily verifies that all such minor 
determinants of ~C vanish. Thus, setting X = 1 
in Eq. (28), we obtain 

fl(z) = 1 - 2z t CPP'T(1...). (29) 
/3-1 upZ 

In Appendix A we show that fl(z) has only two 
zeros which, from Eqs. (29) and (10), are 1}o = ± co • 
Thus, the discrete eigenvalues are identical with 
those obtained in 1. The discrete eigensolutions are 
similar; we find 

• J. H. M. Wedderburn, Lectures on Matrice8 (American 
Mathematical Society, New York, 1934), Chap. II. 
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j 5 K < N, (34a) 

W2 K < j. (34b) 

W+~,~ = ~ ~+ (30a) There are (N - 1) eigensolutions of this form; since 

and 

W_(X, p.) = 

WI(X - P./IJ'I) 

W2(X - P./1J'2) 

WN(X - P./IJ'N) 

(30b) 

As in I, we choose to work mostly with certain 
linear combinations of the F~il ('I], p.) which we call 
~~., ('I], p.). These are defined by 

{ 
'-1 ( I)} 1 - 2'1] E CfJfJT - ~~i)('I], p.) 
fJ-I IJ'fJ'I] 

1 F("() 1 F(i) ( ) = -C ,,'I], P. - C-- a+l '1], P. , 
la 1.a+l 

where a = i, i + 1, ... , N - 1. Thus 

o 

Also, taking 

o 

o 
o 

a = i, ... ,N - 1. 

(31a) 

(31b) 

(32) 

we see that, in each region, there are (N - i) 
eigensolutions of the form (31b), containing only 
two nonzero elements, which involve only delta 
functions and one eigensolution of the form (32). 

Aside from the simple form taken by the ~~i) (1], p.), 
we see that these solutions take the same form in 
different regions; thus, we can recombine the 
~~i)('I], p.) in the following way. First, for K < N, 

~J;)('I], p.) = ~~)('I], p.), 

j = i, i + 1, ... ,K. (33) 

This suggests defining5 

6 This method of attack was suggested by J. Mika (private 
communication ). 

(.) d l' there are N of the ~; ('I], p.), we are now ea mg 
with only (2N - 1) different eigensolutions instead 
of [!N(N + 1)]. If we, in fact, also define 

N 

~N('I], p.) = E ~~'('I], p.) EB. ('1]), (35) 
i-I 

where 

EB. (1]) = {I, 'I] E region i, (36) 

0, otherwise, 

we need only consider N eigensolutions, 0 1 ('1], p.), 
.•• , cfJN('I], p.). To recapitUlate, we have (N - 1) 
continuum eigensolutions of the forms 

(Cll)-lt5(lJ'l'l] - p.) 

(-C12)-1t5(1J'2'1] - p.) 

o 
o 

o 
(C12)-1t5(1J'2'1] - p.) 

(-C13)-lt5(<Ta'l] - p.) 

o 
o 

or, in general, 

cfJ.('I], p.) = 

o 
o 

(-C1,i+l)-1t5(<Ti+1'1] - p.) 

o 
o 

(37b) 

(37c) 
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In addition, we have one continuum eigensolution 
[Eq. (35)] as well as two discrete eigenmodes [Eqs. 
(30)]. 

m. COMPLETENESS 

Theorem I: The functions «1»,(71, J.I), i = 1 ... N, 
71 ~ 0 and «1»+ are complete for arbitrary N-vector 
functions, IF(J.I), defined on the "half-range," 0 ~ 

1/I,CJJ.) = -(Cliu,)-la'-l(J.I/U,)S(u,/u'_1 - J.I) 

+ (CliU,)-la ,CJJ./U,) 

- 2J.1C '~N(J.I/ U ,) TCJJ.)U;2 

+ CiNP 11 aN(71)7] d71 , 
o U,71 - J.I 

i = 1,2, '" ,N - 1, (42a) 

p. :::::; 1. and 

This theorem means that an N-component func­
tion IF(p.) can be expanded in the form 

N l1/U~ 
lFCJJ.) = A+«I»+ + L ap(71)«I»fJ(71, J.I) d71, 

fJ-l 0 

J.I E [0, 1], (38) 

where A+ and ap(71) are "scalar" functions. 

Proof: We proceed as in I, i.e., we attempt an 
expansion in terms of the continuum modes alone: 

N-l 11/"~ 
IF(J.I) = L afJ(71)«I»fJ(71, J.I) d71 

fJ-l 0 

+ f aN(71)«I»N(71, J.I) d71. (39) 

Here, the last term has been split off from the sum 
because the first (N - 1) terms have the simple 
form given in Eq. (37c). These integrals can all 
be carried out explicitly, 

l
1/U~ 

o a/l(71)«I»/I('I/, /L) d'l/ 

l 

o 
o 

(ui-,\~) -la(J(/L/ u(J) 

- (U(J+IC,.fJ+l) -'a~(/L/ UfJ+l)S(U(J+'/ U/I - /L) , 

o 
o 

(3=l,"',N-I, 

where SeX) is the unit step function 

SeX) = 1, x ~ 0, 

= 0, otherwise. 

(40) 

(41) 

When these results are substituted into Eq. (39), 
we obtain 

1/INCJJ.) = -G~fvaN-l(J.I)S(u"i.'-1 - p.) 

+ CNNP 11 aN(71)7] d71 
o 71 - J.I 

(42b) 

Here 1/I,(J.I) is the ith component of IF(71). [We recall 
in obtaining Eq. (42b) that UN = 1.] 

We note from Eqs. (42) that the unknowns a.(71), 
i = 1, ... , N - 1, can be eliminated successively 
starting with i = l(ao(71) = 0). In this way, Eqs. 
(42) can be converted into a singular integral equa­
tion for aN( 71). To carry this out, we make the change 
of variable in Eq. (42a), 

(43) 

and mUltiply the equation by u~. Then we add all 
N equations [i.e., including (42b)] to obtain the 
simple result 

N 

L u~1/I,(u'J.I)S(I/u, - J.I) 

= t G"S(I/u. - J.I)P 11 aN(71)7] d'l/ + aNCJJ.) 
.-1 0 71 - J.I 

X {I - 2J.1 t C,,[T(I/U,I-I) 8C1-1 - l/u,) 

+ T(u.J.I)S(l/u, - J.I)]}' (44) 

The various step functions were introduced by the 
variable change, since we must require the argument 
of 1/I,(TJ), for example, to be less than or equal to 
unity; thus, under (43), 

!/I,(p.) ~ 1/I.(u,J.lHEBICJJ.) + .. , + EB.CJJ.)}. (45) 

We note 

(46) 

Equation (44) is now in canonical form, since, we 
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note that, from the definition of g(z) in Eq. (29), 

N 

g""(p) = 1 - 2J.l L a~~T(l/t1'~J.l)S(J.l - 1/t1'fJ) 
/J-1 

[g(z) is analytic in the complex z plane cut from 
-1 to +1 along the real line; g± represents the 
boundary values above and below the branch cut.] 
Thus, Eq. (44) can be written as 

~ t1'~lfi(t1'iJ.l)Sei - J.l) 

g+(J.l) - g-(J.l) P 11 ( )-1 () d = . 'I - J.l aN 'I 'I 
2nJ.l 0 

+ t(g+(P) - g-(p»aN(P). (48) 

This equation is in standard form, (c.f, I) and its 
solution is well known in terms of the X-function, 
which is analytic in the complex plane cut from 0 
to 1 along the real line. 

X(z) = (1 - Z)-1 

(49) 

Once aN('1) is known, the other a.('1) may all be 
found from Eqs. (42). Also, the discrete mode is 
introduced, as in I, by the condition at infinity 
on the auxiliary function 

N(z) = (2nTl il ('I - Z)-laN(f/)f/ df/. (50) 

Since the details are identical to those in I, we go 
no further than to note that the completeness 
theorem is hereby proved. The coefficients in the 
expansion, Eq. (38), can be found in principal from 
the above solution; but it is simpler to use the 
orthogonality relations derived in the next section. 

lV. ORTHOGONALITY 

Theorem II: The continuum functions .('1, J.l), 
'I E [0, 11 and the discrete mode .+ are orthogonal 
to the adjoint eigensolutions .t(f/, J.l), 'I E [0, 1] 
and .: on the range 0 ::s; J.l ::s; 1 with weight func­
tion W(J.l), where 

[W(J.l)]H = t1'(y(p/t1',)Oij. (51) 

and "(J.l) is defined as 

(52) 

The proof of this theorem is a generalization of 
the one given in I for N = 2. There, we prove 

orthogonality of the F; (1], J.l) rather than the .g('1, J.l). 
However, this makes no difference, since the theorem 
states that6 (the over tilde denotes transpose) 

{ .\1]', J.l)W(P).(f/, J.l) dJ.l = 0, 'I ~ 'I', (53a) 

and we prove that 

{ :F't(f/', J.l)W(J.l)F('1, J.l) dJ.l = 0, 'I = 'If. (53b) 

Clearly, (53a) and (53b) imply each other. Ft(f/, J.l), 
obeying the adjoint equation given below, may be 
obtained from F(f/, J.l) under the interchange ail ¢:} 

au; .t(f/, J.l) and .('1, J.l) are related in the same 
way. As in I, we note that care must be taken when 
this interchange is made. For example, .+ is given 
by Eq. (30a). However, this form is a reduction 
of the form obtained if Eq. (16) with '10 = ± ex> 

is solved directly; this is to say that ali no longer 
appear. One finds easily, however, 

1 

1 

1 

(54) 

Equations (22) forF;(1], J.l) ,and Eqs. (31b) and (32) 
for .",(1], J.l) are in the form so that the interchange 
aH ¢:} aii gives the adjoint solutions. 

Proof: We turn now to the proof of Theorem 
II, i.e., Eq. (53b). We begin, as in I, with the equa­
tion obeyed by F(1], J.l) and the adjoint equation 
obeyed by Ft(1]', J.l). [To simplify notation, we allow 
F('1, J.l) and Ft('1', J.l) to denote either discrete or 
continuum modes.] Thus, 

( 1: C 11) 1 - - - dJ.l' F(f/, J.l) = - F(1], J.l) 
J.l J.l -1 1] 

(55a) 

and 

( 

- 1 ) 1: C + 1 t - - -1 dJ.l' F ('I' J.l) = - F ('I' J.l). 
J.l J.l -1 '1]' 

(55b) 

The method of proof is to multiply Eq. (55a) from 
the left by :F'+(f/', J.l)W(J.l) and to multiply the 
transpose of Eq. (55b) from the right by W (J.l)F (1], J.l), 
integrate both over J.l from 0 to 1 and subtract. 
The right-hand side of the resulting equation be­
comes simply 

(1 1) 11 -t 
'I' -; 0 F ('I', J.l)W(J.l)F('1, J.l) dJ.l, 

• The function 'I" _ is not included in the orthogonal set 
because it is not a solution of Eqs. (55) [it satisfies Eq. (12)J. 
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and thus we wish to prove that the left-hand side 
vanishes if 1] ¢ 1]'. By following a procedure identical 
to that outlined in I the proof can be reduced to 
showing that a quantity J 2 is a constant, where 

N 

J 2 = XeO) - Cd(1])1]-I'Y(1]) + 2: Ca"A"(1])1]-I'Y(1]), (56) 
a-I 

with 

The proof of the theorem hinges on proving that 
J 2 is independent of 1] and symmetric in i, j. We 
showed this in I by direct substitution of the A etC?]) 
(see note added in proof). Here, we prove it 
in general. We should clarify what is meant by the 
symbol X"(?]). We note from Eq. (16) that any 
of the components /.(?], p.) of F(1], p.) can be written 
in the form 

(58a)] and the nonsingular [Eq. (58b)] sets respec­
tively. Using Ca {3CNa = C""CN {3 in the right-hand 
side of Eq. (60), the sums separate and a factor 
2::-1 CNpA/3(1]) can therefore be canceled to give 

1 - 21] 2:' C""T(O',,1]) - 2:n
, 2?]CiiT(..!.) 

" j (/(1/ 

= 2:' CaaA"(1]). (61) 

The left-hand side of Eq. (61) is exactly Cd(?]), thus 

2:' C""A"(?]) = Cd(?]). (62) 
" 

Substituting this result into Eq. (56) [remembering 
that A"(?]) appears only when /,,(?], IL) is singular] 
we find 

J 2 == 1, 

the theorem is thus proved. 

V. NORMALIZATION 

(63) 

O'a?] S 1, (58a) The results of the previous two sections can be 

or 

O'i?] 2: 1, (58b) 

where 

a/l(?]) = fl ilf(1], IL') dlL'. (59) 

[Thus the A a(?]) are the unknown coefficients in 
Eq. (19b) which one must find for explicit evaluation 
of the eigensolutions; thus they should be denoted 
by A;~(?]) in order to distinguish the region and the 
degeneracy. However, we do not have to use 
their explicit form. The symbol A" (?]) thus denotes 
any of the A;~(?]).] Multiply Eq. (58a) by CN" and 
sum over all a for which O'"n S 1; then multiply 
Eq. (58b) by CNi and sum over all j for which 
O'jn > 1. We integrate the resulting two equations 
over IL from -1 to 1 and add them to obtain 

2:. CN"a,,(?]) + 2:ao CNjaj(1]) 
" j 

N 

= 2:. CN,,[21]T(O'a1]) + A"(?])] X 2: Ca/la/l(?]) 
a /I-I 

(60) 

Here the superscripts sand ns indicate that the 
sums are to be taken only over the singular (Eq. 

used to expand functions W(IL) for IL E [0, 1] and 
to obtain the expansion coefficients if 

(i) the normalization integrals are known, and 
(ii) the degenerate eigenfunctions are orthog­

onalized. 

As in I, we introduce a new set of functions xK (?], IL), 
constructed so as to be orthogonal to all of the 
WK(1], IL). We define our scalar product as 

b. -t 1
1 

(U, V) = 0 U ('11', p.)W(p.)V(?], p.) dp.. (64) 

Abbreviating 

(W;, Wi) = (i, ,)o(?] - '11'), (65) 

we easily calculate 

(i,1) = -'Y(?])[(Cl.HIC;+I.lrlo~+1 + (CliCil)-10~_1 
- [(CUCil)-1 + (Cl. H1CH 1. 1)-I]on, i, j < N. (66) 

Also, keeping Theorem II in mind, we have 
; 

(w;, WN) == 2: (w;, w1"». (67) 
,,-1 

The product (w., w1"» is also easily calculated, 
and is seen to be independent of a. Thus the sum 
in Eq. (67) merely introduces a factor i, and we find 

(i, N) = i ~i~ 21]'Y(1]){T(O'm1]) - TeO',1])}' 

i < N - 1, (68a) 
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(N ;\ C· N)CNi Cn 
,~J =~, Cli C

iN
' 

i < N - 1. (68c) 

Also, 

(N - 1, N) = -'Y('I/)[(N - 1) CCN- t .N 2'1/T(UN-t'T/) 
N-I.I 

+ c1 E (1 - 271 I: C(I(lT(I/u(I'T/) - 2'T/CNNT('T/») J. 
NI .. -I (I-I 

(69) 

(N, N - 1) may be found from (N - 1, N) under 
the interchange Cii ~ Ci ;. Finally we need 

(70) 

where (fI»~), fI»~» may be calculated from the 
explicit form, Eq. (22), by making use of the X­
function identities of Appendix B. We quote the 
result, 

+ 1;. CNNC .... 1I'2'T/2}'Y('T/). (71) 

Equations (66), (68), (69), and (71) give all the 
necessary normalization integrals for the construc­
tion of the XK' We write, in general, 

(72) 

where N~i) are to be choosen such that 

(73) 

The N~i) are readily found from Eqs. (72) and (73). 
We take the scalar product of Eq. (72) from the 
right successively with the fI»(I('T/, p.), fJ = 1, ... N. 
This yields the following equations for the N~i): 

o = N~i)(I, 1) + N~i)(2, 1) + Ni i )(3, 1) + 0 + ... + 0 + N1i)(N, 1), 

o = N~i)(I, 2) + N~i)(2, 2) + Ni i )(3, 2) + 0 + ... + 0 + N1;)(N, 2), 

o = 0 + N~i)(2, 3) + N!i'(3, 3) + N!')(4, 3) + 0 + '" + 0 + N1;)(N, 3), 

(74) 
1 = 0 + ... N/~!(i - 1, '£} + N~')(i, ~} + N,(~~(i + 1, i) + 0 + ... N~)(N, '£}, 

(77) 
We see that the first and the (N - l)th equations 

have only three nonvanishing coefficients, all the 
rest have four such coefficients except the Nth, which 
has N. The set of equations (74) is easily solved for 
the N~i). 

But from Eq. (49), we see that the limit is -1. Thus 

We note that we have set (XK' fl»K) = a('T/ - '1/'). 
Also (XK' fI»+) = O. The discrete (asymptotic) coeffi­
cient is found from the relation 

(fI»+, fI»+) = ~ f w;U;"Y(P./Ui) dp.. (75) 

Changing variables, this can be written 

N 

(fI»+, fI»+) = 2 I: u.w.. (78) 
i-I 

In applying this result to obtain expansion coeffi­
cients, one might have an expansion of the form 

N 11/'" lJI'(p.) = A+fI»+ + t; 0 cx,('T/)fI»,('I/, p.) d'T/, 

p. E [0, 1]. (79) 

Then, from Eq. (78), we find 

(76) A+ = (fI»+, lJI'(p.»(2 ~ u,w,tl

, (80) 

This integral can be evaluated from Eq. (Bl) (in while 
Appendix B) in the limit z ~ ex> , (81) 
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VI. THE MILNE PROBLEM 

We seek the angular density, 'II'M(X, p.), in the 
source-free half-space under the boundary conditions: 

(a) 'II'M(X, p. = 0, p. 2: 0 (zero re-entrant radiation), 
(b) 'II'M(X, p.) '" 'II' _(x, p.) (for large x). 

The second condition specifies that'll'M(x, p.) diverges 
no more rapidly than the slowest diverging mode 
'F _(x, p.). 

The solution can be constructed from the normal 
modes of the transport equation. Condition (b) 
requires that no 'F(1], x, p.) be included for 1] E 
[-1, OJ. Thus, we write 

'II'M(X, p.) = A_'F_(x, J.l) + A+«I>+ 

N [ltv' 
+ ~ 10 ai(1])e-

zl
'«I>i(1], p.) d1]. (82) 

The coefficient A_ we leave arbitrary (it depends 
upon the normalization). The other coefficients are 
obtained from condition (a). Setting x = 0 in Eq. 
(82), we have 

p. E [0,1]. (83) 

Thus, the coefficients are just the half-range ex­
pansion coefficients for the function 

W 1/Ul 

W2/U2 

(84) 

They are found immediately from the orthogonality 
relations once the X,(1], p.) are constructed. For the 
asymptotic solution (Le., the part of'll'M involving 
'11'_ and «1>+), we have 

A+ - f~ i:W(",)'F _(0, "') d", 
A_ = 2 Lf-l UiW, 

(85) 

where the normalization integral, Eq. (78), is used. 
Expanding Eq. (85), we obtain 

A+ Lf.l Wi n 'Y(J,L/u,)p. dp. 
A_ = 2 Lf.l U,W, • 

(86) 

Changing variables and noting Eq. (10), (86) be­
comes 

(87) 

This expression can be put in terms of the X­
function by use of Identity IV, Appendix B. We find 

(88) 

The continuum expansion coefficients can be found 
in just the same manner. [However, since, in general, 
one must solve the set of equations (74) and then 
use Eq. (72) to construct the x/s we merely formally 
indicate the solution.] 

a;(1])/A- = -[Xi, 'F_(O, p.)]. (89) 

The customary normalization 1 is to set 

(90) 

where T. is the "effective temperature" and U is 
the Stefan-Boltzmann constant. Equation (90) can 
be written as 

or 

1 -

1 
-aT! fl 
~ = 1 -1 ",'FM(X, "') 

1 

Evaluating Eq. (91b), we find 

( N )-1 4 W; A_ = 3uT. 41r L - . 
i-1 (1', 

(91a) 

(91b) 

(92) 

The expansion coefficients are now found (in 
principle) to solve the problem. We have 

'FM(x, p.) = [3uT:(41r ~ ::r1J[ 'F_(x, "') + ~: 
~ r1lv

, ai( 1]) -zl. ( ) d ] 
X «1>+ + ~ 10 A_ e «1>; 1], P. 1]. (93) 

The energy density, 

is given by 

(95) 
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The extrapolated endpoint is defined in terms of the 
quantity 

(96) 

This, in our model, becomes 

(97) 

Thus the asymptotic energy density extrapolates 
to zero at x = - Xo, where 

(98) 

which is already given by Eq. (88). 
The temperature distribution in this model is 

given by 

1 

X {l 'll"M(X, p.) dp.. (99) 

The asymptotic temperature distribution is easily 
obtained as 

T!.ym/x) = r~ (t w.)-ll[x + xoJ. (100) 
T. 1...4 .-1 q; J 

Just as in I, the law of darkening [for the inte­
grated quantities, 'll"M(O, p.), p. < 0] can be obtained. 
The fact that we restrict p. to be negative enables 
us to determine'll"M (for x = 0) explicitly without 
actually knowing any of the continuum expansion 
coefficients except aN('I). The coefficient aN('I) is 
expressed in terms of the N-function which then 
permits the evaluation of integrals involved. The 
procedure follows exactly as in I. We simply state 
the result, 

~ 
X( -p.) 

Ii E [0, 1]. (101) 

It is clear how other half-range problems could be 
solved. For example, consider the albedo problem. 
Here we have a source-free half-space with incident 
distribution 

P.i, P. ~ O. (102) 

Here, the solution must not diverge at infinity, 
so we set 

Since 

p. ~ 0, (104) 

the expansion coefficients are found as integrals 
of the adjoint functions times delta functions. As 
in the Milne problem, the determination of the 
solution is quite trivial once the set of x-functions 
has been constructed. 

The construction of the half-space Green's func­
tion requires a special technique, this is discussed 
in r. The procedure here for the case of general N 
follows in exactly the same manner. 

Note added in proof: In I we "proved" J 2 = 1. 
Actually, J 2 = X(O) ¢ 1. However, since X(O) = 
const, symmetric in i, j (cf. Identity II, Appendix 
B), the proof is still valid. 
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APPENDIX A. THE NUMBER OF DISCRETE 
EIGENVALUES 

The discrete eigenvalues, 7Ji±' are defined as the 
zeros of the dispersion function n(z), Eq. (29). Here 
we verify that there are only two zeros for any N. 

Since n(z) is analytic in the cut plane and vanishes 
at infinity, the number of zeros is (27l')-1 times the 
change in the argument of fl(z) as a contour en-
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circling the cut is traversed.7 Because n+(~) = 
[n-(~)]*, and n(z) = n( -z), the change in argument 
is four times the change in going from 0 + iE to 
1 + iE. Call this change ~+(O, 1). We have 

N-I (1 1) 
~+(O, 1) = t; ~+ Ui ' Ui+l ' 

(AI) 

where we define l/uo = O. 
From Eq. (47), we can write for the boundary 

value in region i 

i-I (1 ) 
n~0.t) = 1 - 2~ L C~(JT -

~_I U~~ 

- 2~ t C~~{T(u~~) ± ~}. (A2) 
~-A 

From (A2) it is easily verified that 

(A3) 

APPENDIX B. X-FUNCTION IDENTITlES 

The derivations of the X-function identities are 
trivial generalizations of the corresponding deriva­
tions in I (Appendix A), so we present them without 
proof. 

Identity I: 

X(z) = ± C
ii 

iI/v, 'Y(~~ d~. 
i-I 0 ~ Z 

(Bl) 

Identity II: 

[
3 ( N C .. )-IJ X(z)X( -z) = 2' t; l n(z). (B2) 

By combining Identities I and II we get a nonlinear 
nonsingular integral equation for the numerical 
evaluation of X(z). Thus we find 

Identity III: 

(1 1) ~+ -,- = 0, 
Us 0",+] 

i = 1,2, .. , N - 1. (A4) X(z) = [~(t C~i)-IJ 
2 ,-I U, 

Thus 

(A5) 

and the total change (for the encircled cut) is 411". 
Thus n(z) has two zeros. 

7 R. V. Churchill, Complex Variables and Application8 
(McGraw-Hill Book Company, Inc., New York, 1960), 
Chap. 12. 

x ±Caall/v"-~-~. a-I 0 X( -~) ~ - z 
(B3) 

Furthermore, Identity IV is the trivial result ob­
tained by taking boundary values of Eq. (B2). 

[
3 ( N C )-IJ 

'Y0.t) = 2' t;l X(~~)' (B4) 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 7. NUMBER 11 NOVEMBER 1966 

A Theorem on Peratization of Singular Potentials and Other Miscellanea 
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It is proved for potentials of the form VCr) = A(r)/r" (n > 3) [with A(r) more singular at r = 0 
than r~dA/d~), or 8;pporaching zero less rapidly] that the peratized scattering length can be written 
down lmmedlately m known form. The distrinction between regularization and peratization is made 
clear, a?d ~ common conjecture about the g (coupling constant) behavior of the peratized scattering 
length 18 dlsproved by a counter example. Finally, various mistakes in the literature are corrected. 

1. INTRODUCTION 

I N the last few years, extensive eft"ort has gone 
into the study of singular potential scattering.1

-
7 

Stimulated by a prescription for handling divergent 
field theories (called peratization, developed by Fein­
berg and Pais8

•
9

) many workers have undertaken 
to study a similar process for the Schrodinger equa­
tion. The results in the literature are sometimes 
inaccurate and even contradictory. In this paper, 
we clarify some of these past results and present 
a theorem which enables one to peratize a certain 
general class of potentials to be specified later. 

Briefly, peratization involves replacing a singular 
potential, VCr), by a potential U(r, a) such that 
lima_o U(r, a) = VCr) and where U(O, a) exists. 
The Born series for the scattering length for U(r, a) 
is then calculated. Obviously every term diverges 
as a ~ O. The leading singular term in each order 
in g (the coupling constant) is then retained and 
this sum is expressed in closed form, if possible, 
denoted as a(a). This is not in general the scattering 
length for U(r, a), which we denote as a'(a), because 
only the most divergent terms in the Born series 
are summed, thus neglecting many contributions 
to the scattering length for U(r, a). 

The hope now is that lima_o a(a) = a(O) exists, 
and moreover, that a(O) = a, where a is the scatter­
ing length for VCr). Notice that a is a function of 
the coupling constant, and also that it could well 

10. Tiktopoulos and S. B. Treiman, Phys. Rev. 134 B844 
(1964). Equation (4) of this paper is incorrect; howev~r the 
resul}z Eq. (5), does follow from the correct infinite seri~s. 

'N. N. Khuri and A. Pais, Rev. Mod. Phys. 36,590 (1964). 
I H. H. Aly, Riazuddin, and A. H. Zimerman, Phys. Rev. 

136, B1174 (1964). 
t H. H. Aly, Riazuddin, and A. H. Zimerman, Nuovo 

Cimento 35, 324 (1964). 
IT. T. Wu, Phys. Rev. 136, B1176 (1964). 
6 F. Calogero and M. Cassandro, Nuovo Cimento 37 760 

(1965). ' 
• 7 F. Calogero, Phys. Rev. 139, B602 {1965) .. This paper 

gives further references to work dealmg wlth singular 
potentials. 

8 O. Feinberg and A. Pais, Phys. Rev. 131,2724 (1963) 
• O. Feinberg and A. Pais, Phys. Rev. 133, B477 (1964). 

happen that a(O) ~ a. This is called peratization 
of the potential VCr) and is usually done at zero 
energy.2 

There is another process called regularization 
which is not the same as peratization, a fact not 
clearly understood by a number of authors. The 
distinction has recently been pointed out.6 Regu­
larization involves first solving an integral equa­
tion for the wavefunction and then using this in a 
certain integral relationship in order to obtain the 
scattering length. This process involves the scatter­
ing length a'(a) for U(r, a) which is not a(a) as 
defined above. Regularization involves the un­
justified interchange of two limiting processes7 and 
is not generally valid. The point here is that the 
validity of peratization and of regularization are 
two separate questions. 

Another point in need of clarification is that, in 
the peratization procedure, the summation of leading 
singular terms is usually taken in potential theory, 
in order to find the exact scattering length for VCr). 
In field theory, on the other hand, one only hopes 
to find the leading order for small g in the scattering 
amplitude. There is one example in potential theory6 

where peratization yields only a leading term in g. 
However, we will indicate below a counter example 
to the often found conjecture that the summation 
of leading singular terms in a will yield the leading 
term for small g in the scattering amplitude. 

n. STATEMENT AND PROOF OF THE THEOREM 

Let us assume a potential 

VCr) = A(r)/r", n> 3, (1) 

where A(r) > 0 in some finite region E > r > 0 
so that we have a repulsive potential near the origin. 
We also asSUme the usual conditions 

f~ r W(r) I dr diverges for any b > 0, (2) 

f: r2 IV(r) I dr exists for any c > O. (3) 

2103 
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Then our theorem follows: 

Theorem: If A(r) is more singular at the origin 
than r(dA/dr) (or approaches zero less quickly), 
then the peratized zero-energy scattering length 
(in the sense of Ref. 1 or 3) for the potential 

U(r, a) = V(r)8(r - a), a> 0, 

is 

a(a) = -[A(a)]ltanh ([A(a)]f/a), n = 4, (4) 

or, in general, 

( ) lrJI
b

-
1 

A't ) 11_.(0) 
a,a = [r(v)]2 sin n I.a 1'_1(0) (5) 

with 

2v ;) O=~A(a. 
a 

Equation (4) is a special case of Eq. (5) with n = 4. 

Proof: The zero-energy wavefunction for the 
potential U(r, a) can be written as3 

I/I(r, a) = r - gr [0 V(r')I/ICr', a) dr' 

- g f r' V(r') I/I(r', a) dr' (6) 

and the exact scattering length a' (a) is 

a' (a) = -g fa'" r'V(r')I/ICr', a) dr'. 

The function a(a) differs from a'(a) in that it con­
tains only the most singular terms in a for each 
order of g. The lowest-order term in g of a'(a) is 

a'(a) = -g i'" r,2-"A(r') dr' 

g A (r') I'" g 
= - (3 - n) r,,,-a " + (3 - n) 

(7) 

x fm r,a-,,(dA) dr' 
a dr r-r' 

g A(a) + g 
(3 - n) a,,-a (3 - n) 

X f'" r'3-,,(dA) dr', (8) 
" dr r-r' 

where we have integrated by parts. The infinite 
limit in the integrated part does not contribute 
because of condition (3). 

If r(dA/dr) is less singular at r = 0 than A(r), 
or even approaches zero more rapidly than A(r), 

then we need keep only the integrated term in ex­
pression (8) if we desire only the most singular 
term in a. Under such conditions, the integral (7) 
will be more singular than the integral term10 in 
(8), so that the integrated term in (8) is more singular 
than the integral. 

To find the second-order term in g of a'(a), we 
need the first-order g term for I/I(r, a). In general, 
the (m + 1) order in g of a'(a), call it a~+l(a), is 
evaluated using I/Im(r, a), the mth order in g of the 
wavefunction. We can easily see from Eq. (6) that 
I/I",(r, a) will contain terms in r, terms in a, and cross 
terms involving both r and a of the form j(a)k(r). 
When we evaluate a~+l(a), we obviously need retain 
only the most singular r term in I/I ... (r, a), the most 
singular a term, and the most singular of each type 
of cross term. By this we mean that for the cross 
terms of the form jCa)k(r), we retain, for each j(a), 
only the term with the most singular k(r). But if 
there are two or more identical k(r) terms, we then 
keep only the term with the most singular j(a). 
All other terms in I/I",Cr, a) will give terms in a~+l(a) 
that are less singular in a than the ones we retain. 

The first-order terms in g of I/I(r, a) can be in­
tegrated by parts, and the integrated terms will 
be of the forms ~lr-"+3A(r) and ~2a-"+3A(0:), while 
the remaining integrals look like 

r 1'" r'-"+2(dA) dr' and f'" r'-"+3(dA) dr', 
r dr r-r' a dr r-r' 

which can be discarded if r(dA/dr) again bears the 
previously specified relationship to A(r) at r = O. 
Notice that the constants ~I and ~2 do not depend 
on the form of ACr) in any way but only on n. 

In the g2 term of a'(a), we now find that an 
integration by parts yields integrated terms of the 
form 'Y2aS-2"A 2(0:) while the remaining integrals con­
tain r,S-2"A(r')(dA/dr)r_r' and r,2-"(dA/dr)r_r" To 
find only the leading term in 0:, we apply the same 
argument as used before and we keep only 
'Y2ao-2"A 2(a), where 'Y2 depends only on n and not 
on ACr). 

It is easy to see that the leading terms of the 
integral for 1/1 ... -1 (r, a) will involve various terms of 
the form of a product of some power of r, some 
power of a, and A"(a)APCr) with p. + v = m - 1. 
When any of these terms is integrated by parts, 
the new integral will contain one more power of r, 
one less power of A (r), and dA/dr. Therefore, by 
the same reasoning as before, we need keep only 

10 I t takes only a simple geometrical argument to _prove 
that if G(x) is more singular at x=O than H(x) then J,a> G(x)dx 
is more singular as E ~ 0 than J,oo H(x)dx where there are no 
troubles at infinity. 



                                                                                                                                    

PERATIZATION OF SINGULAR POTENTIALS 2105 

the integrated term. Similarly, to find a~(a), we 
can see that we need retain only the integrated term 
of an integration by parts. 

Thus, a summation of the most singular a terms 
in the Born series will give the form 

.., 

a(a) = I: 'Ym(n)[gA(a)]"', (9) 
m-O 

where the 'Y.,(n) do not depend on the form of A(r). 
This sum has been evaluated for A(r) 1 and 

n = 4, and isl 

a(a) = - gi tanh (gIla), (10) 

while, for A(r) = -g In r and any n > 3, we have 

( ) 7r/Ih-1 1( In )1 II-.(n) () 
a\a = - [r(p)]2 sin Jf1I" g - a I.-I(n) ' 11 

p = (n - 2)-\ n = 2p[al .. - I r l gl( -In a)l. 

We have corrected formula (E21) of Ref. 5 
which makes use of (the incorrect equation) 
(E20). The correct formula, as may be easily 
checked in Ref. 12, p. 133, is 

J d -1[1 ()]-2 P IH(z) zz IZ = - --. .- 2 sin P7r I._I(z) 

The function I~(x) is the commonly defined Bessel 
function of the third kind of real argument. 11 Since 
the form of these results is independent of A(r), 
we can immediately conclude that Eqs. (4) and (5) 
hold and the theorem is proved. 

m. APPLICATIONS AND DISCUSSION 

We immediately see that we can get the results 
of Ref. 3 for A (r) = g (In)2 r correctly as 

a(a) = - gi In a tanh (gi In ala) . 

This is a useful check on the validity of the theorem. 
One powerful result of our theorem is the following 

corollary. 

Corollary: If A(r) satisfies the condition of the 
previous theorem and A (0) does not exist, then 
peratization fails-assuming the scattering length 
exists-for VCr) = A(r)lr", n > 3. 

Proof: The limit as a -7 0 of Eq. (5) yields 

a(O) ex: g"A'(O), which does not exist. 

On the other hand, if A (0) is a nonzero constant, 
then a(O) exists but mayor may not be the real 
scattering length a. It is not possible without other 
considerations to say whether peratization works 
in this case. 

11 G. N. Watson, Theory of Be8sel Functions (Cambridge 
University Press, London, 1958), 2nd ed. 

The three examples of A(r) = g, A(r) = g (In/ r, 
andA(r) = -g In r have all been treated individually 
in the literature. However, there are other functions 
A(r) that satisfy the requirements of the theorem. 
A few of these arel2 

(a) A(r) = g( -In r")\ 

(b) A(r) = ge).r~, 

(c) A(r) = g cos~ r~, 

J.I. > 0, 

X> 0, J.I. > 0; 

J.I. > o. 
We see examples here where very different po­

tentials like (b) and (c) have the same summation 
to most singular terms in a, yet their scattering 
lengths are surely not the same. 

Another important point is that, we see from 
Eq. (E23) of Ref. 5, that, for A(r) = -g In r, 
the summation of each singular series (Le., the most 
singular terms, the next most singular, and so on) 
yields exactly the same form of gi (-In a)t. Here 
is a clear counter example to the conjecture that 
the summation of leading singularities will give 
the leading term in the scatttering length for small g. 

It is fairly obvious that this cannot in general 
be true because the general form 

'" 
Hdft{a), g} = I: Cdft{a)g} , 

i-O 

will yield a closed form HI, whose character is 
determined by all the C/. A summation of second 
most singular terms 

.., 

H 2(Ma), g) = I: D,fMa)g}' 
i-O 

will yield a form, H 2 , determined only by the D. 
which have only a very complex relationship to 
the C. as can be seen by working with I/I"'-I(r, a) 
and am(a) for a little while. The limits 

lim HI = hl(g), 
,,~O 

depend not only on fl(a) and f2(a), but on HI and 
H2 as well, i.e., on all the C/s and D/s. There is, 
in general, no possible way to determine h,(g) and 
h2(g) without knowing HI and H2 (or knowing 
every C. and D i exactly). 

[A series can be highly unstable. Recall thate- I
/

z = 

2::-0 C"(l/x),,, C" = lin!, which is zero as 
x -7 0+. But if we alter just one C" to C .. + f, 

then the sum diverges like fix" as x -7 0+.1 

II If /J < 0 in (a) then A(r) = g(lnrp)A. This case has been 
treated by H. Cornille, Nuovo Cimento 38, 1243 (1965); 39, 
557.(1965);. 43, 786 (1966). In these papers, Cornille in­
vestigates, m great depth, the validity of various limiting 
procedures. 
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Indeed, one can produce simple examples of infinite 
series where h2 is the leading g term even though 
II is more singular at a = 0 than 12' 

The fact that one must know every C, exactly 
to discern the features of hi (g) is what hinders the 
investigation of peratization. We cannot in general 
tell if the second and further singular terms con­
tribute to the infinite sum. In the rare case that 

00 

a(a) = L: C,{B(a)g}' (12) 

exactly for all terms, we can write 

(13) 

where BI(a) is the most singular term in a and 
Br(a) contains everything else. Then, il peratization 
works, 

a = a(O) = lim H(B(a), g) 
a-O 

= lim H(BI(a), g), 

and we could have merely summed 
CD 

H 1(B1(a), g) = L: C,{B1(a), g}'. 
,,-0 

However, the form (12) would be almost impossible 
to achieve due to the complicated equations defining 
a(a). 

IV. CRITIQUE OF THE LITERATURE 

As pointed out by Calogero,6 Khuri and Pais2 

and Aly et al.4 have not precisely distinguished 
between regularization and peratization. This con­
fusion of terms appears again in a more recent work 
of Aly et al. 13 

In Refs. 4 and 6, the authors treat the potential 

VCr) = ge2/r Ir' + g'(llr4
) , (14) 

but the Aly group deals only with g' t. There 
is some disagreement among the two sets of authors 
as to the validity of peratization. 

To clear up some of the confusion, we quote the 
results for the scattering length for Eq. (14) with 
g' = t to be 

a = _(gi + i). (15) 

Since the scattering length for Hllr') alone is a = 
- Wi = -!, it is assumed by Aly and his co­
workers that the -! in Eq. (15) comes from the 
second term in Eq. (14). The situation is more 
complicated than this. The formula given for a'(a) 

13 H. H. Aly, Riazuddin, and A. H. Zimerman, J. Math. 
Phys.6, 1115 (1965). 

in Ref. 6 for the potential [Eq. (14)] isH 

, i K.[gVla]I~(g') - I.[gVla]K~(g!) 
a (a) = g K.[g'ella]I.(g') _ I.[g'ella]K.(g') 

(16) 

with u = (g')i. For g' = t we have 

a'(O) = _(gi + !) exactly for all g. 

When g = 0, we have, for any g' 

'(0) = _ (21 - 2 <1 r(1 - u) <1 + ). 
a u r(1 + u) g u (17) 

When g » g' and g is large we have 

a'(O) = _(gi + ~ + 4u
2

8
- 1 g-i). (18) 

We see from Eqs. (17) and (18) that the second 
term in Eq. (15) does not come simply from the 
second term in the potential (14), and we also see 
that the g' part of the potential affects also the 
first term of Eq. (15). Though the first term in (17) 
is some sort of a cross term between the g and g' 
terms, we see from (18) that for large g the first 
two terms of a(O) are like (15) regardless of the value 
of g'! Thus Eq. (15) is not a linear combination 
of the g' = i scattering length and a cross term 
between g and g'. 

V. CONCLUSIONS 

We have shown how a special class of singular 
potentials may be peratized and whether or not 
the peratization procedure is finite. To discuss, in 
general, whether peratization works or not is a 
task impossible without explicit calculation and 
comparison with the correct answer. It is difficult 
at the moment to state general criteria for the 
procedure to be successful, though important pro­
gress has been made by Cornille.12 Significantly, 
it fails in many cases. 

We have again cautioned against the confusion 
between regularization and peratization, and we 
have clarified some misconceptions prevalent in the 
literature about whether leading singular sums will 
yield leading terms in g. Finally, some other mistakes 
and misinterpretations in the literature have been 
illuminated. 
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Based on earlier papers in which a non-Hilbert-space formalism for quantum physics called the 
,c-formalism, was. proposed, a new. formalism for quantum. fiel~ theory is developed by introducing 
the field concep~ mto the ,c-formalI~m. The present formalIsm IS then compared with the Wightman 
approach and wIth the Haag-Araki approach to quantum field theory. The necessity of a global 
vacuum within the ,c-framework and the alternative concept of the local vacuum are discussed. 

1. INTRODUCTION 

I N a series of previous papers l (referred to through­
out the present paper as [1], [2], [3], and [4]), 

we have formulated an axiomatic approach to the 
formalism of quantum mechanics. This formalism 
is partially motivated by a new approach to the 
theory of measurement in quantum mechanics (see 
[1]). However, disregarding the acceptability of the 
proposed theory of measurement, our formalism 
(called the oC-formalism) is of independent interest 
as a new tool for formulating quantum theories. 

For reasons which soon become clear, it is of 
no particular interest to apply this formalism to 
ordinary nonrelativistic quantum mechanics. Con­
sequently, our task in this paper is to enrich the 
oC-formalism with additional structure so that, out 
of this formalism, field theories may be formulated. 
Next, we investigate the relation between our axio­
matic formulation of a quantum field theory and 
each of the two best known contemporary formula­
tions of this kind [that of Wightman (Sec. 3) and 
that of Haag and Araki (Sec. 4)]. 

In order to understand the basically unique fea­
tures of a quantum field theory formulated in terms 
of the oC-formalism (we will refer to such a theory as 
.cQFT) in contradistinction to that of a quantum 
field theory formulated in terms of Hilbert-space 
concepts (xQFT), we have to elucidate the relation 
between the oC-formalism and the Hilbert-space for­
malism (X-formalism). In [3] and [4] we have proved 
that there exists a physical equivalence between 
the oC-formalism and the X-formalism. The formal 

I These papers are: [1] E. Prugovecki, "On a Theory of 
Measurement of Incompatible Observables in Quantum 
Mechanics" (to be published). (2) E. Prugovecki, J. Math. 
Phys. 7, 1054 (1966); (3) ibid. 7, 1070 (1966); (4) ibid. 7, 1680 
(1966). Familiarity with [1]-[4] is desirable but not absolutely 
essential for reading the present paper. The notation and the 
main ideas of the formalism developed in (2)-[4) have been 
incorporated in the Appendix, in a form best suited to the 
needs of this paper. 

nature of this equivalence has been explained in 
Sec. 1 of [3] and in Sec. 3 of [4]. Its physical content 
is the following: In the oC-formalism, the set .c of 
basic objects consists of (cf., Appendix) the set fJ of 
all observables (on which no prerequired sturcture is 
imposed) and the set (I' of all physical states. A phys­
ical state is defined as a mapping attaching to each 
n-tuple a = (all ... , a,,) of observables ai, '" , an 
a complex probability measure pa in such a way that 
certain axioms are fulfilled. If a quantum mechanical 
theory is given in terms of the X-formalism, then 
we immediately know the set fJ-an observable 
being represented by a self-adjoint operator. The 
complex probability measures corresponding to any 
physical state can also be written immediately [see 
Appendix, formula (Al8)], and thus the theory is 
instantaneously recasted in the oC-formalism. 

On the other hand, if a theory is given in terms of 
the oC-formalism, we prove (in [3] and [4]) the exist­
ence of a Hilbert space X so that the theory can be 
recasted in terms of an X-formalism associated with 
that Hilbert space. We have to stress, however, that 
this theorem is essentially an existence theorem. In 
other words, the proof of the existence of this Hilbert 
space X does not guarantee the possibility of the 
straightforward numerical construction of any par­
ticular physically interesting object of X out of the 
given objects in oC. This situation parallels the case 
of, say, existence theorems of solutions of systems 
of differential equations under given initial condi­
tions, when the existence proof does not offer a 
really practical way of explicitly obtaining such 
solutions. 

This suggests the fact that the practical problem 
of theoretical formulation and experimental com­
putation in the £-formalism might be quite dif­
ferent from that of the X-formalism. This conjecture 
is supported further by the fact that, in any actual 
experiment, only a finite number of observables is 

2107 
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involved. Consequently, in the £-formalism in order 
to get information concerning such an experiment, 
it is necessary to compute only complex prob­
ability measures related only to the involved ob­
servables. This is possible because the £-formalism 
gives the explicit conditions which such measures 
have to fulfill in order to belong to a physical state. 
This situation is different from that of an X-form­
ulated theory, where no finite complete set of ob­
servables exists-such as the case of field theory. 

We have to remark that, in a £QFT, only ob­
servable fields can play a role. This is due to the 
fact that £ is assumed to contain only observable 
quantities, and the £-formalism has been formulated 
accordingly. We have shown, however, in a separate 
paper [Nuovo Cimento 45A, 327 (1966)] that, in 
electrodynamics, the unobservable Dirac field can 
be replaced with observable tensor fields. 

2. THE AXIOMS FOR QUANTUM FJELD THEORY 

The axiomatic system presented in [21, (3J, and 
[4] is meant to characterize the basic framework of 
any quantum theory. However, in order to formulate 
a framework for quantum field theories, additional 
axioms must be supplemented. 

The main characteristic of a conventional field 
theory is the fact that one observable is assigned 
to each point in space-time from each of the kinds 
of observables belonging to a certain considered 
class X of categories of observables. For example, each 
known field theory contains (as one of the class :K: 
categories of observables) the category called lithe 
energy or energy density at some point x of space­
time". Any quantum field theory contains such a 
category as lithe total angular momentum density 
of particles of the kind " at a point of space-time", 
while it is the characteristic of electrodynamics 
(classical or quantum) that it contains the category 
If the electromagnetic field at some point of space­
time". Each of these categories of observables is 
called a field, and X represents the class of all fields. 

Wightman has shown,2 however, that there does 
not exist a nontrivial local quantum field theory with 
a unique global vacuum which could be formulated 
in terms of fields defined at points of space-time. 
Furthermore, general consideration of Bohr and 
Rosenfeld,3 as well as that of Heisenberg,4 seem to 
indicate that it might be necessary to consider 

2 A. S. Wightman, Ann. Inst. Henri Poincare 1, 403 (19M). 
3 N. Bohr and L. Rosenfeld, Kgl. Danske vid. Sels. 

Math-fys. Medd. 12, No. 8 (1933); Phys. Rev. 78, 794 
(1950). 

• W. Heisenberg, Verh. d. Sachs. Ak. Leipzig 83,3 (1931); 
86, 317 (1934). 

exclusively usmeared" fields. Consequently, we form­
ulate £QFT in terms of fields which are distribu­
tions over some space of test functions defined 
at all the points of the Minkowski four-dimensional 
space-time mt. . 

To do this, we choose some adequate space of 
test functions. For the sake of being definite, let 
us take this space to be the ~-space of Schwartz. (; 
:D is the space of all infinitely many times differenti­
able functions f{x) of compact support in the space­
time, in which a suitable topology is introduced. We 
can still regard fields as categories of observables 
from a class X, but, instead of attaching for each 
such category tp E X an observable tp(x) to each 
point x, we attach an uobservable" tp(f) to each 
real function 1 = J E :D. 

Axiom Wl: The set 0 of observables of a £QFT 
contains all the fields tp(!) taken at all real points 
f E ~. For a complex f E ~, 

f(x) = g(x) + ih(x), g, h E:D, x E mt, (2.1) 

tp(f) is defined by 

p .. ",(f)h(B) = p',.,(g)"(B) + ip .. ",m'.(B). (2.2) 

The fields ({J(t) are distribution-valued fields on ~ in 
the sense that 

t, g E:D, a, bEet, (2.3) 

and 

1ft -4 f, (2.4) 

if fl' t2, ... , E:D is any sequence which converges 
to f E :D in the topology of ~. Any other observable 
is a function of some finite number of compatible 
field observables and global observables (to be de­
fined later). 

In the above relations we have employed the 
following notation (which will be used consistently 
from now on): For any h = (hl, ... , h .. ) E R" 
the symbol I A or I~, x .. . X~. denotes the direct product 
of the sets (- <X) , h1), •• , , (- <X) , \,,), i.e., 

, L. Schwartz, Theorie des distributions (Hermann & Cie., 
Paris, 1957), Vol. 1. 
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I x = {X' = (X~, ... , X~): 

- ex> < X, < Xk , k = 1, ... ,nl. (2.5) 

In formulating Axiom WI, we also used the expres­
sion field observable, by which we refer to a field 
({J taken at some 1 = J E :D, or to a function F[({J(f)] 
of ((J(f), defined by 

r·FI.,(f»)··(B) = r'''(/)''[F-I(B)], B E (\31, (2.6) 

The definition (2.6) is naturally valid for any Borel 
function F(X) on RI. 

We note that the set of all observables consists 
of fields taken at some real 1 E :D, as well as other 
observables. Furthermore, in general it is not de­
sirable to impose the condition that, for any Borel 
function F(X), the field observables F[({J(f)] de­
fine a field for all 1 = J E :D. Namely, this would 
require that F[({J(f)] obey (2.3), which is too strin­
gent-as is more evident in Sec. 3, where we make 
the transition to the Hilbert-space formalism. 

In Axiom WI we required, however, that any 
function of compatible ({JI (fl) , ••• , ({In(f,,) , and, in 
particular, of compatible fields ({Jh ••• , ({J", is an 
observable. In this context the fields ({JI, ••• , ({J" 
are compatible if the observables ({JI(ft), ••• , ({J,,(f,,) 
are compatible (in the sense of Def. 1, Appendix) for 
any II = JI' ... , 1" = J" E :D. Then for a Borel 
function F(X), A E R""x "'x"'., we define F[({JI (fl),' .. , 
((J,,(f .. ).] as the observable for which 

= p ..... (f,) ........ (/.) •• (f-I(B)], PES, 

f. = Jk E:D, k = 1, ... ,n. (2.7) 

Besides field observables, we also have, in the 
present quantum field theories, global observables. 
We denote by 1f' = (1f'0, 1f'\ 1f'2, 1f'3) the four one­
dimensional observables determining the total global 
4-momentum (the term total refers to all kinds of 
considered "particles", while the term global means 
the 4-momentum on the entire space). In the con­
ventional Hilbert-space quantum field theory (to 
which we refer by the shorthand 3CQFT), the total 
global four momentum is represented by selfad­
joint operators (PO, P\ p2, pa) = P, which are 
the generators of a representation of the translation 
group in space-time, i.e., for each field operator 
cI>(x), we have 

cI>(x) = e,P'(S-M)cI>(y)e-,P'(S-M). (2.8) 

We have used here the notation (which is to be 
employed throughout) in which 

• 00 1110221:33 
~'7 = ~. '7 = ~ '7 - ~ '7 - i; '7 - i; '7 (2.9) 

for any two Minkowsky-space 4-vectors ~, 11. _The 
spectrum of P is assumed to lie in the closure V + of 
the forward light-cone V +. All these requirements 
are inserted in the .cQFT by means of the following 
axiom: 

Axiom W2: The set e contains the total global 
4-momentum 1f', having a spectrum S" lying within 
the forward light-cone iT +. 

A representation of the translation group in space­
time is given by the condition that, for any ({J E X, 

X dpV, " '''(/) ,,,v·(lf), X B X J.D.)' PES. (2.10) 

For a given inhomogeneous Lorentz transforma­
tion 

x ~ x' = Ax + a, x, a E mi, A E L!, 
we define flo.AI by 

(2.11) 

we can easily see that flo.AI E :D if f E :D. 
In 3C QFT the existence of a representation of the 

restricted Lorentz group L! is also assumed. The 
infinitesimal generators M.>. are taken to represent 
the total global angular momentum Il.>.. We arrive 
at that representation by assuming that the fields 
can be grouped together in finite sets 

{ 
(1) (1) (1) I 

({JI ,({J2 , .•• ,({Jk. , 

{ 
(2) (2) (2) I 

({JI ,({J2 , ..• ,({Jk. ; 

each element ({Jlil of such a set ({Jet) can now be called 
the lth-component of ({J(i). These sets ({J(O then are 
such that we have, in terms of the corresponding 
field operators, the following representation of L!: 

'" (.)( cI»')(A·x) = £J S;k(A)U(O, A)cI>k' x) 
k 

(2.12) 

Here S;k(A) stands for a finite-dimensional irreduci­
ble tensor or spinor representation of L!. 

The case of .cQFT is distinct in two respects. 
Our concept of a field is in a certain respect more 
general, because it refers to any kind of observable 
which is attached to each point of space-time. Thus 
it includes, e.g., the "field" which represents the 
probability that the energy density at each point of 
mi lies within [0, 1]. On the other hand, it is more 
restrictive, just because it refers only to observables, 
and subsequently the spinor representations of L! 
have to be ignored . 
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Axiom W3: The set 19 includes the global ob­
servables P, .. " which stand for the components of the 
total angular momentum. There exists a family 
ff of "relativistic fields" obtained by grouping the 
fields of a certain subset ffc of X into finite sets 

(1) {(1) (1) I (2) {(2) (2) I <P = <PI , ••• ,<Pk, ,<P2 = <PI , ••• ,<Pk. ,'" 
of compatible fields with identical spectrum. These 
sets are such that, for any Lorentz rotation A E L! 
in any of the two-dimensional coordinate planes 
(K, X), and for any P S, <P E ;r, B E m<p, 

= t Sik(A) J exp [i(m' - m")A aP] 
k-l 

(2.13) 

where 

P, .. " = -P,,,., K, X = 0, ... ,3 (2.14) 

and the matrices Sik(A) belong to a finite-dimen­
sional tensor representation of L!. The family ;r is 
such that all fields within ;re are Borel-independent 
(Appendix, Definition 7) and any field in X is a 
function of a finite set of compatible fields from ff •• 

From now on we refer to <p(l), q>(2), ••• as rela­
tivistic fields and to <pill, <p~ll, ... as the components 
of a relativistic field, reserving the word "field", 
as we have done until now, for any element of X. 
This is convenient because very often we are not 
concerned with the relativistic aspects of the theory. 

We note that, since any Lorentz transformation 
can be obtained by performing three successive 
Lorentz transformations in the coordinate planes, 
(2.13) really implies a "representation" of the re­
stricted Lorentz group. Furthermore, from (2.9) 
and (2.13), we can immediately deduce the form of 
any transformation corresponding to an element of 
the inhomogeneous Lorentz group. 

Another of the basic assumptions of 5CQFT is 
local commutativity (sometimes referred to as micro­
causality) which requires that 

(2.15) 

for any two fields q>1, <pz-where the anticommutator 
is for half-integer spin and the commutator for 
integral spin. This assumption, based on the rela­
tivistic postulate that no signal spreads with a 
speed greater than that of light, is in fact completely 
ad hoc for unobservable fields. However, in £QFT 
it can be justified from the point of view of bounded 
signal velocity, and it is expressed in the following 
axiom. 

Axiom W 4: If <PI, <P2 E X are any two fields, and 
the supports of the real test-functions /, g, E ~ are 
spacelike separated with respect to one another, 
then the observables <PI (f) and <P2(g) are compatible. 

3. COMPARISON WITH WIGHTMAN'S 
FORMULATION OF QUANTUM FIELD THEORY 

When we compare the formulation of quantum 
field theory given in the preceding section with 
other formulations, one point should be obvious: 
we have to consider such versions of these formula­
tions in which only observable fields are treated. 
Consequently, the theorem which will be formulated 
now should be understood accordingly. 

Theorem 1: An £QFT obeying Axioms WI-W4 
is physically equivalent to a quantum field theory 
formulated in terms of the Wightman axioms6

•
7 

on a Hilbert-space, which is not necessarily separ­
able, and which does not necessarily contain a global 
vacuum, if and only if the following axiom is ful­
filled. 

Axiom W5: For any q> E X and for any real 
f = JE~, 

PESo. (3.1) 

In addition, the total global and angular momentum 
are such that 

f
+co 

-co X2 dP"'(Ix) < + 00, 11= 0, ... ,3, 
(3.2) i: X2 dP""-(lJ < +00, a, {:J = 0, ..• ,3. 

We demonstrate now that an £QFT obeying 
Axioms WI-W5 can be formulated in such terms 
as to satisfy the Wightman axioms [with the excep­
tion of the separability of the Hilbert space and the 
existence of a (unique) global vacuum]. In other 
words, we prove the "sufficiency part" of the above­
stated theorem. The necessity of introducing Axiom 
W5 becomes obvious in the course of the proof. 

From the theorems in [3J and [4] on the existence 
of a Hilbert-space representationS of the £-formal­
ism, we extract the following: There exists a Hilbert 

6 A. S. Wightman, Quelques Problemes MatMmatique de la 
theori~ quantique relativiste in Les probMmes mathematique de 
la theorie quanti1.!:i'1l des champes (Centre Nationale de la 
Recherche Scientlfique, Lille, 1959). 

7 R. F. Streater and A. S. Wightman, peT, Spin and 
Statistics and All That (W. A. Benjamin, Inc., New York, 
1964). 

8 Cf. [3], Sec. 1. 
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space X and an injective mapping of the set So of 
all pure physical states into a subset of all rays 

{a'¥, a E ell, 'I' E X, (3.3) 

defined on X. If we denote by H 0 the subset of all 
vectors 'I' in X belonging to all the rays which are 
images of pure physical states, then the linear mani­
fold D spanned by H 0 is everywhere dense in X (in 
the norm topology). 

There exists also an injective mapping of the set 
01> of all bounded observables (i.e., observable with a 
bounded spectrum) into the C*-algebra 5S(X) of 
all bounded linear operators on x. This mapping 
is such that, given any observables ai, •.. , a" 
and Borel sets BI E (Ba" ••• , B" E (B"",9 we can 
attach to them projection operators E",(B 1), 

E .. JB,,) in a manner such that 

P"';"';"'(B! X ... X B,,) 

= (\lfpl Ea,(B!) ... E".(B,,) \\lfp), 

PESo, ,¥p E Ho. (3.4) 

In (3.4) \lfp is any nonnalized vector, (\lfp, \lfp) = 1, 
belonging to the ray which is the image of the pure 
physical state P. 

If a is a bounded observable, the set 

{E,,(B), B E (B"} (3.5) 

of projection operators on X can be regarded as the 
spectral decomposition of a bounded self-adjoint 
operator 

(3.6) 

is everywhere dense in x. For the field observables 
",(f), f E 1>, f = ], the global total momentum 'irIS' 

and the angular momentum 11-).., condition (3.8) 
is satisfied by all 'I' E Ho due to Axiom W5; it is 
consequently satisfied also by all 'I' E D. Since D 
is everywhere dense in X, the operators 

AI'U) = i:'" A dEl' u)(I).) , 1 E 1>, f = ], 

P~ = i:'" A dEr.(IJ, II- = 0, '" , 3, 

M •• = J A dE~h(I).), {,11 = 0, ... ,3 

(3.9) 

(3.10) 

(3.11) 

are defined as self-adjoint operators with domains of 
definition containing D. For a complex 1 E 1>, we 
can naturally define AI'(f) as 

AI'(f) = AI'(g) + iAI'(hl! l(x) = g(x) + ih(x), 

g(x) = g(x) , hex) = h(x). (3.12) 

In order to prove that the Wightman Axiom I 
(in chap. 3 of Ref. 7) is fulfilled, we can take our 
D to coincide with the set D introduced in that 
axiom. Due to Axiom WI we can easily see that, for 
any", E X, \If I , '¥2 E 1>, the functionals 

(3.13) 

are distributions on 1>. The validity of Wightman's 
Axioms 0 and ro in our framework would be es­
sentially established (with the exception of the 
existence of a global vacuum state '¥o) if we prove 
that 

In fact, the mapping of 0b into X is such that A" is P"D C D, M~.D C D, ",(f)D C D, 
just the image of a. fl., 11 = 0, ... ,3, '" E X, f E 1>. (3.14) 

On the basis of (3.4), we have 

(,¥pl A", ... A ... I'¥p) 

= J Al ••• A" dP"';'''''''''(Ix, X ... X Ix.), 

P E <POI \lfp E Ho, (\lfp I'l'p) = 1, 

if the observables aI, ..• , a" are bounded. 

(3.7) 

If a is an unbounded observable, the set (3.5) 
of projection operators can still be regarded to 
detennine an (unbounded) self-adjoint operator, pro~ 
vided that the set D" of all vectors 'I' E X for which 

J ).2 d('¥\ Ea(I>,) lw) < + 00 (3.8) 

• An ordered pair consisting of one observable a and a 
B E<B defines a special kind of observable called a question. A 
question has its spectrum concentrated at the points 0 and 
1 (cf. [2], Sec. 3). 

Take any 'l' p E H 0 corresponding to a pure 
physical state P, and any observable a E 0. If, for 
a Borel set B (B" the vector Ea(B)'¥p is different 
from zero, i.e., 

(3.15) 

then, according to Axiom IV in the Appendix, it 
corresponds to a physical state PI defined by 

P~(B') = (pa(B)rpa;~;"(B X B' X B) 

{3 EO, B' E (B~, (3.16) 

i.e., we have E,,(B)wp E H o• 

Due to the same axiom, we can prove that, if 

E,,(B1), ... , Ect(B,,) ~O, B I/ .. • ,B .. E(B"', (3.17) 

10 Cf. Ref. 7, pp. 97-98. 
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then, for any AI, ... , An E C\ either 

(3.18) 

or 

{3 E 0, B E mil 11 we can find an N (E, (3, B) such 
that 

IP!(B) - P~(B)I < E, k, m > N(E, (3, B), (3.27) 

(3.19) then there exists a physical state P <» such that 

P~(B) = lim P!(B) , {3 EO, B Emil. (3.28) 
Assume now that Aa is defined as a self-adjoint k-<» 

operator on X, and that 

(3.20) 

Choose a sequence III, II2' '" of finer and finer 
partitions 

Ilk = I··· (A::";, A~kl), (A~kl, A~kl), 

X [x.?>, x.~kl), ... \, k = 1,2, "', (3.21) 

of R I = (- CD, + CD) in which the maximum length 
of the finite intervals in the partition tends to zero 
when k ---+ 00. For sufficiently fine partitions, i.e., for 
sufficiently high k ~ r, we have [due to (3.20)1 

o < L: 1 x.~kl 12 ('I' piE a([AY>' x.~!ll» 1'1' p), (3.22) 
; 

where the summation in j is only over finite intervals. 
From the previous considerations we know that, 

given a k for which (3.22) is satisfied, there exists 
a physical state P k (which is necessarily a pure state) 
defined as 

P~(B) = [L: \x.~kl 12 pa([A~kl, x.~~\))]-l 
; 

X L: A!klx.Ylpa;Il;"([x.!k>, A!:>I) X B 
Li 

But (3.27) is true for the sequence Pf(B) in (3.23). 
Namely, the sequence 

L: /x.: kl /2 pa(I~kl), k = r + 1, r + 2, "', (3.29) 
; 

where 

I~kl = Nkl, A::>I) 

converges towards 

o < i~'" A2 dP"(Ix} 

= i:'" A2dP(wpIEa(I~) Iwp) < +00, 

and the sequence 

L: x.~k)h~klpa;ll;a(I~kl X B X I}kl), 
, .i 

k = r + 1, r + 2, ... 

(3.30) 

(3.31) 

(3.32) 

is also convergent. We establish this last statement 
by writing 

L: x.~klh}klpa;Il;"(I~kl X B X I}k)} 
" j 

= L: A!klh~kl(E,,(I~kl)wpl FIl(B) IEa(I~kl}wp) 
i. i 

X [x.~kl, x.~!ll»' f3 = ({3u '" ,(3.) E 0, 
B = m X ... X B: E (Bil. X ... X (B1l., 

= (wkl FiB) Iwk ). 

(3.23) Due to (3.26), 

(3.33) 

where 

pa;/l;a(B l XB XB2) = (Wp ! Ea(B 1)FIl(B)E" (B2) !wp), 

B 1 , B2 E (B", FIl(B) = EIl.(BD ... Ell. (B:) , (3.24) 

having the property that 

wk = L: h:klE,,([A:kl , x.:!ll})WP (3.25) 
; 

belongs to the image-ray of Pk, i.e., Wk E Ho. Now, 
from (3.20), A"wp is defined and 

lim IIwk - A"wpll = O. (3.26) 
k_'" 

On the other hand, according to Axiom II B in the 
Appendix, the set S of all physical states is closed in 
the weak topology. This means that if we prove 
that P'+I' Pr+2, .,. is a Cauchy sequence in the 
weak topology of S, i.e., if for any E > 0 and any 

lim (Wk 1 FIl(B) Iwk) 
k_'" 

= (A"wp! FIl(B) IA"wp) < + CD, (3.34) 

and the existence of P '" is established. 
Thus we have simultaneously established that, 

due to (3.34), we can write 

P~';''';llm(BI X ... X Bm} = IIAawpW2 

X (A"wp\ EIl.(B I ) ••• EIl .. (Bm) \A"wp), 

f31' ••• 13m E 0, Bl E (B1l., ••• ,Bm E (B1l .. , (3.35) 

and consequently A a 'I' p belongs to the image ray 
of p"" i.e., A"wp E Ho. 

11 If fJ (fJI, ... , fJ.) = E 0, then we prove the statement, 
strictly speaking, only for B E (B~lX ... X~" However, 
it is trivial to extend this to <B1l, because <B1l is the Boolean 
algebra generated by (Bil. X ... X (B1l •• 
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Finally, if, instead of (3.20), we had 

i:'" }..2 d('l1p! Ea(lA) !'l1p) = 0, 

Now, from the way in which the space :re is con­
structed,12 it follows that the linear manifold, span­

(3.36) ned by all the vectors 

then 

A a'l1p = 0 E D. (3.37) 

Thus, we have proved that, to any observable a 
for which 

(3.38) 

there corresponds a unique, (in general) unbounded, 
and self-adjoined operator Aa which leaves D in­
variant, i.e., AaD C D. Thus, due to Axiom W5, 
(3.14) is proved. 

Since the operators PI' are self-adjoint, the opera­
tors 

U(x, 1) = exp iP"x" (3.39) 

exist, are unitary, and are defined on the entire :reo 
They provide a representation of the translation 
group which is continuous in the strong topology 
of 5B(:re): 

lim !!(U(x, 1) - U(y, 1»'l1!! = 0, 'l1 E:re. (3.40) 

(3.44) 

is everywhere dense in :reP in the norm-topology. 
Consequently, (3.42) can be true if_and only if 

E (B) iP'%E (B) -iP·z 
'P(/lz.ll) = e 'P(/) e . 

For arbitrary 'l11' 'l12 E D the integrals 

L:'" }.. d('l1 I ! E'P(/lz.l»(IA) !'l12 ) 

= L:'" }.. d('l1 I ! eiP·%E'P(f)(lA)e-iP.S !'l12) 

(3.45) 

(3.46) 

exist. Relation (3.46) is equivalent to (3.41). Thus 
the fact is established that all the conditions of 
Wightman's Axiom 0 (with the exception of the 
existence of the global vacuum) are fulfilled; namely, 
the last requirement of this axiom that has not 
yet been checked is the spectral condition. This 
condition is obviously fulfilled because, naturally, 
the spectrum S" of 1f' and the joint spectrum of 
pO, ... , p3, defined as the complement of the set 

In order to prove that, for any cp E x, f E:O, V (Eo X BI X B2 X B 3), Bo,"', Ba E (BI, 

(3.41) 

we make use of Axiom W2. Namely, inserting in 
(2.13) for VI an arbitrary a = (ai, ... , a ... ) E e 
and B' = B~ X ... X B,:. E ma

, and for V2 any 
{3 = ({31, ••• ,a,,) E eandB" = B{' X '" X B~' E • {J . 
(B, we can write, due to (3.7), for any 'l1p E Ho: 

('l1p! F a(B')E"(/lz.ll)(B)F{J(B") !'l1p) 

= pa;"(/I~.ll);{J(B' X B X B") 

X (B' X I p' X B X I p" X B") 

= J ei<P'-P")" d('l1pi Fa(B')E,,(Ip') 

X E,,(f)(B)E,,(Ip,,)FfJ(B") !'l1p) 

= ('l1p!Fa(B')eiP,zE'P(f)(B)e-iP,sFfJ(B") !'l1p), (3.42) 

where for F a(B') and F/i(B") we used the notation 
introduced in (3.24), while 

E,,(I .. ) = E"o(I .. o) .. , E".(I ... ), 

p = (po, '" ,pa). (3.43) 

(3.47) 

are identical, and S" C V + according to Axiom W2. 
In the same manner as for the translation group, 

we can show that, due to Axiom W3, if any rotation 
A E L! in the (J.L, II) plane is given, then we havel3 

A"/(/lo.AI)'l1 = L: Sjk(A) exp (-!iM",A"') 
k 

(3.48) 

and, of course, exp (!iM",A"') D CD. 
Due to the fact that any Lorentz transformation 

A E L! can be reduced to three consecutive rotations 
of the above type, we can define, on the basis of 
(3.48), a representation U(O, A) of L! having the 
property 

U(O, A) D C D. (3.49) 

Thus Wightman's Axiom n 14 is also fulfilled. 

It Consult the proof of Theorem 3 in [3], Sec. 3.3. 
11 We do not have in exp (liM", M') any problems with the 

noncommutativity of the M"., because for Ie F 1", },. F P, 

A"A = a.A if A is a rotation in the (I", ,,) piane. As M", = -MIA., 
the sum 1 M", AI" reduces to MI" A'" (no summation over 
I" and ,,). 

I, Cf. Ref. 7, p. 99. 
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Finally, we can deduce from Axiom W4 that, if e(A) = {F[<,O,(f,) , •.• <,0 .. (1 .. )]: 

l(x)g(y) = 0, x, y E mr, 1, g E ~, (3.50) 

then, for arbitrary a, {3 E 0, B' E ma, B" E mil and 
arbitrary 'lip H 0, 

('lip I F a(B')E",'(f) (B,)E""(Dl (B2) FrlB") l'lip) 

= p";,,,,(f);<P.<Ql;Il(B' X Bl X Ba X B") 

= P";""(Dl;",,(f};Il(B' X Bz X B, X B") 

= ('lipl F ,.(B')E<p.(Dl(B2)E",,(f)(B,)FIl(B") l'lip) , 

<,0" <,02 E X, B, E (B<P', B2 E (B"'. (3.51) 

From the earlier mentioned fact that (3.44) is every­
where dense in x P in the norm-topology, we conclude 
from (3.51) that 

(3.52) 

and thus 

[A"" (f)A""{D) 

- A",,(glA"'dfl]'li = 0, 'li E D. (3.53) 

4. COMPARISON WITH THE HAAG-ARAKI 
ALGEBRAIC FRAMEWORK 

The main concept of the Haag-Araki's approach 
to quantum field theory is an algebra of observables 
in which some suitable topology is introduced. We 
consider here the case of the algebra of "quasi­
local observables" introduced by Haag and Kastler/6 

in which the uniform topology i~ adopted. We 
refer to the six postulates introduced in the Intro­
duction of Ref. 16 as the Axioms HeH6' We intend 
to prove the following theorem. 

Theorem 2: In an £QFT obeying Axioms W1-W4, 
a B*-algebra generated by local observables can be 
associated with any finite region in space-time. 
These algebras fulfill the conditions of Axioms 
H I-H5 in Ref. 16. 

We denote by A open sets with compact (in the 
Euclidean metric) closure in the Minkowski space 
~K. In the Haag-Araki formalism observables are 
attached to each such set A. 

If we adopt Axioms WI-W4, then we denote 
by e(A) the set consisting of all the fields <,0 E X 
taken at all J E ~, 1 = J, with support lying within 
A, and of all the observables which are functions 
of any finite number of such compatible field ob­
servables, i.e., 

1. H. Araki, Progr. Theoret. Phys. (Kyoto) 32, 844 (1964). 
'6 J. R. Haag and D. Kastler, J. Math. Phys. S, 848 (1964). 

II = J" ... I .. = Jft E ~, 
supp 11, .. , ,supp In C A, 

(4.1) 

where ..A stands for the set of all Borel functions 
defined on finite-dimensional Euclidean spaces. 

According to Theorem 6 in Sec. 2.5 of [3], and 
Theorem 1 in Sec. 4, of [41, there exists a B*-algebra 
2l(e) into which the set e of all observables can be 
embedded. Denote by 2l(A) the smallest B*-algebra 
containing the image in 2l(e) of the set (4.1). These 
algebras 2l(A) can be taken to be the aJgebras in­
troduced by Axiom HI. 

Due to the fact that e(A I ) C e(A2) if Al C A2 , it 
follows immediately that the isotony property, 

(4.2) 

is satisfied. It is also clear that all the algebras 
2l(A) contain the unit element-which is the image 
of all trivial questions like 

F[<,O(f)] , F(A) == 1, A E Rl. (4.3) 

Therefore Axiom H2 is also satisfied. 
If Al and A2 are spacelike with respect to each 

other, then, due to Axiom W4, each element of 
e(.11) is compatible with any element of e(A2)' 
According to the definition of the concept of embed­
dingl7 of the set e into 2l(e), this compatibility is 
reflected in the commutativity of the images in 
2l(e) of the elements of e(AI ) with the images in 
~(e) of the elements of e(.12). This implies the com­
mutativity of the B*-algebras 2l(A1) and 2l(A2)i we 
derive such a statement from the fact that any 
element of an algebra 2l(A) is obtained by taking 
finite sums and products (in any order) of a finite 
number of images in 2l(e) of elements from e(A), or 
by taking uniform limits of such. Consequently, 
Axiom H3 is fulfilled. 

Denote by 21 the smallest B*-subalgebra of ~(e) 
containing the image of the set 

e", = {F[<'oI(ll), •• , , <,O .. (f .. »; FE ..A, <,01, ••• , 

</,,, E x,II = J1' .,. ,1 .. = J.. ~l· (4.4) 

This algebra does not coincide with the B*-algebra 
2l(e), because all the global observables are not 
included in (4.4)-corresponding to the fact that 
these global quantities do not belong to the category 
of "observables" in the sense in which Haag uses 
the word. 

17 Cf. [3J, Sec. 1, and [4], Sec. 3, Def. 4. 
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It is obvious that 

0<;> 

Consequently we have 

V 0(.:1) . 
A 

2f :J U 2f(.:1). 
A 

(4.5) 

(4.6) 

If we denote by 2fl(.:1) and 2fl the algebras gen­
erated (in the ordinary algebraic sense) by the images 
of 0(.:1) and 0", respectively, in 2f(0), than it is 
easy to prove that 

2fl = U 2fl(.:1). (4.7) 
A 

In general, however, we cannot extend (4.7) to 
transform (4.6) into an identity. 

The B*-algebra 2f is obviously the smallest B*­
sub-algebra of 2f(0) which contains all the algebras 
2f(.:1). It is the algebra of" quasi-local observables" 
postulated in Axiom H 4 • 

From Axioms W2 and W3 ,we can immediately 
infer that, under an inhomogeneous Lorentz trans­
formation (a, A), A E L!, the set 0(.:1) goes over 
into 

fl 1a.,q(.:1) = O(a + A·.:1). (4.8) 

This implies the transformation 

2f(.:1) ~ 2f 1a •AJ (.:1) = 2f(a + A·.:1), (4.9) 

and consequently the existence of an automorphism 
of 2f-due to the fact that the set \.J A 2f(Ll) is 
everywhere dense (in the uniform topology) in 2f. 
This is precisely what is required in Axiom Hs. 

Finally, we know that the £-formalism admits a 
Hilbert space representation.1s This means that 
2f(0), and consequently 2f, possess a faithful rep­
resentation in a Hilbert space. We do not know, 
however, whether this representation of 2f is alge­
braically irreducible, i.e., whether 2f is primitive. 

5. THE CONCEPT OF LOCAL VACUUM 

In the conventional quantum field theory as well 
as in the Wightman axiomatic approach, the ex­
istence of a (unique) ground state, called the vacuum, 
is assumed. The introduction of such a state of 
the global total energy-momentum is, at once, con­
venient mathematically, and seemingly justified 
from the physical point of view. Namely, the ex­
istence of such a mathematical object seems to be 
necessitated by the imaginable" physical" situation 
in which a physical vacuum is realized in the entire 
universe. 

However, the existence of such a vacuum state, 

18 Cf. Theorem 3 ill [3], Sec. 3.3, or Theorem 3 ill [4], Sec. 5. 

which we call from now on a global vacuum, seems 
much less justified once it is realized that any 
actual experiment is and can be carried out only 
in a finite region of space-time. If that is the case, 
the ad hoc introduction of a global vacuum is not 
physically justified and can impose a very serious 
restriction on the structure of a theory. Therefore, 
the desirable thing would be either to derive the 
existence of such a vacuum from more plausible 
assumptions (as has been carried out under specific 
circumstances by Borchers19

), or to replace this 
stringent requirement of the global vacuum with 
some more physical assumption. 

We do not know whether a result like Borcher's 
can be derived in the formulated £QFT. Namely, 
although (see Sec. 4) the £QFT can be reformulated 
in terms of B*-algebras of" quasi-local observables" 
and Haag's concept of physical equivalence applied 
to it, we do not know whether the weak additivity 
property used by Borchers in his proof is valid for 
the resulting von Neumann algebras. On the other 
hand, in the £QFT formalism the assumption of the 
existence of a global vacuum would introduce no 
remarkable computational or formal simplification­
such as in xQFT. Furthermore, the transition to a 
physically equivalent theory with a vacuum (if such 
a theory existed) might be quite difficult in practice. 
Therefore, it is desirable to have an alternative to 
the global vacuum. 

Definition 1: A physical state Po is said to rep­
resent a local vacuum over a space-time domain .:1, 
which is bounded in the Euclidean metric, 

x~ + x~ + x; + x~, (5.1) 

if and only if 

Pt'U) = J ).,2 dP~U>CIJ = 0, (5.2) 

for all f = J E ~, supp f C .:1, and for all field com­
ponents cp E 5' c from the family 5' of relativistic 
fields (mentioned in Axiom F3, Sec. 2). 

In (5.2) the convenient notation of a bar over 
an observable in a physical state indicates the fact 
that the mean value has been taken over that ob­
servable for that state; i.e., for any (3, 'Y E 0, B' E 
ffi~, B" E ffi\ 

pfl:a:"I(B' X B") 

= L:'" A dpfl:a:"I(B' X I}, X B") (5.3) 

for any observable a. 

19 H. J. Borchers, Commull. Math. Phys. 1,57 (1965). 
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It is easy to see that (5.2) is equivalent to the 
requirement: 

P'P(fl(B) = 0, B E CB", {O} (\. B = 0. (5.4) 

Due to Axiom IV we can prove the following: 

Theorem 3:20 If Po E S is a local vacuum over 
A, then 

Ptdf,) ..... ".u.l(B) = 0, 

BE CB"'x",x"., {O} (\. B = 0, (5.5) 

for any <,01, ... , <,On E 5'., and any fk = Jk E :0, 
supp fi C A(k = 1, .. , , n). 

Proof: In order to prove (5.5), we first assume that 
<,01, '" , ({J" are bounded fields, Le., that S'P', ... , Sh 
are bounded sets in RI. Then we can employ the 
fundamental theorem of [3] according to which 
there exists a Banach *-algebra ~(e), self-adjoint 
indempotent elements E".(f') (BI), .,. , Eh(f.l(B,,) 
of ~(e) and a positive-definite linear functional 
< x > Po' X E ~(e), on ~(e), which are such that 

Ptd/,) .... ;".(/.l(BI X .,. X Bn) 

= (E"df,)(BI) ... E".U.l(Bn»po, 

BI E CB"" '" , B" E CB"·. (5.6) 

By applying on the positive functional < x > Po' X E 
2f(e), the Schwartz-Cauchy inequality, we get 

I(E",(/,)(BI) ... E".(/.l(Bn»PoI2 

~ (E ",.u,l(BI)E ", (/,)(BI»p.(E ""u.l(B,,) 

X E'P.U.l(B2)E'P.U.l(B2) ••• E".Unl(Bn»Po. (5.7) 

Now, by employing again the results of [3J and 
afterwards Axiom IB, we can write 

(E "', u,) (BI)E 'P. u,)(BI»p. 

= ptdf,) ;",u,)(BI X B I) = Pt,u,)(BI). (5.8) 

According to (5.4), which is equivalent to (.5.2),we 
have 

p"df,)(BI) = 0, {OJ (\. BI = 0, BI E CB"'. (5.9) 

Thus, due to (5.6), (5.7), and (5.8), the proposition 
is proved for B E CB'P,X"'Xh of the form BI X ... X 
B,., {OJ (\. BI = 0, and <,01, ... , ({J,. bounded. 

In the case Bl contains the zero point of the spec­
trum of ({JI, (Le., {Ole B I ), we have on the basis of 
the above and of Axiom IA that 

10 Our main interest in this theorem is due to the p'ossibility 
that a physical interpretation of complex probability mea­
sures (as was proposed in [1]) assigned to incompatible 
observables might prove feasible and desirable. 

XB,,) 

(5.10) 

Hence, we have reduced this case to the previous case, 
where we deal with n - 1 fields. 

An unbounded field ((Jk(f) can be approximated by 
a bounded field <,O!NI (f), where <,O~NI is defined as 
the function of <'ok in the following way: 

FN(A) = {A, 
0, 

We then get 

-N ~ A ~ +N, 

IAI > N. 

Pt,u');···;'Pou.I(BI X '" X B,,) = 0, 

Bl X '" X Bn E CB"'x",x"" 

{OJ (\. (BI X ." X B,,) = 0 

(5.11) 

(5.12) 

for unbounded fields ({JI, ••• , <,0" by going in the 
above procedure to the limit N ~ + co • 

The fact that (5.12) is valid not only for Borel 
sets of the form Bl X ... X B", but also for arbi­
trary B E CB",X"'Xh follows from basic theorems 
of measure theory.21 Q.E.D. 

Naturally, the above theorem implies that 

Ptu,);''';",nUnl = 0, (5.13) 

prridf,»';"';r"nUnl)' = 0 (5.14) 

for arbitrary ({Jl, '" , <,0" E 5'., fk = Jk E :0, supp 
ft C A, k = 1, '" , n. However, due to the fact 
that the measures Pt'(/,)· .. ·.h(t.I(B) do not, in 
general, have to be positive definite, the opposite is 
not true; (5.5) is a stronger result than (5.13) and 
(5.14). 

We can now introduce: 

Postulate 1: Given any finite (in the Euclidean 
metric) region of space-time, there is at least one 
local vacuum over that region. 

However, due to the fact that one always makes 
measurements only with a nonvanishing error, and, 
consequently, that one can determine only weak 
neighborhoods of physical states (see [IJ and the 
Appendix), the above postUlate is still more strin­
gent then the existence of experimentally realizable 
vacuum states would require. Namely, it would be 

21 P. R. HaImos, Measure Theory (D. Van Nostrand, Inc., 
Princeton, New Jersey, 1950), Sec. 13, Theorem A, and Sees. 
33 and 35. 
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sufficient to introduce the following weaker version 
of Postulate 1. 

Postulate 2: Given any finite region of space-time, 
there exists, for any Ii > 0, and E-approximation 
of a local vacuum over that region. 

In the above axiom we used the following concept: 

Definition 2: Given any finite region ~ in space­
time, we say that a physical state p. provides an 
E-approximation of a local vacuum over ~ if we have 

iP:'(f) I < e, If(x}! s 1, (5.15) 

for all 'P E ;1 c, f = J E !D, supp f C ~. 

From (5.1i5) we can derive the following estimate 

P:.(f}(B,) < E, B, = (- 00 , EJ V [E, + (0) (5.16) 

for any f of the above type. 
In general, we can write that, if fr. = Jt !D, 

supp Ix C t.(lc = 1, ... n), 

Ip;.'Cfd;"':"'ftu.l(B. X ... X B.)l S t, 

IMx) \ S 1, (5.17) 

for any 'PI, ••• , 'P .. E ;1,. This inequality might be 
considered as a version of the earlier proved theorem 
for the local vacuum. We can prove (5.17) by first 
taking bounded fields and employing (5.7) [first 
on E",.(f.)(B.) and then on E",.(f.) (B.)], always 
remembering that 

I(E .. ,(BI ) ••• E".(B .. »pl S 1, al,"', an E 0, 

(5.18) 

Afterwards we can generalize (5.17) to the case of 
unbounded fields by the method used in the proof of 
Theorem 3. 

As for the concept of local vacuum, we note that 
there is no guarantee, and no compelling reason, why 
a state which is a local vacuum in some region should 
be a pure physical state, and consequently repre­
sentable in 3CQFT by a Hilbert vector. Namely, 
the concept of local vacuum has been introduced in 
order to cover the case when a specific field theory 
is believed to refer also to the case when an actual 
experimental vacuum (i.e., a region of space-time 
not containing any systems described by that field 
theory) is realizable in some (finite) region of space­
time. As we have argued, in such a case it is not 
necessary to introduce a global vacuum. further­
more, it is not even necessary to adopt Postulate 1. 
It would be sufficient, from the physical point of 
view, to have Postulate 2 valid. 

We would like to remark that, if a specific field 

theory possesses a global vacuum, then it seems to 
us that, if the theory has been correctly built and 
if that vacuum state is more than a mathematical 
convenience, such a global vacuum should be a 
local vacuum, in the sense of Definition 1, over any 
finite region d of space-time (this is certainly true, 
at least in the case of that mathematical abstraction 
known as "free fields"). However, we expect that 
the converse is not true; there might exist interesting 
quantum field theories which satisfy Postulate 2, 
or even the more restricted Postulate 1, without 
possessing a global vacuum. 
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APPENDIX 

For the purpose of this paper, it is desirable to 
give a short summary of the most important con­
cepts and results of the previous papers [1]-[4]. 
Some of these concepts and results are somewhat 
modified here to suit the needs of this paper. 

The general formalism with which we are con­
cerned (and to which we sometimes refer as the 
,c-formalism) is given in the form of four axioms 
(see f4]). The basic concepts in terms of which these 
axioms are formulated are the set of observables 
o and the set of physical states S. We do not impose 
any artificial a priori structure on these sets (e.g., 
we do not require that 0 be an algebra or that all 
pure physical states constitute a Hilbert space). 
All the required structure is contained in the four 
axioms which, with the exception of the last one, 
represent a set of requirements which occur in a 
natural manner when a certain probabilistic inter­
pretation of the basic concepts of the given formalism 
(see [1]) is adopted. The last axiom is introduced 
in order to make the formalism physically equivalent 
to the Hilbert-space formalism. 

The axioms, as we present them here, are es­
sentially those given in [41. However, we do not 
formulate them in the most general form by means 
of probability functionals; rather we adopt the more 
specialized formalism in terms of complex probability 
measures, which intuitively is more transparent and 
quite adequate for our present needs. 

In order to facilitate the notation, we introduce 
the following conventions: 

If a set S is given, we denote by S the family of all 
ordered finite sets of elements belonging to the set 
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S. To any n-tuple a = (ai, '" an) E e of one­
dimensional observables ai, •.. , an we assign an 
n-dimensional Euclidean space R a and denote with 
(Ba the family of all Borel sets on R a

, i.e., the 
Boolean u-algebra generated by (Ba, X ... X (Ba., 

while by ffi a we denote the Boolean algebra gen­
erated by (Ba, X ... X (Ba •• 22 

In the £-formalism, we assign to each n-tuple 
a E e of observables, and to each physical state 
PES a complex probability measure pa(B), 
B E CB a

, on Ra
• We define a complex probability 

measure pa(B) as a normalized [i.e., pa(Ra) = 11 
complex measure for which Ipa (B) I < + co for all 
B E ffia. 28 If we have BI E (Ba,x",xa m, B2 E 
(B~'x ••• xP., ai, •.. , (3n E e, in order to denote that, 
in pa' ..... a··~,····~·(BI X B 2 ), Bl refers to the first 
m observables, we write pa •. .. ·.am;~ •• .. ··~·(BI X B2)' 
In general, in an expression of the form pa ;~; ... (BI X 
B2 X ... ), a, {3, ••• E e, the lth factor Bl in the 
direct product BI X B2 X '" refers to the lth 
ordered set a, of observables contained between the 
(l - I)th and lth semicolons. 

If a relation is true for all values a E e and for 
all B E CB a, it is very useful to replace a with the 
"variable" symbol v. For example, the so abbreviated 
relation (A2) below stands for the following more 
detailed written expression 

p~;a;"I(BI X Ra X B2) = P~;"I(BI X B2) 

{J, 'Y E e, Bl E (Ba., B2 E CB a
,. (AI) 

Axiom 1:24 For a given set e of observables, a 
physical state P is defined by assigning to each finite 
ordered set a E e of observables a complex prob­
ability measure pa(B), BE (Ba. Each physical state 
P has to satisfy the following relations: 

(A). For any observable a E e 

p •• a·'(Ra) = P·'·'. (A2) 

(B) If the symbols ai, ... , an stand for the 
same observable a, then 

p •• a.; ... ;a··'(BI X ... X Bn) 

= r·a·'(B I (\ ... (\ Bn) (A3) 

for any B I , ••• , Bn E (Ba. 

(C) For any observable a E e and any B E 

pa(E) 2:: 0, pa(Ra) = 1. (A4) 

22 Cf. [2J, Sec. 2. 1, and [3J, Sec. 2. 5, Lemma 10. 
II Note the differences between the present definitIOn and 

that in [2], Sec. 2.2, where it was required that [P a(B)] < 
+ <0 for all B E <B a • We will mention in Ref. 27 the effect of 
this change. 

24 This axiom can be derived from Axiom IV and Axiom IB. 

Definition 1: A finite set {ai, ... , anI of observ­
abIes is called a set of compatible observables, sym­
bolically written {ai, '" , an I = C, if and only if 

pa ...... a·(B) 2:: 0, B E (Ba.x ... xa., 

Bl E (Ba" ••• ,Bn E (Ba., 

for any physical state P and any permutation 
kl' ... , kn of the indices, 1, ... , n. 

Definition 2: Two physical states PI and P2 are 
called equal if and only if 

P~(B) = P~(E) 

for all a E e, B E CB a • 

(A6) 

Definition 3: Two observables a and (3 are called 
equal if and only if 

r·a"(E) = r'~"(B) (A7) 

for all B E (Ba == CBP• 

Definition 4: The weak topology26 in the set S 
of all physical states is the topology in which the 
neighborhood basis of a physical state Po E S con­
sists of all the states 

{P: Ipa(BI) - P~(BI)I < E, 

Ipa(B,,) - P~(Bn)1 < EI, (AS) 

corresponding to all choices of a E e, B I , ••• , Bn E 
ffi

a
, E > o. 
Axiom II: 

(A) If PI and P2 are any two physical states 
and 0 :::; t :::; 1, then the family of all complex 
probability measures 

tP~(B) + (1 - t)P~(B), B E CB a
, (A9) 

corresponding to all a E e, determines a (unique) 
physical state P, i.e., S is a convex set. 

(B) S is closed in the weak topology. 

As we can notice from Axiom IIA above, our con­
cept of physical state refers not only to pure states 
but also to mixed states-which, in the Hilbert space 
formalism, are represented by statistical (density) 
operators. 

Definition 5: A point A ERa belongs to the spec-

26 Note the difference between the present definition in 
which only B I , •.• , Bn E ffia are considered, and that em­
ployed in [2], where B I, ••. , Bn E <B a are considered. 
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trum S" of a E ° if and only if, for any interval 
I C R" containing A, there can be found at least 
one physical state P for which P"(A) ¢ O. 

Axiom III: 
(A) If ail .. , , an are any n observables (n = 

I, 2, ... ), then 

(AIO) 

(B) If {a} = C, a = (ai, ... , an) E 0, and 
B is a Borel set in R" containing a point of the spec­
trum S" of a, then there exists at least one physical 
state P for which pet (B) = 1. 

Finally, we have an axiom whose necessity is not 
immediately obvious. It is introduced because it 
ensures the validity of a generalization of the super­
position principle-valid even when superselection 
rules are present. Namely, for pure physical states 
it guarantees, as it is shown in [3] (Sec. 2.3) that 
(expressed in the Hilbert space language), if the 
normalized Hilbert vector 'l1 corresponds to a phys­
ical state and A is any element of *-algebra generated 
by all the observables whose spectral decompositions 
belong to the same coherent subspace, then A'lr 
corresponds to a physical state for A'l1 ¢ O. 

Axiom IV: 
For any P E (P and any f3 = (f3l '" f3,,) E 0, the 

expression 

f3* (f3", 

.. 
M = L a,a j p(1';(1(Bf X B j ), 

i. i-I 

, f3l)' B* = (B~ X '" X BD 

if B = (B~ X ... X B~) (All) 

is nonnegative for arbitrary26 B I , ••• , B,. E cB~ and 
arbitrary complex numbers ail ... , a,,(n = 1,2, ... ). 
If (All) is positive for some choice of B l , ••• ,B" E 
cB~ and ai, ... , an E C\ then there exists a physical 
state PI for which 

" P~(B) = M- 1 L a;a;pfJ';";fJ(Bt X B X B;) (AI2) 
i. i-I 

for any a E 0, B E CB". 
An additional concept, which will prove to be very 

useful, is that of a function of an observable. 

Definition 6: An observable f3 is said to be a func­
tion of a set {ai, .,. , an} of compatible observables 
if and only if there exists such a real valued 

IS Again, unlike in [2], only B 1, ••• , Bn E <BII instead 
of Bll ... , Bn E (BfJ are considered. 

Borel function teA), A E R"'x, .... x"., defined on 
R",x ..... xC<", so that we have 

(AI3) 

for all PES. We then write fJ = t(a1, •.. , an). 
We note that, if the set e of all observables does 

not already include all the functions of compatible 
observables, we can enlarge it by attaching to it 
all such functions defined by means of (AI3). 

Definition 7: A set of observables is said to be a 
set of independant compatible observables if no 
observable in that set is a function of a finite num­
ber of observables belonging to that same set. 

We have shown in [3] and [4] that the above 
formalism is physically equivalent to the Hilbert 
space formalism. 27 Of course, in order to be able to 
speak of physical equivalence we must have in 
mind a certain (experimental) interpretation or a 
class of interpretations of the above formalism. In 
other words, we must have available some corre­
spondence rules relating at least some of the above 
introduced theoretical constructs to laboratory pro­
cedures. In [1], after carrying out a thorough anal­
ysis of the theory of measurement in quantum 
mechanics we propose a generalization of Born's 
interpretation of quantum mechanics or, as we 
prefer to call it, of Born's correspondence rule. 
This generalization is based especially on an analysis 
of the concept of "simultaneous" measurement of 
incompatible observables. 

As we show in [1], we can express the outcome of 
any measurement or state preparation on an n-tuple 
a of observables in terms of a principal histogram 
h = [II, pCB)], consisting of a partition II of R", a 
set function 

o ~ pCB) ~ 1, B E 7r, (A14) 

and an experimental error function E(B), B E II. 
We call such a totality of mathematical objects an 
empirical state. We propose then the following: 

The generalized Born's correspondence rule: To a 
given empirical state corresponding to a state prep­
aration or a measurement on a E e, and determined 
by a principal histogram h = [II, pCB)] and an 

~7 This physical equivalence is not affected by the changes 
whICh have been underlined by Refs. 23-25. The proof in 
[3] of this equivalence, however, has to undergo some minor 
changes and becomes in its nature more like the case treated 
in [4]. These changes include the elimination of the necessity 
of introducing the normed*-algebra 2[.(0) in [3], Sec. 2.4. 
They also solve the difficulties mentioned in Refs. 20 and 21 
of [3]. 
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experimental error function E(B), B E II, corre­
sponds any physical state P which satisfies the 
relations 

pCB) - ECB) ~ Re P"(B) ~ pCB) + e(B), CA15) 

Ipa(B) I ~ pCB) + e(B), (AI 6) 

for all B E II n ill a • 

This correspondence rule contains as a special 
case the conventional Born's correspondence rule, 
which is valid only for measurements or state­
preparations on finite sets of compatible observables. 
Regardless of whether we adopt the original Born's 
correspondence rule or the above generalization, 
one feature is worth noticing: when we make meas­
urements or state preparations we do not, generally 
speaking, determine a single physical state but 
rather weak neighborhoods of such states! This fact 
is worth remembering when we are considering the 
physical equivalence of different formalisms as well 
as when we are investigating which features in a 
theory have a direct empirical significance. 

Now, speaking simply, a theory ~h formulated in 
terms of the £-formalism is physically equivalent 
to a theory 32 formulated in the Hilbert space lan­
guage in the following sense: Given 31 we can always 
construct (as is shown in [3] and [4]) a theory 32 

and, once the above interpretation of the £-formal­
ism (regardless of whether we accept the generalized 
Born's correspondence rule or only the conventional 
form) and the conventional (Hilbert space) inter­
pretation of 32 are adopted, we can describe any 

realistic experiments equally well in terms of :31 as 
well as in terms of 32, 

Naturally, given a Hilbert-space theory 32 it is 
very easy to construct the £-formalism theory 31 

(see [2]) in the following way: 
Once 32 is given, the set ~ of all observables is also 

automatically given. These observables are rep­
resented by certain self-adjoint operators. 

Take any physical state (pure of mixed) in 32, 

generally described by a statistical (density) operator 
p. We assign to p and to any n-tuple (aI, ... , aft) of 
observables represented by the self-adjoint operators 

Al = J Al dE~:~ ... , A .. = f An dEt:~ (A17) 

E>.=E(IJ,I).=(-co,X), 

the complex measure pa •. '''''''CB), B E ill", which 
is sueh that 

p;··· .. '''·CB l X .. , X B,,) 

= Tr [pE(1)(B
1

) •• , E(")(B .. )], 

Bl E ill a
., ••• ,B .. E ill a 

•• 

It is easy to establish that P""""""(B), BE ill", is 
a complex probability measure. The set 

Pp = (P; ..... ,a·CB), (aI, .. , , a,,) E 51 CAlS) 

of complex probability measures assigned to the 
given p for all n-tuples (aI, ..• , a .. ) of observables 
defines a physical state in the sense of the £-for­
malism. It can be checked (see [2], Sec. 2.3) that 
the resulting formalism is an £-formalism. 
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