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The Proca-type system of partial differential equations [—eurl curl A + kA = 7 grad ¢;
Vi — K¢ = ¢ div A, with k, K, and r constants] is transformed into a new system such that the
vector potential A and the scalar potential ¢ satisfy separate differential equations. It is also shown
that, for the solution of the system, there are only two different modes, div A = 0 with ¢ = 0, and

curl A = 0 with ¢ 7 0, respectively.

INTRODUCTION

SPECIFIC form of the differential equation

to be discussed in this work arises for the vector

meson field."'* The general system of equations can

be of interest also for other domains of research,
The system to be treated has equations

—V % (V % A) -+ kA = rgrad o,
Vi — Kp = div A,

(1a)
(1b)
where k, K, 7 are constants, and

62 62 62
2 __ O o 9
v 3 3;2 + ay2 + azs H

=9, 9., 9
V_a:cl+ay]+azk'

The aim of this paper is to transform the system of
Egs. (1a, b) into another system for which the func-
tion ¢ and the vector A will satisfy separate differ-
ential equations. In order to get separate equations
for different functions, the same technique employed

1P. M. Morse and H. Feshbach, Methods of Theoretical
Physics (McGraw-Hill Book Company, Inc., New York,
1953), Part I, q 1891.

2 G. Wentzel, Quantum Theory of Fields (Interscience Pub-
lishers, Inc., London, 1949), p. 75.

by Abraham® in transforming Brown'’s linear system
of partial differential equations* for micromagnetics
will be used.

DERIVATION OF THE TRANSFORMATION

Taking the divergence of (1a) and using (1b), one
obtains

kdivA = rV7%.
Using (1b) and (2),
¢ = {(k — 7)/7K} div A, 3)
Rewriting Eq. (1a) and using Eq. (3),
VA+ K (r—k—EKV(V-A)+FA =0 (4
The divergence of Eq. (4) gives
ViV -A) = —kK(r — K)7(V-A). 5)
Acting with the operator V° on Eq. (4),
VA+ K'Y r—k—-K)V°
X V(V-A) +kVA=0. (6)

@

3 C. Abrabham, Phys. Rev. 140, A144 (1965).
+W. F. Brown, Jr., Micromagnetics (John Wiley & Sons,
Ine., New York, 1963), p. 48.
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Using Eq. (4) and acting with the operators ¥ and
V? on (5), one can write Eq. (6) as

3738
VA + kV°A + '(;k—_li'ﬁ VA
BK?
+ mzA = 0. 7

The solution of Eq. (6) can be represented as

11 (V" = o)A =0, ®

=1

where the »; are roots of the fourth-degree poly-
nomial in v,

v + kP4 PR - b)Y
+ K-k =0. 9)

It is not difficult to show that these roots are given
by

= —k; v,=—kK(r—k";
vy = 3K(r — k)7'Q + iv3);
ve = 3kK(r — k)71 — iv3).
It follows that, the general solution of Eq. (7) is

4
A= Z A, (10)
i=1
where A; ({ = 1, 2, 3, 4) are solutions of
va; = v,'A,'. (11)

The solution of the system of Eq. (1) contains at
most eight constants of integration, while the solu-
tions represented by the Egs. (3), (10), and (12)
contain 24 constants of integration. Hence, there
must exist some relationship among the components
of the vectors A;. These relations, for each value of

C. ABRAHAM

1, are obtained by inserting the expressions (3)
and (11) into the original system of Egs. (1).
The relations are

1)y 7=1:
e = 0, V-A;, =0. (12a, b)

2) +1=2:
¢ = —(K)(r — )V -A,, curl A, = 0. (13a,b)

@) =3
A, = ¢ =0, (14)

@) =4
A, =9, =0. (15)

However, the solution of the system of Egs. (1)
can be represented by two different modes ¢ = 0,
with div A = 0, and ¢ # 0, with curl A = 0, as can
be seen from Eqgs. (12) and Eqgs. (13).

The transformed system equivalent to Egs. (1a, b)
is

VA, = —kA,, ¢ =0, V:A, =0 (16a,b)
and

VA, = —kK(r — k)7'A,, (16¢)
02 = —(zK)(r — K)V-A;; curlA, = 0.  (16d)

The advantage Eqgs. (16) have over the system of
Eqgs. (1) is that the former can easily be transformed
into an appropriate system of coordinates, according
to the given boundary conditions.
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Operators are obtained which can be evaluated with respect to nonrelativistic wavefunctions to
produce the same result as obtained by evaluating the Breit equation with respect to relativistic wave-
functions. This greatly simplifies calculations involving the Breit equation by allowing the calcul-
ations to be made within the more familiar framework of nonrelativistic theory. The operators are
classified according to their angular dependence; a comparison with the angular dependence of each
fine-structure operator leads to the relativistic equivalents of the fine-structure interactions. The
operators are expanded in a power series in (v/c)?, and the lowest nonvanishing terms are shown to be

the fine-structure interactions.

I. INTRODUCTION

ECENT advances in computing techniques and
machinery have made possible greatly im-
proved Hartree—Fock calculations,' with correspond-
ing improvement in calculated fine-structure con-
stants such as a0, the spin-orbit coupling constant.’
The recent appearance of relativistic Hartree-Fock
calculations® raises the possibility of further im-
provement in calculated fine-structure energies.
Calculation of relativistic fine-structure energies
implies, of course, the knowledge of a Hamiltonian
describing two-body interactions between relativistic
particles. The Breit equation® is most often used
for this purpose; although only an approximation,
it is a good approximation if the Breit operator

[__ef @ e, 93 (ax'rnz)(az'flz):}
2 7, 2

T12

is treated by use of perturbation theory.®

One complication that restricts the usefulness of
the Breit equation, however, is the difficulty of
extracting from it the explicit form of a particular
fine-structure interaction (spin—other—orbit, for ex-
ample). Sandars and Beck® have recently suggested
a method of calculating relativistic effects in atoms

* This work was supported by the United States Atomic
Energy Commission.

1 R. E. Watson and A. J. Freeman, Phys. Rev. 124, 1117
(1961); 127, 2058 (1962); F. Herman and S. Skillman, Atomic
Structure Calculations (Prentice-Hall, Inc., Englewood Cliffs,
New Jersey, 1963).

2 M. Blume and R. E. Watson, Proc. Roy. Soec. (London)
A270, 127 (1962); A271, 565 (1963); M. Blume, A. J. Freeman,
and R. E. Watson, Phys. Rev. 134, A320 (1964).

3 D. Liberman, J. T. Waber, and D. T. Cromer, Phys.
Rev. 137, A27 (1965).

¢ G, Breit, Phys. Rev. 34, 553 (1929); 36, 383 (1930); 39,
616 (1932).

S H. A. Bethe and E. E. Salpeter, Quantum Mechanics of
One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957).

¢ P. G. H. Sandars and J. Beck, Proc. Roy. Soc. (London)
A289, 97 (1965).

which can be used to overcome this problem. The
method involves obtaining an “equivalent operator”
which, when evaluated between nonrelativistic wave-
functions, produces the same results as obtained
by evaluating the relativistic operator between rel-
ativistic states. This has the great advantage that
relativistic effects can be studied within the non-
relativistic scheme—an immense simplification for
heavy atoms.

We have obtained equivalent operators for the
terms in the Breit equation (Sec. III); these op-
erators are then broken up into groups which cor-
respond to fine-structure interactions (Sec. IV).
Finally, these groups are reduced to the nonrel-
ativistic limit in order to obtain the fine-structure
interactions. This last step is important because
it reveals new operators of the same magnitude as
the fine-structure interactions.

II. THE HAMILTONIAN

The analysis is based on the solution by first-
order perturbation theory of the Breit equation
for two electrons (charge —e),**

xr = {Z [“i’(@i + eA) + Bime® — Zr_e]

i=1,2 i

2
€ . ot T
4 = - %ez o e %62 (e 12)3(012 12)}\1/ N
Ti2 T12 Tia
= EV¥.

We assume that the potential terms in Eq. (1) can
be approximately replaced by a central field term
>: U(r;). The approximate Hamiltonian is then

3 = D [es(eps + eA) + Bimd® + U], (2

i=1,2

and the difference, 3¢, = 3 — 3¢, can be treated
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as a perturbation. For the special case in which
A; = 0, the wavefunction satisfying

SCQ\I’O = Eo‘I’o = (E(l) + Eg)‘I’o, (3)

where E° is the energy of electron 4, can be written
as a product of wavefunctions of the form

ltjm) = [F /r ”""”], )
iG/r |lim)
wherel = I+ lasj = [ & %, and
lljm) = "A‘Vm.‘: (=)
X {"* g ] )l ()
m, mp; -

The term x* is the usual two-component spinor.
Here and in what follows, relativistic wavefunctions
are written in the general form |ljm) and nonrel~
ativistic funetions as |ljm). Terms written [a, b, - - -]
stand for (2¢ 4+ 1)(2b + 1) --. . We restrict our
discussion to the configuration 7°,

The radial functions F and @G, which can be
taken to be real, can be related through Egs. (2)~(4):

(L - =)r. = L tme + B - veaes

dre T ©

d
(& + %o = L tne — B+ UG,
With x = (=)'

The energy, to the first order in the perturbation,
is then given by

W} 3¢, + 3¢, [Wo)
= (B, + E) @, “I'o) = E(®, !‘I’o)
= (\I’OI a-p + Bmc’ + €. + 5Cp + Jc, + 3, I‘I’O)a

0]
where
R, = Z gl, 3L = —Zé/r, 50 = & /r,
R’y = —e (e en/ry),
and
5 = —het (o ° ru)fa, Iyy)

7'12

The first two terms on the exireme right-hand side
of Eq. (7) are the kinetic energy and mass-effect
terms, respectively. In the following sections, we
are not directly concerned with these two terms,
but rather with the remaining terms in 3C.

LLOYD ARMSTRONG, JR.

IIL. EQUIVALENT OPERATORS

We. wish to obtain the operator O, defined by
the equation

(\I,O‘ sca + 3(:5 + 301 + Gc& l\I’O) = (‘I'l Oc l\I,)) (8)

where |¥) is the nonrelativistic wavefunction which
[¥o) approaches in the nonrelativistic limit. The
operator O, is the ‘“equivalent operator” for the
interactions J¢, through 3C;, and will be obtained
below by considering the interactions 3¢, through
3C; separately.

A. Equivalent Operator for 3¢,

Evaluation of 3¢} between relativistic wavefune-
tions is straightforward, and yields

(tim] ¢4, |tjm) = —2¢* [ @—-;i_ﬁzﬁdn. ©

The equivalent operator for 3¢;, namely Of, can
be written in the general form

Z (KkK)W(xk)K

KkK

(10)
where the « are constants to be determined, and
the w**% gre defined by the relation
WO = (EVE, Gl Il =
" |1y = due[k].

Because 3, is a scalar, K = 0 in Eq. (10) above,
and therefore « = k. Taking matrix elements, we
obtain

(ljm| 0% |ljm)
- Ek: as‘(kk)(__)k-r-l-i—i-r;[k}ijé'

Equating the right-hand sides of Eqs.
and multiplying both sides by

{K} } ’ (1 1)

and

L

’“} (12)
)
(9) and (12),

z{% ‘ 5}&3(—)",
Tk

we obtain

o'(kk) = [k (—)*""2Z¢

x 31— )Jf 3 }f Et iy, ay

We postpone a discussion of this and subsequent
results until Sec. IV,

B. Equivalent Operator for 3¢y

Because 3¢ is a two-body operator, we must
consider matrix elements between relativistic states
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.composed of two electrons. The final form obtained
for O, does not depend on the type of coupling used
for the wavefunction. However, in order to dem-
onstrate more fully the method to be used, we use
below wavefunctions of the form |I>’SLJM).

As is apparent from Eq. (4), in relativistic theory,
j, and not [, is a good quantum number. The state
|’SLJM) must then be decomposed into states
|j1j2JM). which in turn are decomposed in the
usual way into a sum of products of |ljm,) and
|li2m,). Then

(PS.L M) 305 |28, L,J M)
= E [SU Lh Sﬂ: L2: jl: jh jay j4]‘

i1is
fafa

i3 SUL P8
X 1 l Lx 11 l Lz (j,j,JMlGCijaj4JM).

o da J[]'s i J
(19

The term 3Cs can be expanded as

1893

K
T< K ~K
1 C1°Ca
>

>
K

The symbol C* is defined by
CE = (4n/2K + L)YE,

where Y% is the usual spherical harmonic. In evalua-
ting the matrix element on the right side of Eq.
(14), one obtains reduced matrix elements such as

Gl € 113) = Qill € 11t [ FuuFour® dr

+ Tl o= ) [ Gneirtar.  (9)

This simplifies to

= ()", fs]*[ hoK "*]
-3 0 3

X f (FhFil + Gfoiu)rx df

for K even, or zero for K odd. We finally obtain,
for Eq. (14),

(l’S;LlJMI 3Cs ll”S,L,JM) = ¢ Z [S, Sa, L, L2]}[jl) Gay Gay GuJ(=)THEHY

LI BANE I A
L ll , Lj{ja ja J}[:‘, K 53}[3; K :;]
'4JJj’j‘K—%0 %-%0%

<
X ff (F\Fy + G\G:)y(FoFy + GG, ;KLN dry drs,

>< 1;1[
.1 j 2 J .3

where the sum is over j,, 7, 5, js, and K, and F,
has been written for F;,, etc. Particle assignments
are subscripted to the parentheses.

The equivalent operator is written in this case as

05 = 2 UK kK R)wiF0 ewi e (17)

where the sum is over k,, K,, k,, K,, and k. This

Bk, K k. K k) = 2 Z (_):‘.+:‘-+1 {k,, Kl[,k:llcz,

dafa

[L

z 3
X3l o1
L'x Ja

r%
X ff (FIFS + G1G3)1(F2F4 + G2G4)z P dr, dra,
>

(16)

is the most general form for a scalar two-body
interaction. Proceeding as in Sec. IITA, we evaluate

(lzlelJMl Oﬂ l12S2L2JM>

and equate the results with Eq. (16). The constant
B is obtained by utilizing the orthogonality condi-
tions for 6—j and 9—j symbols. One obtains

K. . . .
2] [31s fay Jas da)

3 k(% 3% kl
Enl 1 K, [j‘ g j“][j’ g j‘}
kﬂj, i kJ 0 —¥4 0 -4

a8

where k is even. By interchanging j, and j, j, and j, we see that 8 will be zero for either (or both)

k, + K, or k, + K, odd.
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C. Equivalent Operator for 3.,

The derivation of the equivalent operator for 3¢,

is carried out in essentially the same manner as for

the equivalent operator for 35, We first, however, rewrite 3C,:

Ky = __%629‘_1:2. = —§ Z (o + @) (C}-Ch) _r'i_
T2 ’“
= 16 2 (@) (@~ yreee m- (19)
Then
(leILlJMI 5@7 |le2L2JM) = —%62 Z Ul: jﬂ) .7‘3’ j45 Lla Lz; Sl; Sz]i(—)iﬂ‘iﬂjwc
I«% 3 slH% } szl _
X3l 1 L,pl lL,{Js Ja J}
L; i J ﬂy jo gk
X [[ Gl e 100G GO 10 S5 dndr @0
The sum is over §, s, fs, Js, B, and k; the reduced matrix elements are given by
, , vy s 1 kl|j A
Gull €N [13s) = ik, 4, M;{\/g (“)Hl[ : } []l " }(F‘Ga + G:F)
-1 0 1 3 -1 1
+ (=) {1 f "] {" I ’“} (Fi6s — G,F.,,)} (21)
0 0 0(-% 3% 0O
for 8 odd, zero for 8 even. The equivalent operator is defined as
= 2 v K koK RywiH 0k w50, (22)
where the sum is over k;, K, k,, K;, and k. Solving for v, we find
c g ey, Ky ke, KO)E
(k. K kKoK = "‘%32 E [y Jay as 74]i [_1_;____1@_1_2___,2_1_ ("‘)k
Pk 1 J bk
X3l 1 l KzJ ff Gl I(“lcf)ki }33)(?2§ K%Cg kl {.74) rgﬂ dry dr,. 23)

K, 3l
o ol

By interchanging j, and j, j; and j,, we see that
4 is zero if either (or both) &k, + K, or k, + K,

is even.

) jo k

D. Equivalent Operator for ¥C;

The term 3C; can be rewritten in the form
-1 62[;]3; o + (5)§ ((“10!2) (1121'12) ) :1 (24)

The first term on the right above has the same form
as 3¢, ; the second term can be evaluated by using
the relationship’

7 B. R. Judd, private communication (1965).

3Cs

712

= 2 (—)F 2= el {(C;’Cg)z[ 868 —i; DEB+ 1) ]&

15)@ — DEB + 3
aesye] BB — 18— )28+ 1) !
- oy Pe= YR e |

e (84 DB + 2)(28 + 1)(28 + 5) *}
+ (€ )[ 528 + 3) ] '

(25)

The terms in this expansion can be rewritten
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PV (=) | (asan) (CICD)
Z()@f 12

}((aIC’)K ~(e2C")F)F(B),
vy 8 K
(26)

where y = 8, 8 =+ 2, and F(By) is the term multiply-
ing the angular factor (C’C")* in Eq. (25). Upon
inserting Eq. (26) into Eq. (24), one sees that 3Cs
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0s = 3 (8K iKok) + 806K e KoK)}
x (w(k 1Kk (kaK:)") (27)

where the sum is over k;, K;, k., K,, and k. The
expression &° corresponds to the first term on the
right of Eq. (24), 6° to the second. These two ex-
pressions are easily evaluated by comparison with
Egs. (19) and (23). One obtains

0 — 1
has the same form as 3¢,. We write the equivalent 8 (i Kk K o) = Sy(ea Kk K oK) (28)
operator for JC; as and
. . *
52(k1K1k2K2k) — —'—[2]6 Z [.717 .727 135 J4» 561]1 Kl; kz; KZ] (_)ﬁ
[ } ik U bk 1
X lz I K, ﬂl I K, {1 ! 2}F(7ﬂ)
. . k
iods kI g kJ’Yﬁ
X ff Gl |(a10ﬁ)k| l7s) (a| 1(ezC A |]4) 5“ dry drs. (29)

The sum is over §,, j», Js, js, 8, and v. Both &° and
6 are zero if g is even, and if either (or both) k, + K,
or k, + K, is even.

Further simplification can be obtained for par-
ticular cases: let 8 = & 4 8 4 5%, where &
stands for the case in which y = 8, §* for v
B8 -+ 2, and 6® for vy = B — 2. For k odd, 6
2y, 6° and 6 are zero. In this case &° + & = 7.
Forkevenand k = 8 + 1,

8 + & + v = [2( + 1)/2k + 1]v;
forkevenand k = 8 — 1,
8 + 8" + v = [2k/@2k + Dlr.

No analogous simplifications are possible for §*
or 8%,

IV. INTERPRETATION OF THE OPERATORS

The terms in O, having the same angular de-
pendence as the fine-structure interactions can be
identified as relativistic fine-structure interactions.
These relativistic interactions can be expanded in a
power series in orders of (v/c)?; the lowest non-
vanishing terms will, in most instances, be just
the usual fine-structure interactions. We consider
now the terms according to their angular dependence.

A. Terms with No Angular Dependence

The only term of interest here is «(00); 8(00000),
the only other nonzero term having no angular

dependence, will be seen to be the first term in the
expansion of the operator ¢”/r,,:

22 (o+n [ Bty

+u-n[EED) g, e

where ¥, stands for F;.,.,, ete.

The expansion of Eq. (30) in orders of (v/c)?
is based on Eq. (6). We define Ef = W* + mc’,
and write Eq. (6) as

C {1 + —‘——Efﬂ}" (éfl—‘ - :—)F... 31)

2me 2mc :

a'(OO) W(oo)o J——

G; =

The expansion of the expression in braces in powers
of (W — U)/2mc® is roughly equivalent to an
expansion in orders (v/c)’. We need to consider only
the first term in the expansion

_ o Ll__"_) .
‘T e (dr.- s F:,

where yo = eh/2mec. To this order, F satisfies the
equation

[—i(f%— WT“))+ U()]

forbothj =14+ 3 and j = I — 1 states; Eq. (33)
is just the radial Schrédinger wave equation for a
particle in a central field. The normalization used
in this limit is | F* dr = 1.

(32)

= W'F, (33)
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In this order of approximation, the term con-
taining F? in Eq. (30) becomes
2
~z¢ [ Bar. 34)

The term in G* can be obtained by use of a general
relationship obtained from Eq. (32),

,~ _d[p_avar
f Gva dr = F{ 1V
+ [: f'g: - V(d ﬂ-},’—ﬁ)]p} dr, (35

where V is any function of ». The term containing
G” then becomes

s [-"V ( Ze)
62 T

zZe (& K41
T (dr, T )]F‘ drs.

Ts

(36)

This term is discussed further in the next section.

B. Coulomb-Repulsion Terms

The Coulomb-repulsion Hamiltonian, ¢*/r:,, can
be written as

3 Il K [l] (OE)E . (0K)K:
2 Z x+1( Wy ).
" L} 0 0} K] >

37

Only Og has terms with this angular dependence;
the equivalent operator for this interaction, Og...,
can therefore be written

Z ﬁ(OKOKK)(W(DK}K

(OK}X

(38)

The first nonvanishing term in the expansion of
Oc... is exactly Eq. (37). The second nonvanishing
term is

4[] s v

2
X X P, ( - lﬁl—i{—l-)-)p’,} drodr,  (39)
irim1,3 Ty Ty

where U’ = ¢*/r;;, and V*? = Vi + Vi.

When evaluated in this limit, the matrix element
of the term D, (E° — B,mc*) contains, in addition
to the nonrelativistic energy, a component of the
order u3/e”. This component is given by

> W + 5L, - D).

i

(40)

Combining this expression with Egs. (36) (summed
over 7) and (39), one obtains

LLOYD ARMSBSTRONG, JR.

ff F?Fﬁ(%V’V - %p‘ ‘;n"lé‘?) dr, dry, (41)
where
zZé Zé | &

V=L _2,°.

Ty T2 Tz

= (p; + p2) and

To obtain Eq. (41), we have made the approxima-
tion that

2
4 i —_ = L
w + E T Ts Ty 2m

The first term in Eq. (41) is the Darwin term® for
two electrons; the second, the mass correction term.

C. Spin~Orbit Terms
The spin—orbit Hamiltonian can be written as
Bro. = =030+ DEL+ DPWY,  (42)

where

o = K 1dU@)
o T 2wt r  dr
Because
(11)0 (00)0) (2[1‘])—§w§11)0’

both O, and O; contain terms having the angular
dependence w*'V°, The relativistic spin—orbit con-
stant is then given by

ral 2 *
0% = ’[za TOE 1)]
X ['(110) + (2[1))*B(11000)]

= '[gl]‘ [f F, VrelF+ + G+ VrelG+)Q' dr;

- f (F-VilF- + G-V, ,G); dri}' (43)

V. is a “relativistic potential energy” given by

Vo) = 2+ £2 [“11+ 2@ + 63,

"'1

+ 2UFL 4+ G2).] E drs, (44
where r, is the larger of r,, 7.. In the limit discussed
above, the second term on the right of (44) becomes
the integral over r, of the potential energy of a
charge at r, due to a spherically averaged charged
shell at r,. The relativistic spin—-orbit term reduces
to a,_,. in the nonrelativistic limit.

8 A. Messiah, Quantum Mechanics, translated by J. Potter

%Ni)r%l-ﬂolland Publishing Company, Amsterdam, 1963),
o



RELATIVISTIC EFFECTS IN

D. Orbit-Orbit Terms

The orbit—orbit interaction can be written as®

_ s s~ 2K+ 1) K (|3

3Co.a. = —16ug ; (K + 2) <ln c ”l>

X (D + Dl + 1){" K+l 1}2
l 1 l

0K E+1 KE+1)K+1
dry dry (WOKHDEHL 0K+ DRAY)

o © K

a2 T2

x [ [ Rk
(45)

The equivalent operator for this interaction, O,.,.,
is given by the terms in O, and O, with the same
angular dependence as 3¢, ,.:

0oo. = 2 (v(O K+10 K+1 K41)

K

4+ (0 K410 K41 K41)}
X (W](-GX‘I'I}K*J'W’:QK*!)K‘FI).

(46)
Only the terms in this sum with K even will be
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nonzero. In expanding O,.,., one finds that the
first nonvanishing term is just 3C,.
E. Spin-Other-Orbit Terms

The spin—other—orbit interaction can be written'

3o, = 2 EK: (K + D@+ K + 2@ — K}

K (--)KH[K + 1]-;(w(ox+nx+x.Wux)xﬂ)

X AMEL T I + 2MEQ] ¢ 11D’

+ (-—')K[K]_i(wwmx~W(1K“)K)

X AMEU| CT D + 2MF7 Q| ¥ DM, @47)

where the M™ are the angular integrals of Marvin.™
The sum over K falls into two parts, the sum over
K even and the sum over K odd. For K even, terms
in the equivalent operator, O,., .., with the angular
dependence (w* V5w MK il arise from O,
and O;; with (wOOF.w™Y5 from 0p For K
odd the situation is reversed. The equivalent op-
erator is given by

O.... = ; {BOK1K+1K) +v0K1K+1K) + 60 K 1 K+1 K)J(wPOF .{ix+DK

+ BOK+11K K+1) +v0K+11K K+1) 4 §0 K41 1 K K+41)|(wPErDEH oK+
The first nonvanishing term in the expansion of Eq. (48) is 3¢

The spin-spin Hamiltonian is given by

R, = 25} 5,; [@K + (@K + 3)2K + 2)]*{

x e o=y [~ [ Rz 2L

The equivalent operator for this Hamiltonian, 0,,., comes from 0, and 0;, and is given by

On.n. =

)]
F. Spin-Spin Terms
1 1 2 }
K+2 K K41
2 rK+a d?‘; d?z (wi1K+2} 'WQIK)K'PI). (49)
2
(50)

; (YA E+21 K K+1) + 31 K42 1 K K+1) | (wiiEDE guRI X4y

The only nonzero terms in this sum will occur for K even.
Upon expanding the expression for O, ,., we find that the first nonvanishing term is given by Eq,

(49) plus the additional term

g2 (B + DK + 2
TTTEK +9)

w =3
(lH CK “len C,K+2 Hl)j; %dﬁ (W§IK+2)K+1 .wglx)xﬁ)_

(51)

The radial part of this additional expression is of the form of a delta-function between r, and I,;

this term is discussed further in the next section.

' C. W. Ufford and H. B, Callen, Phys. Rev. 110, 1352 (1958).

1 B. R. Judd, Physica (to be published).
2 H. H. Marvin, Phys. Rev. 71, 102 (1947).
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G. Spin-Spin Contact Terms
The spin-spin contact Hamiltonian'? is given by

3Cono. = —532mps(s,+s,) 8(r, — 1)

) Z—; (=)=*q e |y

(1K)ﬂ)
3

4’" 2 5(r, —

X (W“K”’ w (52)

where we have used"

1
8T — 1) = 8@, — 1) dxr? Z [K](Cli'clg
K t
Again, the equivalent operator for this interaction
0, ,... comes from 0, and G,

O,.e.c. = ;ﬁ: (YAK1Kp)
+ 1K1K Bjw ™ w

The only nonzero terms in this expansion occur
for K even.

Upon expanding O, ..., we find that the first
nonvanishing term is given by %,.,.. plus some
additional terms whose values depend on 8. The
additional terms are for § = K + 1,

2K g

(IK)B)‘

30K + 3 et iy’

x [ Bl oo wgosy; (o5
for g = - 1,
-——~————-—§§§K+ e ) 0 |10

X f B ar, (ot PR, (5)
and for 8 =

%Mo(l” CK Hl> f F‘: dT; (w(lx)x (lK)K). (530)

The additional contributions to the spin-spin
Hamiltonian found by expanding the equivalent
operators in powers of (v/c)* [Eqs. (51) and (53)]
can be included in the Hamiltonian by adding the
term

1
Klgo = -——g—"“r o 8, — 1)

X [sl.s2 - M@_ﬁ]

12 J. C. Slater, Quantum Theory of Atomic Structure (Mc-
Graw-Hill Book Company, Inec., New York, 1960), Vol. II.

13D, M. Brink and G, R. Satchler, Angular Momentum
{Clarendon Press of Oxford Umversxty Press, Inc., New York,
1962).

(54)
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This operator has not been obtained in previous
treatments®'* of the spin-spin interaction because
earlier results have depended on the assumed shape
of the infinitesimal region in which the electrons
overlap. The situation is highly analogous to that
which exists with respect to the Fermi contact
term'® in hyperfine structure. Judd” has found that
3! ... can be obtained by use of classical eleetro-
magnetic theory if the electron spin moments are
replaced by currents, as suggested by Casimir.'® If
one uses this method, the result does not depend
on the shape of the infinitesimal volume surround-
ing one of the electrons. Judd” has also obtained
3! ,... by the method of Bethe and Salpeter,® as-
suming that eleetron 1 is excluded from, and electron
2 confined between, two concentric spheres which
collapse, in the limitf, to a common radius.
Unfortunately, 3¢!,.,., which can be written as

32
. = 208 3 ()50, o

X {1 ! 2} {K 5 2}«s1s2>’<0’§c:>2>°, (55)
g 0 0JlO 0 O

can be shown to always give zero total contribution
to the energy. That is, when the matrix element
of %!,. is taken between the states [SL) and

[S’'L’), the sum over K and & can be performed,
producing a result which depends on the produect

P

14

y o1 { l z}
ls g 2/l0 00
For this product not to be trivially zero, S = §’ =
and L, L’ must be even; such a state, however,
would violate the Pauli principle. It can also be
shown that 3¢, . makes zero contribution when

evaluated between wavefunctions arising from mixed
configurations.’

(S0

[N

Lll].
000

H. Other Terms

There are three more distinet operators in O,
which have not been discussed. These are

0, = 2, B1K+11K+1K)
K

QE+DE (1K1K
X (w, ‘W, ),

¥ A M. Sessler and H. M. Foley, Phys. Rev. 92, 1321

(1953).

18 1, Fermi, Z. Physik 60, 370 (1930).

18 H, B. G. Casimir, On the Interaction Between Atomic
Nuclei and Electrons (W. H. Freeman and Company, San
Francisco, 1963).
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TapLe I. Terms in O, classified according to corresponding fine-structure interaction. Numbers in first column are
KK as defined in Sec. III A. Numbers in second and third columns are ki, K1, ks, Ko, k as defined in Secs. III B-D.

0, O 0, and O Interaction
00 —Ze/r
11 11000 spin-orbit
0K 0K O(K even) e/ria
1K1K+42 K+1 (K even) spin—spin
0K+4+10K41 K41 (K even) orbit—orbit
0K+11KK+1 (K even) spin—other—orbit
0K1K+1K{(Kodd) spin—other-orbit
0K1K+1 K (K even) spin—other—orbit
0K+11 K K+1 (K odd) spin-other—orbit

1K1 KK+1
1K1K K (K even)
1K1KK-1

spin-spin contact
spin—spin contact
spin-spin contact

0,= Y, BlK+11K—-1K)
K

{1K+1)R {1E-1} K"
X (w, Wy )
and

0, = 2,81 K—11K~1K)

X (W;IK-I)K‘Wélx'_I)K) .

Upon expanding these expression, we find that none
has any nonvanishing terms to order uj/e’.

V. DISCUSSION

Table I reviews some of the results of the preced-
ing section. In if, the terms in O, are classified ac-
cording to the type of fine-structure interaction
produced. In the parts of the spin—spin, spin—other—
orbit, and orbit-orbit interactions arising from O,
and O;, the angular dependence of each electron
is given by W**®% where K is odd. As was shown
in Secs. IIIC and D, in this case 0, = 0;. In the
nonrelativistic limit, the contributions from O, and
0; to the spin-spin contact terms are also equal;
this is not the case in the relativistic limit, however.

As mentioned in Sec. IIIC, the values of O, do

not depend on the particular type of coupling as-
sumed; this implies that the equations for O, are
valid for any two electrons in a configuration [".
This in turn implies that the equivalent operator
for the configuration I" can be obtained by replacing
the indices 1, 2 in O, by 4, j and performing the
sums ) 1., 0 and X is; (05 + O, + 0,).

Using the operators obtained above and the
relativistic Hartree-Fock wavefunctions, then, one
can calculate in a straightforward manner the value
of a particular fine-structure interaction in the con-
figuration I". The evaluation of the angular terms
is carried out in the nonrelativistic scheme, where
the powerful tensor techniques of Racah'” can be
easily utilized. The methods used to obtain these
operators can also be used to obtain operators valid
for application to mixed configurations.
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Although the perturbation expansion for the S-matrix of the Peres-model field theory has zero radius
of convergence, it uniquely defines the S-matrix and is easily summable by the method of Padé ap-

proximants,

1. INTRODUCTIOR

ECENTLY, the use of Padé approximants for
analytically continuing power series has been
applied extensively and has become better under-
stood theoretically.’* In particular, the technique
has been shown to be applicable in potential theory
for certain classes of potentials.? It would be of
immense value if the Padé method could be applied
in strong-coupling field theory. The technique seems
particularly well-suited to the calculation of res-
onances and perhaps form factors; one cannot hope
to calculate scattering-matrix elements directly from
the perturbation series, because these need to be
evaluated just where Padé approximants will sim-
ulate branch cuts, but it might be possible to cal-
culate the discontinuities across these cuts.

The likelihood of the nonconvergence of field-
theory perturbation series was established by Hurst.*
Dyson® pointed out that a zero radius of convergence
of the electrodynamic perturbation series was con-
sistent with physical instability obtained by allow-
ing the electric charge to be analytically continued
to a purely imaginary value. The same phenomenon
was noticed by one of us for the many-fermion
problem, where it corresponds physically to col-
lapse.® Peres’ has invented a simple soluble “model
field theory” which resembles realistic field theories
both in the form of interaction and in allowing the
analog of pair creation; these characteristics are not
present in potential theory, so that the model ex-

* This research was sponsored in part by the European
Office of Aerospace Research, United States Air Force, Grant
No. AF EOAR 64-61, and in part by the U. S. Atomic Energy
Commission. ) .

1 Q. A. Baker, Jr., Progress in Theoretical Physics (Aca-
demic Press Inc., New York, 1965), Vol. I, p. 1.

2 J. C. R. Chisholm, J. Math. Phys. 7, 39 (1966).

+J. S. R. Chisholm, J. Math. Phys. 4, 1506 (1963), Ref.1,

Sec. IV B.

% C. A. Hurst, Phys. Rev. 85, 920L (1952).

J. Dyson, Phys. Rev. 85, 631 (1952).
Baker, Jr., Phys. Rev. 131, 1869 (1963).

5 F.
8 G. A
7 A, Peres, J. Math. Phys. 4, 332 (1963).

hibits some properties of realistic field theories which
have not yet been treated by the Padé method.

Peres has shown that one matrix element in the
model theory is a Bessel function whose expansion
in powers of the coupling constant g has zero radius
of convergence. His deduction from this fact, that
the perturbation series is useless, is however wrong;
we show that this series is in fact a series of Stieltjes
and is therefore summable by the Padé method; the
Padé approximants have poles in the g-plane only
along the imaginary axis, where the Bessel func-
tion is singular. We show further that every matrix
element in the model theory is the sum of terms
whose perturbation expansions have the same prop-
erties. Thus, any matrix element can be calculated
by the Padé method, and it is established that the
only singularities in the g-plane lie on the imaginary
axis, and correspond physically to the “Dyson dis-
aster”,

2. MATRIX ELEMENTS FOR PERES’ MODEL

The two ‘‘fields” in the model are harmonic
oscillators of the same frequency, described by op-
erators z and y. The interaction is taken as

gé(t)z’y, 2.1

analogous to an instantaneous interaction of form
Yo between a fermion field ¢ and a boson field ¢.
The operators z and ¥ can cause single quantum
jumps (creations or annihilations) between the oscil-
lator states, which are of the form

Vo(2) = Coe ¥ Hoa(x), (2.2)

where H, is a Hermite polynomial and C, are
constants. The general S-matrix element is given
by Eq. (6) of Ref. 7 and is a real multiple of

I= f_: de f_ z dy H,(2)H.(y)H (@) H.(y)

X exp (—z* — y° — igz’y). (2.3)
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This integral is zero unless r and m are either both
even or both odd; in this case

I= Z L S

where a,, are real numbers, and
I, = f dz f dy =*y*

X exp (=2 — 3 —igz’y), (2.5)

with p» and ¢ nonnegative integers. A particular
integral I depends on integrals I, which all have ¢
even or all have ¢ odd. Performing the integration
over z in (2.5), we have

I, = »'27%2p — DI

24

x [ _dy exp (=9 + i)~

Integrating by parts p times,
3

gy’

X _/: dy 2%,5 (exp (—)¥OA +ig)™ . (2.6

Ipe =

The integral in (2.6) is a sum of terms, with real
coefficients, of the form

Jig= f_ _dy exp (=)' + igy)”

= [ &y e (~y W I0+ig) - D A ~ig ™).
2.7

The values of 1 arising in a particular integral (2.6)
are either all even or all odd, depending on the
parity of ¢.

The integrand in (2.7) can be expanded by the
binomial theorem and integrated term by term.
The result is always a series with zero radius of
convergence; for example, the ground-state—to—
ground-state matrix element, discussed by Peres,
has I = 0in (2.7). The series expansion is then

Jo =7t 20 (=g @ri/2%ri2r)). (2.8)
r=0

With I = 1, (2.7) gives

it Sy A2
So= i L magt r @9
When ! is odd, J; always contains an odd imaginary
factor 4g.

We note that the series in (2.8) is very similar

to the series derived from the Euler function:

1901

® et dt = .
2 (=gl

r=G

0 1+§2z

The latter series is a series of Stieltjes, so that the
diagonal Padé approximants converge monotonically
from above to the Euler function on the positive
real axis and converge for all complex values of ¢
except on the line — » < ¢* < 0, where the func-
tion is singular. Monotonically increasing lower
bounds on the positive real axis are given by the
[N, N - 1] approximants. We now show that these
properties are shared by the series expansions of
the functions J;. The rate of divergence is only n},
and so the function defined is unique (Theorem 7,
Ref. 1).

3. IDENTIFICATION AS STIELTJES SERIES

(2.10)

Following Wall,® one can show by using Cauchy’s
theorem that sufficient conditions for a series ex-
pansion of a function f(g*) in powers of g° to be a
series of Stieltjes are:

(i) (") is regular except for the real range of
values — » < g° < 0, on which line Im f(¢°) may
be discontinuous, but finite,

(i) Im f(5") S 0if Im ¢* 2 0,

(i) J#(g")] — 0 uniformly as §° — = in the cut
plane.

The functions (2.7) are clearly regular unless g is
purely imaginary, where a rotation of the integra-
tion contour sufficies to prove finiteness, and so
satisfy (i). It is not difficult to check that condition
(iii) is also satisfied.

Remembering that J; contains an unpaired factor
1g when { iz odd, as in {2.9), condition (ii) must be
checked for

1)=Tv= [ dy e (W' [1-+igy) S+t —ign) ™)

(Leven), (3.1
(g") = i:/g
= L " dy exp (=gl + ig) ™t — (1 - igy) /g
(Lodd). (32

Taking 0 < argg < 4, so that ir < arg (o) < m,
we have

(1 4 g7t > [ — igy)™H|

$H. 8. Wall, Analytic Theory of Continued Fractions
(D, Van Nostrand Company, Inc., Princeton, New Jersey,
1948), Bec. 66,
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and
0<arg (1 —igy)t < —arg (1 + igy)™? < I,

Thus the imaginary parts of the integrands of (3.1)
and (3.2) are each negative, and condition (ii) is
satisfied.

For (3.2) we may simply verify this condition
for the boundary of the cut plane, and note that
because of (i) and (iii) Im(f) reaches its maximum
(and minimum) values on the boundary and so is
of definite sign throughout each half-plane (in g¢°).
Thus the series in g* derived by expanding (2.7)
are series of Stieltjes, for all integers [ > 0. It is to
be noted that the sum of two series of Stieltjes is
again a series of Stieltjes.

In fact, one need only consider the integral (2.7)
for! = 0and ! = 1, since J, for I > 2 can be ex-
pressed in terms of J, and J, through the recurrence
relation

Ly = ig7 ' [y — 3] + 3QR1U4 DI
4. CONCLUSIONS
For Peres model field theory, we have shown that:

(a) each matrix element is a linear combination
of integrals of the form (2.7), with I a nonnegative
integer;

(b) each matrix element is singular for pure
imaginary values of the coupling constant g, and
for no other values;

(c) the expansion of every integral (2.7) in powers
of g has zero radius of convergence, but is a multiple
of a series of Stieltjes in ¢°; and thus

(d) the diagonal Padé approximants formed from
the series expansion of (2.7) in powers of ¢° will

G. A. BAKER, JR. AND R. CHISHOLM

converge to the function (2.7), and will have sin-
gularities only for ¢* real and negative.

The singularity structure of a realistic field theory
is vastly more complex than that of this model.
Nevertheless, this simple example shows that use
of a perturbation series can be reconciled with the
occurrence of the “Dyson disaster’’ and the re-
sultant zero radius of convergence of the series.

APPENDIX

In order to illustrate the smooth and relatively
rapid convergence of the Padé approximants, we
give in Table I the first few which can be formed
from the coefficients through g¢'* for S, ,. For com-
parison we have included the partial sums for g* = 1.
The [N, N] Padé approximants from monotonically-
decreasing upper bounds and the [N, N — 1] form
monotonically-increasing lower bounds over the
range 0 < ¢° < + ». Both bounds converge to the
limiting function in the cut (— «, 0) complex plane.
It will be observed that even with only 6 terms
we can obtain an accuracy at g¢° = 1 of better than
one percent, even though the Taylor series is diverg-
ing drastically.

TasLE I. Padé analysis of So,o.

gt =1 3 10 Partial sum
(¢ =1)

0,0] 1.0 1.0 1.0 1.0
[1,0] 0.842105 0.64 0.347826 0.8125
[1,1] 0.910448 0.868613 0.842032 1.01758
{2, 1] 0.883198 0.740263 0.477577 0.594604
[2,2] 0.897712 0.831876 0.781703 1.88335
{3,2] 0.890418 (0.772340 0.543369 —3.31997
[3,3] 0.894720 0.817125 0.748844 22.85923
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The unitary and antiunitary ray representations of the group of n commuting operators T,
i=1,2, -+, n,satisfying T';* = 1, I';T; = ;T\, have been determined explicitly. The ray representa-
tions are shown to be homomorphic to the representations of a class of generalized Clifford algebras
defined in the text. The enumeration of different algebras gives a complete classification of inequiva-~
lent ray representations. Whereas the irreducible vector representations of the group are all one-
dimensional, the irreducible ray representations lead to various multiplet structure of states ranging
in dimensions from 1 to 2 (n even), or 23D (n odd), in powers of two. The arbitrary antiunitary
case can be reduced to the case with only one antiunitary I

I INTRODUCTION

Y a general parity operator we mean an operator
whose square is the identity operator. The
full inhomogeneous Lorentz group has two abstractly
defined parity operators: a unitary parity operator
corresponding to space reflections and an antiunitary
parity operator corresponding to time reflections.
The physical interpretation of these operators may
depend on the physical situation. For example, the
space reflection operator may be interpreted as P
or as PC.! In addition, we have other parities, like
charge conjugation C, @ parity (isospin parity). The
P, C, and T operators may even be different in
strong, weak, and electromagnetic interactions.”
Thus, we have the problem of a general quantum-
mechanical treatment of the representations of a
number of parity operators. The product of two
commuting unitary parities have been considered
in the literature.*** We discuss in this paper the ray
representations, both unitary and antiunitary, of n
parity operators.

It is remarkable that the ray representations of
this simple finite group lead to such a richness of
different classes and each class to different fypes of
representations. It is also remarkable that one gets
higher-dimensional irreducible representations, that

* Supported in part by the United States Air Force Office
of Aerospace Research under AFOSR Grant AF-AFOSR-
30-65.

$+On leave from Edinburgh University, Edinburgh,
Scotland.

1. P. Wigner, Group Theoretical Concepts and Methods in
Elementary Particle Physics, F. Giirsey, Ed. (Gordon and
Breach Science Publishers, Inc., New York, 1964).

2P, D. Lee, Proceedings of the Ozford International Con~
ference on Elementary Particles (Rutherford High-Energy
Laboratory, Cambridge, England, 1966).

3 V. 1. Ogievetskii and C. Kuang-Chao, Zh. Eksperim. i
Teor. Fiz. 36, 264 (1959) [English transl.: Soviet Phys.—
JETP 9, 179 (1959)}. N. Tarimer, Phys. Rev, 140, B977
(1965).

‘ 'I)he general theory of projective representations of finite
groups goes back to I. Schur, J. Reine u. Angew. Math. 132,
85 (1907); 139, 155 (1911).

is, multiplet structure of states, much the same way
that one is used to obtain from the representations
of compact symmetry groups. The present paper
deals with the mathematical theory of the subject;
the physical applications will be treated separately.®

II. UNITARY RAY REPRESENTATIONS
Let the group G be generated by n elements

Iy, Ty, - -+, Ty such that
I‘3 =1, (1)
F;P; = I‘,‘I‘;. (2)

The group consists of /, T';, and all the possible
distinet products of T';’s, and is Abelian. Its ele-
ments are denoted collectively by g,. We have

92 = 19 (1’)
9:g; = 9:9:. 29

Let U(g:) denote the unitary ray representations.
They satisfy

Ulg)U(g;) = w(i, HU (9.9,
Ud) = 1. 3)
Two representations U(g) and aU(g) lead to equiva-
lent factor systems. Hence, because of (1’) the diag-

onal phases w(%, £) can be chosen to be the identity
so that

LYCRI 4

In order to determine the remaining phases, we pass
from the group law (3) to the commutation relations

Ulg)U(gy
= w(t, DU(g:9;) = (i, NU(gi9:)
= w(t, Polf, 7 Ulg)Ulgs) = C.,U(g)U(g),

Ci; = w(ii ])/w(j; 7’) (5)

§ For an application to leptons see A. O. Barut, P
Rev. 147, 978 (1966). P arut, Phye.
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We refer to the phase factors C,; as the “com-
mutation factors.” These factors C;; cannot be
absorbed into the U’s because the multiplication of
U by any factor « occurs on both sides of Eq. (5)
and hence the factor o cancels. But the commuta-
tion factors C,; must be restricted to <-1. This fol-
lows from Eq. (5), for, if we multiply Eq. (5) from
the left by U(g,)U{g;), we obtain

I = C,;U(g)Ulg)U(g)U(g)
= CyCi,lU@)T UG = C%y,
or,

How many independent commutation factors C;;
are there? Because the group is generated by the
n elements Iy, --- , T,, the commutation factors
of these generating elements, i.e.,

Ur)UT,) = C,UT)HUT,
U@ =1, @)

determine all other factors C;;. In fact, Egs. (7)
generate a generalized Clifford algebra with the 2n
basis elements:

L; U(T)UTy; - -+ ; UT)UT) - -+ U(Tw,

i < j, ete., €))

which is just the basis of the representation of the
group (Frobenius) algebra of the group G, Eq. (1).
The ordinary Clifford algebra corresponds to all
(., = —1. Indeed, for any two group elements g,
and g;, we have, if we express g; and ¢; in terms of
the produets of T',,

U(gy) Ulg))

= U(T, Ty, ++ Tin)U@Ty, -0 Tiw)

(fI INI éi.i;)U(gi)U(gt‘) = C,;U(g)U(g), 9

l=1 k=1

which is exactly the same as the commutation rela-
tions of the two elements U(T.,) --- U(T.:,) and
u(,;,) --- U(Ty,) of the algebra (8). We have thus
proved the following theorem:

Theorem: The unitary ray representations of the
group (1) and (2') satisfy the generalized Clifford
algebra generated by (7) with the basis (8).

We can therefore determine first the representa-
tions of the algebra and then pass to the representa-
tions of the group. The representations of the
commutation relations (7) differ from the ray rep-
resentations of the group as follows: To a given

A. O. BARUT AND 8. KOMY

representation of the Clifford algebra there corre-
sponds as many ray representations of the group
as there are phase factors w,; satisfying

Ci;.

This freedom in the choice of the w,; is, however,
drastically restricted by the associative law of the
group which we have not yet used. Indeed, if one
multiplies Eq. (3) from the left by U(g.g;) and uses
Eq. (4) and Eq. (2'), one gets

U(gaU(g:)U(g:9)) = wis,
U(g)U(g:)U(gi9:) = wij,

wii/""ii =

or
w7:U(g)U(g)U(g)U(g) = wu,
or
Wi =aw;; Oy = Cj. (10
Consequently,
Cii = wiy = %1, wy = 1, &1, (11)

It is now a relatively simple matter to pass from
the representations of the commutation relations
(i.e., Clifford algebra) to the ray representations of
the group: Take a representation of the algebra with
C;; fixed. From (11) the corresponding w,; take only
two possible values =(C;;)}. Now, quite generally,
if U(g) is a representation of the commutation rela~
tions, so is {a;U(g,}}; and if {U(g,)} corresponds to
the phase system w;; of the ray representations of
the group, {o;U(g,)} corresponds to the equivalent
phase system

w;i(a.'ai/aii) .
In our case, because of (4), we have @; = 1. Note
the difference between the equivalence of phase sys-
tems and the equivalence of representations. Two
representations U and «U belong to equivalent
phase systems, but they are in general not equivalent

representations, that is, there exists no matrix 8
such that

SU()8™ = aU(g), (12)

The concept of equivalent phase systems tells us
simply that if we have found one representation the
other is trivially obtained by multiplication with
a phase factor, like U(T) and — U(T"). But the eigen-
values of the operator T in the two representations
are of course opposite of each other.

We now discuss all the representations of the
commutation relations (7), or the representations of
the algebra with the basis (8). Some special cases

for all g.
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of this algebra are well known: If all Co',-,- = 41 we
have the trivial case of an Albelian group and all
irreducible representations are one-dimensional. If
all C,; = —1, the representation U(g) forms a
bona fide Clifford algebra whose representations are
known. All other mixed cases take an intermediary
position between these two extreme cases.
Because of Eq. (10), there are

inn— 1) =K

distinct factors (:’;;, hence a priori there are 2% dif-
ferent types of ray representations, depending on
which of the C,; are equal to +1 and which are
equal to —1. If k of these factors are —1, they can

be distributed in (K

b > different ways among the K
factors, and

R R e

Consider now the class with & of the (t’,.,. being
equal to —1. We distinguish two cases: (i} The &
minus signs are so distributed that we have a sub-
Clifford algebra with r generating elements, &k =
ir(r — 1); (i) there is no subalgebra which is a
bona fide Clifford algebra. For example, if k =
the case (i) corresponds to C; = Cpy = €y = —1,
then Ty, T;, T's form a Clifford algebra; case (11)
corresponds, say, to C’12 = C’13 = Cu = —1, that
is, T'y, and T, anticommuting, but I'; and T3 com-
muting. It is clear that we have the case (i) only if
kis of theform k = 3r(r — 1),r = 1,2, 3, 4, -

Case (i)

The representations are determined by those of
the Clifford subalgebra with » generating elements.
The remaining elements of the algebra commute with
each other and commute with this subalgebra and
therefore do not increase the dimensionality of the
representation.

The representations of the Clifford algebra with
r generating elements (r = 1, 2, --- , n) have been
first determined by Jordan and Wigner® for even r.
For even r there is a single irreducible representation
(up to a unitary equivalence) of the Clifford sub-
algebra of degree 2!". Every other representation
is completely reducible, faithful and of degree which
is a multiple of 2¥. For odd r a similar analysis
exists.” In this case there are two inequivalent, but
nonfaithful, representations of degree 2!~ the

8 P, Jordon and E. P. Wigner, Z. Physik 47, 631 (1928).

7 H. Boerner, Representations of Groups (North-Holland
Publishing Company, Amsterdam, 1963), p. 269.
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faithful representation is the direct sum of these
two and, therefore, of degree 2} *". Again every
other representation is completely reducible and its
degree is a multiple of 2},

Case (ii)

Except the cases where, by relabeling the ele-
ments, we may obtain a Clifford subalgebra as in
case (i), the generalized algebra with mixed signs
C;; = =1 leads, in general, to new types of repre-
sentations different from those of Clifford algebra.
As a matter of fact, all of these algebras (including
the Clifford algebra) are special instances of a much
larger algebra with arbitrary C,, (forming a group)
whose irreducible representations have been deter-
mined in the succeeding paper.® In our case, the
prescription of determining the irreducible repre-
sentations is as follows: Consider the group & con-
sisting of the 2" elements given in Eq. (8) and their
negatives. Thus the order of & is 2**'. The represen-
tations of the commutation relations (7) are also
the representations of & The factor group &/C,,
where C, is the group of two elements (+1, —1), is
Abelian and has 2" one-dimensional representations.
If the K additional representations are of dimensions
L, 1l +++, lg, we have

N+L+4+ -+ k& 13)

The number K is equal simply to the number of basis
elements in the set (8) which commute with all the 2"
elements. Thus, if all C,, =+, K=2"1 = =
lxg = 1; and if all C’ —1,K=1or2 dependmg
on whether T = even or odd, and I = 2! (n even) or
L =1, = 22" (n odd). Finally, to find the number
of commuting elements in the set (8) we look at the
table of C,, and determine how many C,,, C,,C,,,,
C,,C,,,C,,, -+, are +1, for fixed 7, all §, all (3, k), -

It follows from this that the dimensions of irreducible
representations are determined by those of the sub-
algebra containing — signs for C,,, the additional
C,, = -1 terms do not increase the dimensionality
as in case (i). Thus, all irreducible representations
of dimensions 1, 2, 4, 8, , 2% occur. This com-
pletes the enumeration of all irreducible representa-
tions. Explicit forms of the matrices are given in
the Appendix.

— 2n+1 — 2n — 271.

III. ANTIUNITARY AND MIXED UNITARY-
ANTIUNITARY RAY REPRESENTATIONS

We wish now to represent n, generating elements
by unitary operators U(T;), 2 = 1, 2, --- n,, and

8 See A. O. Barut, J. Math. Phys. 7, 1908 (1966).
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n, generating elements by antiunitary operators
AT, i=1,2, --- n,. n = n, + n,. Because the
product of two unitary operators is unitary and the
product of two antinunitary operators is again uni-
tary, the whole algebra with 2" basis elements splits
into, say, m antiunitary and 2* — m unitary opera-
tors. In particular, the case where all generating
elements are represented by antiunitary operators
corresponds to n; = 0, in which case, because

()64 G) -

the number of unitary and antiunitary operators is
the same as those of the unitary representations of
(n — 1) IVs and the antiunitary representation of
one T, Thus we have the following theorem.

Theorem: The ray representations of G generated
by n elements T'; in which any number of the I''s are
represented by antiunitary operators can, by rela-
beling the elements and the proper adjustment of
phases, be made to coincide with the ray representa-
tions in which only one T is represented by an anti-
unitary operator. The representation algebra is thus
always generated by a direct product of the form

(L, UTY), -+, UTw-1)] X I, A(TW)]

Among all the discrete commuting symmetry trans-
formations there can only be one antiunitary gen-
erating operator (the others are the products).

We now discuss, in general, the phases between
antiunitary and unitary operators,

As in Sec. II we first normalize the unitary opera-
tors in such a way that the product of two unitary
operators satisfy

[Uga]* =1,
U(gaU(g;) = C;U(g)U(gy); (14)

Next we look at the products of two antiunitary
operators. The determination of the phase factors
here is slightly more complicated. For in the relation®

A(g)A*(g)) = &.:U(gD) = &, (15)

the diagonal phases &;; now cannot be normalized
to unity by multiplying A with a phase factor. From
the associativity law, however, it follows that these
phases are equal to =1, for the multiplication of
the above equation by A(g;) from the left gives

A(g)A(g)*A(g) = 8%A(g),

9 (*) means complex conjugation. The rules of right and
left multiplications with antiunitary operators follow from
the fact that every antiunitary operator is a product of a
unitary operator times the operation of complex conjugation.

w;; = 1.

C,',' = 41,

(16)

A. 0. BARUT AND 8. KOMY

hence
& = 8?& . (17)

To determine the off-diagonal phase factors in

and
A(g)A*(g) = &.U(g:9:) = &..U(g:9,), (19)
we multiply these two equations to obtain
A(g:)A*(9.) A(g:) A*(g:) = 8.8
or
8,-,-8,'.' = 8,‘,’8,‘1‘- (20)

Because & are real and equal to =41, the product
8:;8;; is also equal to #=1. Let us pass again to the
commutation relations. From (18) and (19), we
obtain

A(g:)A*(g,) = di;A(g)A*(g9), @n

where

di; = 8;/8;; = d;i. (22)

In contrast to the unitary case, the associativity
law does not allow us to determine the §,;. To see
this, let us multiply Eq. (18) by A(g,) from the left,

A(g)A(g.)*A(g)) = 83A(9)U*(9.9.),

and replace the last factor U(g;g,)* from Eq. (19)
and use (21), (16), and (17):

8, A(g;) = 8%A(g.)8} " A(g)*Algy)
= 838} di; 8::A(g))
or
diy; = 83/8% = 1/d¥,

i.e., the associativity law gives nothing new.

We can, however, pass to equivalent phase sys-
tems by multiplying in (18) A(g;,) and A(g;) by
phase factors so that &;; = 1. But then &;; cannot
always be equal to 41, but from (20) it is equal to
+1. Thus, in an equivalent phase system,

&y = +1, & =

(22")

+1. (23)

It follows from (22) and (23) that the commutation
factors d;; are real and equal to +1. Consequently,
the representations are determined up to these arbi-
trary phase factors in the antiunitary operators.

Finally, we consider the product of one unitary and
one antiunitary operator. Here we have only the
off-diagonal phase factors
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Ulg)A(g;) = pi;A(9:9.),

A(g)U*(g:) = pi:A(g:9) = pisA(g:95)- 24
The commutation relations are given by
U(g)A*(g) = f::4(g)U*(g) (25)
with
fii = pii/pis = e (26)

Again, we make use of the associativity law as before
and obtain

Ulg:)*Ags) = p::U(g:) A(g.95),
A(g)) = 0::U(g07:A(g) U*(g.)
= pi;p3if: A(g)U*(g.)’,
or
fi=1,

fis = &1, 27

To determine p;; we again pass, as in the previous
case, to an equivalent phase system by multiplying
the first equation of (24) by phase factors such that

pi; = +1,
+1

but then (23)
Pii =
gives us two distinet types, as in Eq. (23). Both in
(23) and (23’) we can choose &,; = +1 (or p;; = +1)
for ¢ < 3, then &,; (or p;;) = =1 holds for ¢z > j.
Now we discuss the explicit representations of the
group. We bring first G, by relabeling the group
elements, to the form given in the theorem at the
beginning of this section, i.e., (n — 1) unitary gen-
erators U(T';),%2 = 1, - -+ ,n — 1 and one antiunitary
generator A(T,). Because every antiunitary opera-
tor is of the form A(T,) = U(T,)K, where K is the
complex conjugation, we have from (15)

U )U(T)* = &, = 1, (28)
in addition to the unitarity condition
Ur)UT) = UT)UT) =1.  (29)

Thus the unitary matrix is symmetric or antisym-
metric depending on whether &, = +1 or —1,
respectively. We have then from (25) and (27)

Ur)U(T)* = f.UTHUT). (30)

Suppose we have a representation of G(n — 1),
U(T,), as discussed in Sec. II, then Egs. (28) and
(30) can be satisfied by real or pure imaginary mat-
rices (for example, o,0% = +0,0, but ¢,0% = —a30,).
We may then take for &,, = F1, U(T,)* = FU(T,),
Ffin = C., then the representation of (30) is re-
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duced again to the cases of Sec. I, but with the addi-
tional restriction U(T,)* = FU(T,).

APPENDIX: EXPLICIT FORM OF THE
REPRESENTATION MATRICES

In all cases the representation matrices can be
written as a direct product of Pauli matrices and the
2-by-2 identity matrix I. Because the dimensions
of the irreducible representations are determined by
the noncommutative subalgebra, consider first a
subalgebra with r generating elements. The rep-
resentation with the highest dimension for all Cii =
—1 can be chosen in some standard form, for
example,

(a) r = even:
Ury) =0, XIXI--- XI(rfactors)
UTly) = X I XTI - XI
Ulg) =05 Xy XTI+ XI

UTl) =3 X2 XTI+ XI
U(F5)=03X°'3><71' - X1
U(F6)=03X03><0'2 'XI
U(Fr—1)=°'3XU3X"'X0'3XO'1

U(Pr) =0'3><0'3X e X0'3X0',. (A].)

(b) r = odd: There are two inequivalent repre-

sentations:
@) UTuin) )
= U(Ty;-1) of case (a), =131
U(T:))
= U(T;) of case (a),
and (A2)

U(Pn) =03 Xz X -+ Xoy
X [3(r — 1) factors].
(ii) The negative of the matrices in (i).

It is sufficient to consider then all other represen-
tations with the same dimension of 2!" (case a) or
2}=1 (case b)—then of course we vary r. These
are obtained simply by replacing one Pauli matrice
in (A1) by another as the case may be. For example,
if

C,','=-1, j=2,3,"'7'; Cki=+1; k#l,

—a case which also gives an irreducible representa-
tion of the same dimension as above—we replace
in (A1) all a,’s by o, and all ¢,’s by 1.
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The number and the dimensions of irreducible representations of a general class of algebras occurring
in the projective representations of finite groups have been determined. The Lie subalgebras have been
found, and the isomorphism between the quantum-mechanical ray representations of finite groups
and the fundamental representations of Lie algebras is shown.

I. THE ALGEBRA

E consider an algebra @ generated by =
elements o, ¢ = 1, 2 ... n, satisfying the

condition
ax; = Cliiaiai- (1)

Clearly, C;; = 1, C;; = C7}. In general, no other
conditions on a; are required. We refer in particular
to a special case as the finite case, where we suppose
that «;, in addition, satisfy a number of polynomial
restrictions of the form

Pe)=a, »=1:N, @)

where a, are arbitrary numbers and P, are poly-
nomials in «; of order n,. We may assume for sim-
plicity that there are no other numerical coefficients
in P, except the a,.

The problem of quantum-mechanical ray rep-
resentations of some finite groups lead to very special
cases of this algebra,' in particular, the Clifford
algebra corresponds to all C,; = —1 and Eq. (2) is
replaced by o2 = 1, ¢ = 1, 2 --+ n. Furthermore,
the subalgebras of this algebra are isomorphic to
Lie algebras (see Sec. IV) so that the problem is also
of interest in the study of enveloping algebras of
Lie algebras.

Because of Eq. (1) the algebra & has the basis
elements consisting of the ordered products

1; a; a0 < D; aom@j<E); - ;

o0t OOyt

GLjiL-LlSm )00 Q)
Note that the equality signs in 7 < j, ete., give us

ny Na L

also all the terms of the form of*aj .
In the case of conditions (2) the series (3) breaks
after some power, otherwise it is infinite. In the
* Supported in part by the U. 8. Air Force Office of
Scientific Research.

18ee A, O. Barut and 8. Komy, J. Math. Phys. 7, 1903
(1966).

former case the commutation factors C;; in (1)
cannot be completely arbitrary; they satisfy poly-
nomial restrictions similar to (2). For example, if
¥ = a,, we find, multiplying (1) from left by o},
that (Ci,)™ = 1, all j, and (C;;)* = 1, all . In other
words, we assume that C,;; in (1) and any possible
restrictions (2) are consistently chosen.

The representations of (1) are determined up to
numerical multiples of «;, for, together with «;, the
multiples \;e; also satisfy Eq. (1). The complex
numbers \; are, in the finite case, restricted by the
conditions in (2), otherwise not. We may adjust
them so that the coefficients a, in (2) are equal to
unity.

II. IRREDUCIBLE REPRESENTATIONS

To find the irreducible representations, we inter-
pret Eq. (1) as the group composition law of a finite
or denumerable infinite group G consisting of the
direct product of the set (3), the basis elements of
@, and the Abelian group ® generated by the coef-
ficients C;; [and possible by the numerical coefli-
cients in Eq. (2)]. In the finite case, both G and
® are finite groups, and the order of G, A, is equal
to ab, where a is the dimension of the algebra
and b the order of the Abelian group ®. Example:
For the Clifford algebra generated by n elements
a=2b=2h=2""

The factor group ¥ = G/® is the group generated
by n commuting a,’s and consists of the set (3) which
form a group if «;’s commute, otherwise not. In the
finite case the order of ¥ is also a. For example, if
o = 1, § is the direct product of n cyclic groups.

The representations of § are also representations
of G, although they do not satisfy the required
relations (1). Our problem then is to find the ad-
ditional representations of @ which do satisfy (1).

Let K be the number of the desired additional
irreducible inequivalent representations of @, in the
finite case, and I, I, -+ , Ix their dimensions. Be-
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cause the order of the group is equal to the sum of
squares of the dimensions of inequivalent irreducible
representations, we have

h=a+L+05+- - +lx=ab

or
B4+GL+ -+ &= (- Da @

It remains to determine the integer K; then the
solution of (4) is unigue. The total number of ir-
reducible representations of @ is equal to the num-
ber f of conjugate classes, f = a 4+ K. Let us look
at two limiting cases: (i) If all C;; = +1, then each
element forms a separate class, and

K = (b — D, &)

hence, only one-dimensional representations occur.
(i) The minimum number of classes is obtained if
every element z, of the set (3) is in the same class
with ®z,. That is, if we form zz,z~" and using (1), we
©obtain

fmax = ab;

zzex” = C(z, 2o)o, ©

-where C{x,z,) € ®. Thus case (ii} corresponds to
the situation where Eq. (6) generates all elements
C of ® when z varies over the set (3). The elements
of ® always form separate classes because they eom-
mute with all other elements of @ (numbers), hence

fmin =qa + (b bl 1), Kmin = b — 1. (7)

The dimensions of the irreducible representations
satisfy

B+L+ -+ ha=0ab~1. ®

This case gives the smallest number of irreducible
representations of highest dimensions. In the gen-
eral case, the number of irreducible representations,
K, lies between these two limits

b—1)<K<a—1). ©)

In fact, K is determined by the number of commut-
ing elements of the set (3). Thus, for a given C,;, we
first determine the number of elements among the
basis set (3) of the algebra which commute with
all other basis elements. Let this number be k&
(k > 1, because the identity commutes with all
-other elements), then

K = k(b — 1). (10)

In the infinite case, Eq. (1) without the restrictions
“in Eq. (2), the number of irreducible representations
-is in general infinite. But if the given C,; are such

OF ALGEBRAS 1909
that ® is a finite group, it follows from (8) that there
may be cases where we have a finite number ir-
reducible representations, some of them infinite di-
mensional.

I, PROJECTIVE REPRESENTATIONS

The discussion given in the previous section allows
one to determine in a simple way all the additional
ray representations of some finite groups. Any finite
group can be generated by a (small) number of
generating elements o, i.e., from all possible prod-
ucts of a; with polynomial conditions of the form
of Eq. (2). The symmetric group S, is generated by
two elements @, = (12) and &; = (12 -+ n). How-
ever, these do not commute. S, is also generated
by (n ~ 1) partly commuting elements, namely, the
(n — 1) transpositions a; = (12), ap = (23), +-+,
a,-1 = {n — 1, n), If the generating elements com-
mute, then the ray representations defined by

D(a;) D(a;) = w;; Dieay) Qan
satisfy
D(a;) Dle,) = C; Dle;) Diay);

C.'i = ('-’-'i/wi;-

(12)

This is our Eq. (1). Thus the problem of determining
ray representations is reduced to the one treated in
the previous section. If the generating elements of
the finite group do not commute, then the method
of Sec. II can, in principle, still be generalized, but
the counting of conjugate classes is more com-
plicated.

IV. LIE SUBALGEBRAS

We determine the Lie algebras generated by the
subalgebras of @ with the basis (3). It is well known
that® in the case of Clifford algebra with n generating
elements (2" basis elements), a subalgebra of dimen-
sion n(n + 1)/2 satisfy, in addition to the multi-
plication law of the algebra, commutation relations
of a Lie algebra which is isomorphic to the Lie
algebra of 80,.,. The irreducible representations of
the Clifford algebra are the irreducible fundamental
representations of the Lie algebra of 80,,,. But, of
course, the Lie algebra has infinitely many higher di-
mensional irreducible representations. We now gen-
eralize these results. Let us take the special case that
the restrictions in Eq. (2) are of the form

i=1,2-n, (13)

of =1,

* H. Boerner, Representations of Groups {North-Holland
Publishing Company, Amsterdam, 1963), p. 269.
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then
@M =(Cy)" =1 (14)
and forms
[, @}'] = (€I — Dojlei’ = alf”  (15)
and
o, aft”] = (CHCHPCCH — Dalia™,

[oy”, @] = (€35 — DCHCH™ — Da'aliay’.

(16)
Let us first choose v; = 3n,. It follows then from

equations (13), (15), and (16) that the 3n(n + 1)

quantities o}’ and o}j* form a Lie algebra. In fact,

A. 0. BARUT

this is essentially the Lie algebra of S0,.,. If we
choose the integers »; less than in,, the commutation
relations (16) are not closed. We have to continue
the process of taking the commutation relations p
steps such that p»; = n,, or »; = n,/p, whenever
admissible. Thus, we obtain a set of Lie subalgebras
whose fundamental irreducible representations of
higher dimensions are also the irreducible repre-
sentations of the algebras of Sec. I. This is because
the generating set «; also belongs to the Lie algebra.

We thus have the general, and also physically
interesting, conclusion that the irreducible ray rep-
resentations of finite groups are isomorphic to the
fundamental irreducible representations of Lie
algebras.
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In this paper, the invariances of the equation of motion of a classical particle, to coordinate and
time translations, to scale transformations and inversions, and to Galilean transformations, are
considered individually. Resultant conditions on the equation of motion are given, and, for invariance
to the one-parameter continuous transformations, it is shown that the equation of motion can be
reduced from second to first order. Associated with each such reduction is a conservation law. The
implications of the invariance of the system Lagrangian to these transformations are indicated, and
the conservation laws, if any, associated with them. Some requirements on the Lagrangian for invari-
ant equations of motion are also presented, and it is shown that the invariance of an equation of
motion derived from a Lagrangian does not imply the invariance of that Lagrangian to the trans-
formation. It is also shown that time-translation invariance of the equation of motion does not always

require conservation of the Hamiltonian,

1. INTRODUCTION

N a previous paper,' the following question was
considered. If the invariance of a physical system
(taken in paper I to be a classical particle moving
in one dimension) to a transformation implies the
invariance of an observable (assumed in I to be the
equation of motion®), what restrictions does the
invariance place on the equation of motion and on

1 H, H. Denman, J. Math. Phys. 6, 1611 (1965), hereafter
referred to as I. A misprint occurred in Ref. 10 of this paper:
for r = (3G/ot)/(9G/dv), read r = —(8G/8t)/(8G /).

2 The importance of the equation of motion as a classical
observable, and the fact that the invariance of the equation
of motion does not necessarily have the same implications as
the invariance of the Lagrangian, has been stressed by E. P
Wigner, Rev. Mod. Phys. 37, 595 (1965); Progr. Theoret.
Phys. (Kyoto) 11, 437 (1954); and &rivate communication,
Also, see Z J. Tassie and H. A. Buchdahl, Australian J. Phys.
17, 431 (1964).

the Lagrangian describing the system, and what, if
any, conservation law is generated by this invar-
iance?

The equation of motion (EM) for the particle is
taken as the general second-order ordinary differen-
tial equation

In I, the linear coordinate transformations
g =eaq+a, a # 0, (1.2)

were considered. If & = 1, one has the coordinate
translations; if @ = 0, @ > 0, the coordinate-scale
transformations (or dilations); if « = —1, ¢ = 0,
coordinate inversion. Using techniques essentially
equivalent to certain applications of one-parameter
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implications of the invariance of the system Lagrangian to these transformations are indicated, and
the conservation laws, if any, associated with them. Some requirements on the Lagrangian for invari-
ant equations of motion are also presented, and it is shown that the invariance of an equation of
motion derived from a Lagrangian does not imply the invariance of that Lagrangian to the trans-
formation. It is also shown that time-translation invariance of the equation of motion does not always

require conservation of the Hamiltonian,

1. INTRODUCTION

N a previous paper,' the following question was
considered. If the invariance of a physical system
(taken in paper I to be a classical particle moving
in one dimension) to a transformation implies the
invariance of an observable (assumed in I to be the
equation of motion®), what restrictions does the
invariance place on the equation of motion and on

1 H, H. Denman, J. Math. Phys. 6, 1611 (1965), hereafter
referred to as I. A misprint occurred in Ref. 10 of this paper:
for r = (3G/ot)/(9G/dv), read r = —(8G/8t)/(8G /).

2 The importance of the equation of motion as a classical
observable, and the fact that the invariance of the equation
of motion does not necessarily have the same implications as
the invariance of the Lagrangian, has been stressed by E. P
Wigner, Rev. Mod. Phys. 37, 595 (1965); Progr. Theoret.
Phys. (Kyoto) 11, 437 (1954); and &rivate communication,
Also, see Z J. Tassie and H. A. Buchdahl, Australian J. Phys.
17, 431 (1964).

the Lagrangian describing the system, and what, if
any, conservation law is generated by this invar-
iance?

The equation of motion (EM) for the particle is
taken as the general second-order ordinary differen-
tial equation

In I, the linear coordinate transformations
g =eaq+a, a # 0, (1.2)

were considered. If & = 1, one has the coordinate
translations; if @ = 0, @ > 0, the coordinate-scale
transformations (or dilations); if « = —1, ¢ = 0,
coordinate inversion. Using techniques essentially
equivalent to certain applications of one-parameter
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Lie groups to ordinary differential equations,® it was
shown that:

A. The EM (1.1) is coordinate-translation in-
variant* if and only if

df/ag =0 (1.3a)

or

f=1g,?. (1.3b)
B. (1.1) is coordinate-scale invariant if and only if
4(df/3q9) + q(8f/39) = f, (1.4a)

i.e., f is homogeneous of degree 1 in ¢ and gq.

Alternately,
= q9(d/¢, V- (1.4b)
C. (1.1) is coordinate-inversion invariant if and
only if
(—d, —q,9) = —Kd, ¢, 9). (1.5)

If (1.1) is coordinate-translation invariant, it can
be written, letting » = ¢,

v = f, ),
which is first order. The solution of (1.6) is

(1.6)

a.n

where v, is the velocity when t = ,. Writing (1.6)
in the form

v = v(t: vO; to):

dv — f@, ) dt = 0, (1.8

an integrating factor u(v, f) can normally be found®
such that

udv — uf dt (1.9)

is an exact differential. Thus there exists a conserved
quantity F(v, {), where

F(v) t) = F(DO; to)y (1°10)

and (1.10) may be regarded as a conservation law
generated solely by the coordinate-translation in-
variance of the EM. From (1.7),

dq = v(t, v, t,) dt,
and the motion ¢(t) can be found by quadrature.

3 A. Cohen, An Introduction to the Lie Theory of One-
Parameter Groups (G. Stechert and Co., New York, 1931).
The author is indebted to Professor E. 8. Northam for this
reference. Also, E. L. Ince, Ordinary Differential Equations
(Dover Publications, Inc., New York, 1953), Chap. IV.

4 By invariant, as in I, it is understood that the equation
of motion is to be of the same form in both coordinate systems,
i.e., if (1.1) holds in the (g, ¢) space~time, then ¢’ = f(¢’, ¢/, t')
in the (¢’, ) space—time.

‘I .gL Ince, Ref. 3, p. 27.
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If (1.1) is coordinate-scale invariant, it becomes,
using (1.4b),

d = q9(d/q, O. (1.11)

If z = ¢/q, (1.11) can be written in the first-order

form
242" = gz, 1) (1.12)

or
dz + [ — g(z, D] dt = 0.

There exists an integrating factor which makes the
left side of (1.13) an exact differential. Thus co-
ordinate-scale invariance of the EM generates the
conservation law

Gz, t) = Gz, ),

(1.13)

(1.14)

where 2, = v,/qo and ¢, is the coordinate when ¢ = ¢,.
If (1.13) or (1.14) is solved for z = z(¢, 2, t,), then
g(t) can be found by quadrature, i.e.,

Ing= fz(t, 20, toy dt + C. (1.15)
Coordinate-inversion invariance of the EM does
not appear to generate any conservation law.
In the following sections, the effects both on the
EM and on the system Lagrangian of time transla-

tions, time-scale transformations, and time inversion,
as well as Galilean transformations, are discussed.

2. TIME TRANSFORMATIONS

Consider the linear time transformations

' =pt+ b, 8 #0. 2.1

For (8, ) = (1, b), (8, 0), (—1, 0), one has, respec-
tively, the time translations, time-scale transforma-
tions, and time inversion. Using the techniques of I,
or those of group theory,® one finds:

D. The EM (1.1) is time-translation invariant®

if and only if
affot =0 (2.2a)
or
f =14, 9. (2.2b)
E. (1.1) is time-scale invariant if and only if
q(of/ag) — H(of/at) = 2f (2.32)
or
f(qy g, t) = h(tQ! Q)/tz- (23b)
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F. (1.1) is time-inversion invariant if and only if

f(_QI q, _t) = f(Q1 q, t)- (24)

Conserved quantities generated by the first two
of these time invariances can be developed in the
following ways. For time-translation invariance,
(1.1) becomes, using (2.2b),

i =14, 9. (2.5)
Letting ¢ = v, (2.5) can be written
vdv/dg = f, 9, (2.6)

which is first order. Integration of (2.6) gives the
conservation law

H(@, 9 = H(,, ). 2.7
Solution of (2.6) or (2.7) yields
dQ/dt = U(q, Vo, qO): (2'8)

which gives ¢(f) by the quadrature
f dg/v(g, vo, ¢) = ¢ + C. 2.9)

For time-scale invariance, (1.1) must have the
form

g = f(t4, @)- (2.10)
Letting u = {¢, (2.10) can be written
dufdg =1+ u—lf(u) 9, 2.11)

which is first order. Further, (2.11) implies the
existence of a conserved quantity

J(td, @) = J(todo, 0)- 2.12)
From (2.11) or (2.12)
t dg/dt = (g, tedo, o), (2.13)

from which the motion may be determined by the
quadrature

[agsi=mi+ec. 2.14)

Time-inversion invariance (like coordinate-inver-
sion invariance) does not seem to generate any
conservation law.

3. GALILEAN TRANSFORMATION
Consider the Galilean transformation
g =q— Vi, t’ 3.1

If the EM (1.1) is to be invariant with respect to
this transformation for all V, then

f(q -V,q— Vi, t) = f(Q: q, )

= {.
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for all f such that (1.1) is satisfied. This condition
is satisfied if and only if

af/ag + t(8f/3q) = 0 (3.2a)
or (see Appendix A)
g, 0,0 = 1tg — ¢, 9. (3.2b)
Letting w = t§ — ¢, (1. 1) and (3.2b) yield
W = f(w, t), (3.3)
which yields a conservation law
K(w, t) = K(w,, t). 34)

Since t¢ — t = t*d(g/t)/dt, ¢(t) may be found by
quadrature.

4. LAGRANGIAN OF SYSTEM

Some implications of these coordinate-transforma-
tion invariances of the EM for a Lagrangian L(g, g, t)
describing the particle were discussed in I. While
the nature of L for each invariance of the EM
could not be specified, it was demonstrated that
invariance of the EM to coordinate translations does
not require the same invariance of L (while the
inverse implication is valid).

If L is to be coordinate-scale tnvariant,® it must
be of the form (see Appendix A)

L(d/q, &) = L(z, 1). 4.1
The EM derived from this Lagrangian is
Li(@é) 9&[1(2.) _ z] _
dq dt \oz T % Lat g/  dqd 0. 2

But 2z satisfies Lagrange’s equation identically, since
it is an exact derivative; thus

d(8L/d2)/dt = 0, 4.3)

since 82/8¢ = 1/q ¥ 0. Therefore coordinate-scale
invariance of L implies the conservation law

dL/8z = r(z, t) = constant, 4.4)

which in turn implies, algebraically, z = z(f). This
procedure is to be contrasted with that for the EM,
where the general form of the coordinate-scale in-

6 Invariance of L means that it has the same values as a
function of ¢’, ¢’, ¢ as L has as the same function of ¢, g, t.
However, as 1s well known, if L(¢’, ¢/, t') = aL(g, ¢, t) +
dR(g, t)/dt, where a is a constant, the equations of motion
are unchanged. This is a weaker but perhaps more reasonable
condition on L, which will be called the gauge-invariance of
L. Tassie and Buchdahl have discussed a form of this weaker
invariance requirement on L, with a = 1 (see Ref. 2). That
such gauge transformations on L may be more significant
than simple invariance has also been suggested by Professor
A. Katz (private communication). If L 1s gauge invariant to
a transformation, the EM is invariant to that transformation
(except for a multiplicative constant).
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variant EM (1.11) must be transformed and solved
as a first-order differential equation to obtain the
conservation law (1.14), while the integration of
(4.3) immediately yields the conservation law (4.4).
But there may exist Lagrangians which are not co-
ordinate-scale invariant, while the EM derived from
them are. An example is given in Ref. 9 of I, where

= ¢ In ¢ + yg. While L is not invariant to co-
ordinate-scale transformations, it is gauge-invariant,
and therefore the EM (§ = #v¢) is unchanged.”
Letting ¢ = v, dL/dv = L,, 3°L/8qdv = L, ,, etc., a
necessary and sufficient condition that L(v, g, f)
produce the coordinate scale-invariant EM (1.11) is

L, —~vL,,— L,: = qf/q, DL,.,. (4.5)
Lastly, coordinate-inversion invariance of L im-
plies
L(—Q9 -q, t) = L(Q; q t)'
Considering the time transformations, the invar-
iance of L to time translations implies that L is

not a function of ¢, and generates the conservation of
the Hamiltonian

H = —L + ¢(dL/d89),

if Lagrange’s EM is satisfied.

However, the EM may be time-translation in-
variant without the corresponding invariance of L.
Consider, for example,

The EM can then be written

1 [d(sQ\ 4@, LT
30/ [dt( > } tra =0

If (4.8) is to be time-translation invariant, from
(2.2a),

(4.6)

4.7

(4.8)

T7'(@T/dt) = v,

where v is a constant; then T is proportional to
¢"'. Thus if L is separable in the form (4.7), it must
have the form

L =¢"'Q(4, 9), (4.9

if the EM is to be time-translation invariant; (4.9)
is also sufficient for such invariance. [The Lagrangian
(4.9) is gauge-invariant to time translation.] In this
case,

= ¢"'[4(6Q/99) — Q. (4.10)

7 Another example obtains if L has the form g(q) f(z, ).
Then it can be shown that, for coordinate-scale invariance
of the EM, g = g7, or L = q7f(, t), where v is a constant.
This L is not coordinate-scale invariant, but it is gauge
invariant.
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This H is not time-translation invariant, although
the Lagrange EM is.®
As shown in Appendix A, L is time-scale invariant

if and only if L = L(u, q), where 4 = tg. The re-
sulting EM is
d[t(dL/du)]/dt = oL/dq, (4.11)

which is also time-scale invariant. Since (4.11) can
also be written as

ud (aL) 4 9L _ 3L

Ydq du dq’
which is first order, it implies the existence of a
conserved quantity

M(u, g)

i.e., a conservation law.

If the EM is to be time-scale invariant, it must
be of the form (2.10). Expressing the general
Lagrangian for the system as L, ¢, f), a necessary
and sufficient condition on L for time-scale invar-
iance of its EM is therefore

L —vL,o— L,.. = t°L, f(lv, ). (4.19)

While the general solution to this partial differential
equation is not known, one can exhibit a Lagrangian
which is not time-scale invariant, while its EM is.

(4.12)

= M(uo, ), (4.13)

Let L = T({#)U(u, g). The associated EM is
aU ( aU) au
+ T ) = T aq ’ (4.15)

which, if it is to be time-scale invariant, requires
T = ¢ (4.16)

Thus, if L = T(@)U (44, q), a necessary and sufficient
condition that the EM be time-scale invariant is
that L have the gauge-invariant form

L = U4, 9. (4.17)

Time-inversion invariance of L requires
L(_q; q, ’—t) = L(Q: q, t)°

If L is to be invariant to Galilean transformations,
it must have the form (see Appendix A) L = L(w, t),

8 For multi-degree of freedom systems with generalized
coordinates g, if

L = ¢2'Q(¢s, ¢;), then H = e=}¢:(8Q/d¢:) — €I,
which is not time-translation invariant, while the Lagrange
equatlons of motion are. However, Harmlton s equations are
not in general invariant to this transformation. (One must,
of course, first express H in terms of p; and coordinates g:.)
This example is in contradiction to a statement by A. Messmha
Quantum Mechanics, G. M. Termmer., Tr. (North—Hollan
Publishing Company, Amsterdam, 1962), Vol. 2, p. 664.
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where w = t§ — ¢. Then the EM is
d[t(dL/dw)}/dt = —a8L/dw, (4.18)

which is Galilean invariant. Rearranging (4.18), it
can be put in the form

d[*(dL/ow)}/dt = 0, t=0, (419
which implies the conservation law
£(0L/dw) = constant. (4.20)

A necessary and sufficient condition on L that
its EM be Galilean invariant is that

L, ~vL,,— L,, = L, . f(tv — ¢, 1). 4.21)

While the general solution to (4.21) is unknown, one
can exhibit a Lagrangian which is not Galilean
invariant, while its EM is. Consider

L = Ww, ) + g(g, 9. (4.22)
The associated EM is

i( _‘?_W_) W _ og,

FTAUE™Y R dq (4.23)

In order for (4.23) to be Galilean invariant, ag/dq
must be a function of ¢ only. Thus, if L has the
structure (4.22), a necessary and sufficient condition
that its EM be Galilean invariant is that

L = Ww, ) + f(g; (4.24)

such L’s are not invariant, but are gauge-invariant,
to the Galilean transformation.

5. DISCUSSION

Some implications of the invariance of the EM of
a classical one-dimensional system to coordinate and
time translations, scale transformations and inver-
sions, and Galilean transformations, have been in-
vestigated in this paper and in I. Except for the
space—time inversions, each of these transformations
forms a one-parameter, sectionally continuous group.
In such cases,” it is possible to reduce the EM from
second to first order by a change of variables. Since
integrating factors normally exist for first-order or-
dinary differential equations, invariance of the EM
to each of the continuous fransformations above
implies & conservation law involving only the in-
variants of that transformation. Further, each of
these conservation laws yields the motion of the
system g = q(t, v, o, L) by quadrature.

9 That the invariance of a second-order ordinary differen-
tial equation to a one-parameter continuous group generally

implies that the equation may be reduced to first order is
shown by A. Cohen, Ref. 3, pp. 88-89.
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Since the general solution of the EM involves only
two arbitrary parameters, the conserved quantities
will be independent if the number of invariant
transformations are two or less, and will be depend-
ent if the number is greater than two.

Considering the Lagrangian of the system, the
invariance of L to a continuous transformation is
a stringent requirement which leads immediately
to a simple conservation law in the cases of space and
time translations, coordinate scale and Galilean
transformations, and to a first-order ordinary dif-
ferential equation for time-scale transformations
(which in turn implies a conservation law). However,
in each of these cases, one can exhibit a Lagrangian
which is not invariant to the transformation, while
the associated equation of motion is. (In each of
these examples, the Lagrangian is gauge invariant.)
Also, time-translation invariance of the EM does
not invariably imply conservation of the Hamilto-
nian. However, it is gratifying that each conservation
law, whether obtained from the invariance of the
EM or the Lagrangian, involves the same invariant
combinations of the variables of the motion.

Thus, invariances to the continuous space-time
transformations and the Galilean transformation
have strong effeets on the equation of motion, and
on the Lagrangian. Both approaches give conserva-
tion laws involving the same variables, which con-
siderably simplify finding the motion. While these
effects on the Lagrangian are usually both simple
and immediate, the approach to invariance require-
ments via the equation of motion is appealing, as
this equation ean be regarded as a direct manifesta-~
tion of our attempt to describe the system. The two
approaches may give quite different results.

ACENOWLEDGMENTS

The author would like to thank Professor David
Fradkin for some very helpful suggestions; Professor
Boris Podolsky and Professor Eugene P. Wigner for
their continued encouragement during this work.

APPENDIX

The classical transformations considered here (ex-
cept for coordinate and time inversions) are one-
parameter, sectionally continuous transformations
of the general form

¢ = q+eulq D, A1
¢ o=t + &), (A 2)

where u and » are at first arbitrary functions, and
e and & may be regarded as generators of the groups
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of transformations discussed. Since, physically, these
transformations may be made independently, the
above transformations are not carried out simul-
taneously, and may be separated into two cases.

Case I:

’

A3)
A9

This case includes the coordinate translations and
scale transformations, and the Galilean trans-
formation.

The velocity transformation is then (¢’ = dq’/dt’)

¢ =dq'/dt = ¢ + eu. (A 5)
Solving (A 3) and (A 5) simultaneously to eliminate

€,

¢ = q+ eu(q, t),
= 1.

(A 6)

Regarding u and v as functions of ¢’ on the left side
of (A 6), the quantity ug — wuq is an invariant of the
transformations (A 3) and (A 4).

For coordinate translations, # = 1 may be chosen
(then e becomes the generator of the translations).
Then ¢ is an invariant quantity, and if (and only if)
the Lagrangian L = L(¢, t), it is invariant with
respect to this transformation (as discussed in detail
in I). Considering the EM, § is also invariant, and
thus f in (1.1) must be a function only of ¢ and ¢
for invariance of the EM to coordinate translations.

For coordinate-scale transformations, u = ¢ may
be chosen (¢ > —1 then generates the scale trans-
formations). The invariant quantity ug — g is
identically 0. However, (A 3) and (A 5) are, in this
case,

ug’ — g’ = ug — uq.

¢ =0+9g, ¢ =1+ ¢4,

which yield the invariant ¢/¢. Thus if and only if
L can be expressed as L{g/q, t), it will be invariant
with respect to the coordinate-scale transformations.
Then §/q is also invariant, and the EM must have
the form (1.4b) to be coordinate-scale invariant.

For the Galilean transformations, u = —Vi/¢, and
the invariant is proportional to t§ — ¢. Thus, if and
only if L = L(ig — g, £), it is invariant with respect
to Galilean transformations. Since ¢ is also invariant
to this transformation, it is necessary and sufficient
that the EM be of the form

1915
qd=1fltd— a1 (A7)
for Galilean invariance.
Case II:
7 =4q (A8
=t o). A9

These transformations include the time transforma-
tions discussed herein. The resultant velocity trans-
formation is

¢ =1+ &g (A 10)
Combining (A 9) and (A 10) to eliminate & yields

¢ + veNg = ¢+ e, (A11)

which is not identical in the primed and original
variables. However, for the time translations, » = 0,
and in this case ¢ and ¢ are invariants. Thus, if and
only if L = L(4g, ¢), it will be invariant with respect
to time translation. Also, § is invariant in this case,
and therefore it is necessary and sufficient that the
EM be of the form

§=14 9 (A 12)

for time-translation invariance.
For time-scale transformations, » = ¢, and (A 11)
reduces to

(A 13)

so that ¢t is an invariant for this transformation.
Thus, L will be invariant to the time-scale trans-
formations if and only if

L = L(gt, 9. (A 14)

From (A 13) and (A 9), it also follows, in this case,
that

¢ = g,

gt = g*. (A 15)

Thus the EM must be of the form (2.10) for time-
scale invariance. Alternately, from (A 10),

¢/ = /¢, (A 16)

so that ¢/¢* is invariant, and an EM of the form

G = ¢'g(dt, 9 (A 17)

will also be invariant, but multiplication by ¢ con-
verts it to the form (2.10).
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A formulation of the Stokes Parameters for light is found in terms of second-rank antisymmetric
spinors, and arbitrary Lorentz transformations are made by using the unimodular representation of
the Lorentz group. A three-component spinor form is established along with its accompanying repre-
sentation of the Lorentz group, and the connection with the photon spin is explicitly shown. Differen-
tial Compton cross sections for any Lorentz frame are calculated. These are seen to be invariant only

for particular polarization reference directions.

1. INTRODUCTION

HE wuse of four parameters to completely

characterize the state of polarization of a
beam of light was first introduced by Stokes' in
1852. More recent applications have been made by
Fano,’ Tolhoek,® Lipps and Tolhoek,* and a com-
prehensive summary has been given by McMaster.®
The use of such parameters for determining polari-
gation effects in scattering processes has been con-
sidered, particularly with regard to Compton scat-
tering.’’® Recently interest has been directed toward
the production of high-energy photons by Compton
scattering of light from energetic electrons, several
authors®™® having considered this process with a
laser as a photon source. This effect has also entered
into considerations of the energy loss experienced
by interstellar electrons.’® Milburn® has obtained
differential cross sections in the extreme relativistic
limit for a specific initial state of purely plane-
polarized light. Arutyunyan® et. al. use the Stokes
parameters to obtain the degree of polarization of
Compton scattered light in the extreme relativistic
limit, although no cross sections are given.

* This work was supported in part by the United States Air
Force Grant AFOSR 321-63.

1 G. G. Stokes, Trans. Cambridge Phil. Soc. 9, 399 (1852).

1 U. Fano, J. Opt. Soc. Am. 39, 859 (1949).
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In many astrophysical applications, the incident
light is partially polarized or unpolarized, and the
electron energies cover a wide range. Hence a
general formalism which provides a simple method
of calculating polarization effects for all energies
and geometries is desirable. Such a formalism must
of course include a method of caleculating the trans-
formation of polarization effects from one arbitrary
Lorentz frame to another. The spinor formulation
of the Stokes parameters presented here provides
a completely general system for the calculation of
cross sections and polarization effects for all energies
and polarization conditions, along with the trans-
formation of all quantities from one Lorentz frame
to another. In addition to providing a simple and
straightforward method of calculation, such a
formalism provides insight into the relation among
the relevant spinors, the spin of the photon, and
the polarization.

The four Stokes parameters commonly used are
P,, the intensity of the beam, P,, the degree of
plane polarization with respect to two arbitrarily
oriented orthogonal axes which are perpendicular
to the beam, P,, the degree of plane polarization
with respect to two orthogonal axes rotated 45°
to the right of those used for P,, and P,, the degree
of circular polarization. The degree of polarization
is given by

P = [P} + P} + P31/P,. (L.1)

More detailed construction of the P, is given in
Refs. 1-5. As a pure polarization state may be
written in terms of two orthogonal “basis” states,
¢ = ;¢ -+ Cus, it is possible to deseribe a partially
polarized beam as a super-position of such states
and to form a density matrix
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ccf ok

1.2

(g

The Stokes parameters are given by
P, = chlz + ]Czlzy

Py = cicf + e,

P, = |, — lc2|z,

P, = i(cch — cck).

1.3

Some authors choose to regard the ¢, and ¢, as
creating a two-component first-rank spinor and
thus utilize Pauli-type spin matrices. It should be
mentioned that, for photons, this is not strictly
true, since a Lorentz transformation of first-rank
spinors does not lead to correct results. Although
there are only two independent polarization states
for a plane wave, it will be seen that the correct
form to use is that of a second-rank spinor.,

In Secs. IT and III, a formulation of the Stokes
parameters in the correct second-rank spinor form
is given, and the transformation properties of such
quantities via the unimodular representation of the
Lorentz group is noted. The spinor form is also
used to generate a 3 X 3 representation of the
Lorentz group which bears a close relation to the
photon spin, and the photon polarization is charac-
terized in this form. The quantum mechanical
form of the Stokes parameters using the photon
annihilation and creation operators is discussed
briefly. Section IV considers the application to
Compton scattering, the differential cross sections
being obtained for arbitrary polarization and elec-
tron energies, together with the degree of polari-
zation of the scattered photons.

II. SPINOR FORMALISM

In the following, we denote the first-rank two-
component spinors which are elements of a complex
two-dimensional space by ¢ = (¢,, ¢.). The set
of unimodular linear transformations on this space
form the two-dimensional group C,,

¢1 = ap, + b, ¢; = cpy + dé., ad — be = 1. (2.1)

Spinors which transform according to the complex
conjugate of Eq. (2.1) form an associated space
which is distinguishable from the space spanned
by ¢ = (¢1, ¢.) due to the difference in the complex
conjugate of the transformation matrix. (Such a
distinction could not be made if unitarity were
required in addition to unimodularity.) We denote
spinors that transform according to the complex
conjugate of the transformation in Eq. (2.1) by a
dot over the index;
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¢% = dba + bes, & = cda + deg,
ad — be = 1; 8 =2.

Spinors of higher rank are of course generated from.
the direct product and may or may not have mixed
dotted and undotted indices, depending upon the:
spaces involved in the product, e.g., ¢ss = ¢a X
s = (¢da’ Papy Dhas ¢ﬁﬁ); a = 1) B = 2.

As a classical plane electromagnetic wave may
be characterized either by the vector potential or
by the fields E and H, a spinor representation of
such quantities should serve as a starting point for
the formation of the Stokes parameters. It can
easily be shown'''*’ that a correspondence exists
between any four-vector such as 4, and a second-
rank spinor of the form ¢.s However, as a more
intuitive appreciation of the polarization of light is
obtained from the E and H fields, we proceed
from the field tensor F**. One can show'’ that to
any second-rank tensor T there corresponds a
fourth-rank spinor ¢ss;;, but due to the antisym-
metry of the field tensor F*” it is possible also to
describe the fields in terms of second-rank spinors
by first forming the antisymmetric self-dual tensor
G* = F* 4 F*’. This procedure was first intro-
duced by LaPorte and Uhlenbeck," who obtain
the following second-rank spinor components:

Paa = 2(k2 + 'ikl); bss = 2(k2 - 7«7‘51)1
Pap = Ppa = —2ika; B = 2,

where k = H — ¢E. Spinor components with un-
dotted indices are obtained by taking the complex
conjugate of Eq. (2.3).

Hence Eq. (2.3) and its complex conjugate give
the fields in terms of the second-rank spinor com-
ponents. For a plane polarized wave traveling

(2.2).

a=1,

2.3)

a=1,

along the z axis, application of E-H = 0 and
E* — H® = 0 gives
bap = Ppa = ¢pp = 0
and
— 1
Ez E(¢dd + ¢aa)’ (2'4)

E, = %(‘ﬁ&d - ¢aa)1

with & = 1, 8 = 2. The relative phases of E, and
E, are not included in Eq. (2.4). For any other
set of axes the fields will not assume such a simple
form, but in any case the spinor components ¢.s
and their complex conjugates serve to completely
specify all components of E and H.

u Q, LaPorte and G. Uhlenbeck, Phys. Rev. 37, 1380

(1931).
12 W, Bade and H. Jehle, Rev. Mod. Phys. 25, 714 (1953).



1918

One may now regard the polarization properties
of a light beam as being completely characterized
by a second-rank spinor, and all relevant operations
may be carried out in the actual spinor space.
Such a peint of view will be seen to have certain
advantages in that the spinor form more directly
reflects the helicity states of the photon, 3-space
rotations and Lorentz transformations may be
carried out by simple and (of more importance)
irreducible representations of the Lorentz group,
and such representations may be used to generate
the transformations of the photon annihilation and
creation operators.

One may form a 4 X 4 density matrix in the
spinor space from the product ¢.smpss or a more
conventional 2 X 2 matrix using any two mutually
orthogonal field components and Eq. (2.3). This
will then correspond to the conventional form of
Eq. (1.2). For the special choice of axes used in
obtaining Eq. (2.4), applying Egs. (1.2) and (1.3)
gives the Stokes parameters in this case as

PO = _llg l¢aul2;
— L 2 2
Pl - 32(¢ca + ¢an)g (2'5)
P, = #(¢as = bua) €OS 5,
Py = $5(¢%a — dua) Sin §,

where the relative phase 6 between the two or-
thogonal components of the field has been ex-
plicitly shown. For any other choice of reference
axes the forms in (2.5) will be more complex, in-
volving terms in ¢.3, dpa, ebe.

Arbitrary Lorentz transformations of the fields
and polarizations are readily obtained by applying
the spinor representation of the Lorentz group.
Such a representation is directly obtained in terms
of second-rank spinors from the fact that the four-
dimensional group of proper rotations is homo-
morphic to the direct product of the group C, with
itself, i.e., C} X C, is a universal covering group of
0,. The prime on the first factor indicates that in
general the parameters of the two groups C, are
independent. The proper homogeneous Lorentz
transformations, with the time coordinate written
as t¢t = z,, form a subgroup of O, since the form
¥ 4+ 23 + 2 + 2% is left invariant, and moreover
it can be shown'''® that the parameters of C} are
completely determined by C.(C; = C%) so that in
fact this restricted Lorentz group is homomorphic
to C,. The spinor representation must have ele-
ments of determinant 1 (unimodularity) and must
leave the form ¢, ds — Gupdsele = 1, 8 = 2)
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invariant.’ This then allows the transformation of
any type of polarization, for once the transforma-
tion of the density matrix for a pure state is ob-
tained the same transformation will apply to any
arbitrary superposition of states. Consider, for
example, two observers S and 8’ such that the
light travels along the z axis in S [i.e., Eq. (2.5)
applies]. Let S’ be cutting across the beam at an
arbitrary angle # with respect to z and with arbi-
trary speed v relative to S. Further let the motion
of 8’ be contained in the z—y plane of S. For spinor
frames where a 4-vector z, is written as the spinor
bss = (2 + ¢,z + 1y, ¢ — ty, —2 + cf), a uni-
modular Lorentz transformation for a first-rank
2-component spinor is given, in the case of z axis

velocity, by**
4 0
L= [o A-,}

and a 4-component ¢.p transforms aeccording to

A2 00 O
L*XL:[OIG }’

(2.6)

2.7

where

A*=[(1 — B/A + BI' and B =v/e.

Rotations are performed via the usual 2 X 2 half
Euler angle matrices U, the 4 X 4 representation
being obtained via the outer product. A short
caleulation shows that L* X L* and L X L along
with the corresponding rotation matrices also
satisfy unimodularity and leave the form ¢, .¢s —
GasPsa; & = 1, 8 = 2 (OF Ppuatpp — Papbpa) INvariant
and hence form a representation of the Lorentz
group for ¢, and ¢,z. Fields in §’ are then obtained
by the usual sequence of rotation to bring z and 2/
parallel, application of Eq. (2.6), and inverse ro-
tation.

If one requires that the polarization of a beam
is always measured with the apparatus oriented
exactly along the beam (which appears to be the
only meaningful measurement to make), then the
inverse rofation is not through —¢ but through the
angle given by

[cos § — (w/c)l/[1 — (v/c) cos 6],

i.e., abberation in S’ must be considered. Applying
the above-mentioned sequence of three operations to
the column spinor with elements (¢44, Pas, Prar Pas)

12 J, Aharoni, The Special Theory of Relativity (Oxford
University Press, London, 1959).
4 Reference 13, pp. 195-201. The sign of § = v/c in this
book is the negatlve of that conventionally used. We use the
conventional sign here.

cos @/ =
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(where only ¢4 # 0 in 8) and its complex conju-
gate, gives the spinors as seen in 8. Insertion into
Eq. (2.5) and (1.1) shows that for any wvelocity
and any angle 6, S, and S’ observe exactly the
same type and degree of polarization, although the
light is of course Doppler-shifted. The real value
of the above result occurs in cases where no inverse
rotation is desired. Such conditions frequently
occur in scattering experiments and in astrophysical
cases, for example, in the measurement of ampli-
tudes polarized perpendicular to and contained in
some arbitrary plane. Here the formalism allows
an easy calculation of the polarization amplitudes.

IOI. PHOTON SPIN

The relation between the photon spin and its
associated spinors is more clearly seen when trans-
formations are made according to a 3 X 3 repre-
sentation of the Lorentz group generated from the
spinors ¢, and ¢,.'* This can be done through the
standard method of forming monomials of the
spinors as basis vectors in the representation space.
However, as opposed to the method for 3-space
rotations using the unitary group U,, the spaces
spanned here by ¢, and ¢, are distinguishable,
and thus the monomials must include powers of
é. and ¢,.

Let u and v be two independent integers. Then
form the monomials

foo = K@) (@a)""(4)'(#9)", @.n

where K is a normalization constant, s and ¢ are
integers and

0<s=< u, 0Lt (3.2)

Clearly there exist [(u + 1){(» 4+ 1)] monomials
generated by the independent variation of s and ¢;
hence the forms in Eq. (3.1) span a [(w + 1)(v + 1)]-
dimensional space. As the transformations of Egs.
(2.1) and (2.2) are linear, the transformation of
f... by application of Egs. (2.1) and (2.2) will
result in a polynomial contained in the space
spanned by the original f,, . Calculation shows that
the product of two transformations equals the
successive application of them, and that the unit
transformation (@ = d = 1 and b = ¢ = 0 in Egs.
(2.1) and (2.2)] yields the original f, ,. Hence
Eq. (3.1) does provide a representation space, and
the matrices of the representation are found by

5 For a slightly different approach to three-component
spinors and a complete discussion of their properties, see
A. Peres, J. Math. Mech. 11, 61 (1962).
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applying Egs. (2.1) and (2.2) to the f,,, and re-
grouping in terms of the original monomials:

te= 2 2. DD, fs

1=0 =0

.Z 12 Ds.i.t.ifii-

(3.3)

The matrix elements D are formed from the direct
product of irreducible representations of C% and Cy;
hence the above representation is irreducible. If
unitarity as well as unimodularity could be im-
posed,’® the elements D would be derived from
U% and U,. As U, is a universal covering group
for O,;, the three-dimensional rotation group, the
form of D would be D’° X D’, where the D’ are
the (2J + 1)-dimensional matrices of the irreduci-
ble representations of O;. With this similarity in
mind, let us set

u=2J, v=2j, s=J—-M, t=j—m. (34
The normalization constant K in Eq. (3.1) may
be evaluated from the condition of unimodularity
or may be seen directly from the fact that U, is a
subgroup of C,, and thus the same (real) normali-
zation constant is used in representations of both
groups. Insertion of Eq. (3.4) into Eq. (3.1) yields

=[(J+ M) - MG+ m!G—m?
X ()7 @) "0 00" (8.5)
a =1, 8 = 2.
Equation (3.2) becomes
-JSEM<ZJ, —-j<m<j

and the forms of Eq. (3.5) span a [(2J4+1)(2j+1)]-
dimensional space. Hence the matrices D will be
[(@J + 1)(2j + 1)}-dimensional, and we now find
their explicit form for a general Lorentz transfor-
mation.

We consider a general transformation composed
of a rotation through the two Euler angles  and w
and a velocity transformation along the new z axis.
Uninteresting rotations about the new 2z axis are
not considered. In terms of the two-dimensional
spinor transformations of Eqs. (2.1) and (2.2), the
velocity transformation is given by Eq. (2.6) and

16 This cannot be done because the noncompactness of the
Lorentz group prohibits the existence of finite-dimensional
matrices which would transform a given finite matrix into a
unitary matrix.
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the rotation by the usual 2 X 2 half Euler angle
matrices of the U, representation:

U {a b} _ [ et cos 10 e *“sin 16
c d —e't* sin 10 ¢ ¥ cos 16

Equation (3.6) and Eq. (2.6) are applied to the
spinors ¢,, and the result is substituted into Eq.
(3.5). In a manner entirely analogous to that used
for three-dimensional rotations,’” the terms in-
volving ¢, and ¢, are expanded via the binomial
theorem and regrouped in terms of the original
1ew. When this is done one finds

T4 . Ji
Mm = E E DM'Mm’vnfM'm'y
M m’

(3.6

(3.7)

where
D:li’ﬂm’m = D:\’l’M(w’ 01 0)
X Di*.(w, 8, 0)AH*™ (3.8)

Here D3,.,, and DI, are the standard (2J + 1) X
@J 4+ 1) and (2j + 1) X (25 + 1) matrices repre-
senting the three-dimensional rotation group:

D}(,,y(w, 0, )\)

_ 3 T+ I +M) (M) ik
T UM =) R (T —M —k) (M ~M+Fk)!

>< (_I)M’—M—kel'll'w[cos %0]2J+M—M'—2k

X [Sin %0]2k+M'—MeiM)"

(3.9

"This representation is unimodular but not unitary.
Explicit matrices may be calculated from Eq. (3.8)
by using the expression

D{I*EM = (—I)M_MlDiM'_M.

(3.10)

For the photon case, the above representation
connects the photon spin and a classical circularly
polarized wave via the spinor formalism. A three-
-dimensional representation will be obtained from
either D®® or DY, That these are in fact the correct
values for J and j has been shown by Weinberg,'®
who has demonstrated that, for massless particles
-of helicity A, the condition j — J = A must be met.
‘Thus for photons of helicity 1, the relevant forms

17 See, for example, E. P. Wigner, Group Theory and ils
Applications to the Quantum Mechanics of Atomic Spectra
{Academic Press Inc.,, New York, 1959), pp. 163-167; or
M. Hammermesh, Group Theory and its Application to Physi-
<al Problems (Addison—-Wesley Publishing Company, Inc.,
Reading, Mass., 1962), pp. 350-356. The orientation of the
3-space rotation used here is in the same sense as that of
Hammermesh.

13 §, Weinberg, Phys. Rev. 134, B882 (1964).
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are D and D", Equation (3.5) becomes, with
J=17j=0 M = +1, say,

0 =1/V2 ()" = 1/V2 ($..).  (3.11)

The last step in Eq. (3.11) is allowed because any
second-rank symmetric tensor may be written as
¢a3 = %(Xa'l/ﬂ + Xﬂ‘l/a);m and in this case our ¢a#
is generated from the outer product of a two-com-
ponent spinor with itself. Equation (3.8) therefore
shows D" gives the transformation of ¢,z under a
rotation plus z axis Lorentz transformation, while
D" transforms ¢4 The case M = 0 or m = 0 gives
the transformation of $(¢;» + ¢,), which in our
case is equal t0 ¢, as we always have ¢, = ¢y
[Eq. (2.3)].

Classically, a left circularly or elliptically polar-
ized beam is characterized, in the case of z-axis
propagation, by E, + ¢E,. Applying Eq. (2.4) gives
E, 4+ iE, = 1., and therefore D" transforms a
left circularly or elliptically polarized beam. In this
case, the other two components ¢,, and ¢,, of the
column 3-vector to which D“® is applied are both
equal to zero. ¢, will always be zero unless the z axis
is rotated, and ¢,; = 0, ¢5; # 0 corresponds to the
case of a change in sign of the z axis. The relation
to photon spin is evident, with D®® giving the
transformation of a photon with spin parallel to k,
the direction of the beam. ¢,; # 0 corresponds to
the z axis being oriented parallel to k, and ¢,, % 0
corresponds to the z axis antiparallel to k; i.e., the
two possible “m” components of the photon spin.
Similarly, a left circularly polarized wave is given by
E, — iE, = 1¢44(e = 1) and transforms according
to DV, corresponding to a negative helicity photon
with spin antiparallel to k. Stokes parameters using
the two circular polarization states as a basis are
easily formed by a similarity transformation and
are given as

P,
Py

le]* + le-I%,

i(e-e¥ — e.e¥),

P, = (e-e¥ + e.e¥),

Py = le.]" — le-[*,

(3.12)

I

where ¢, and e_ are the positive and negative helicity
amplitudes. The relative phase between e, and e_
is suppressed here.

For example, a transformation between the ob-
servers S and S’ mentioned earlier involves a rota-
tion through the Euler angle ¢ and gives, via Eq.
(3.8),

12 E. M. Corson, Introduction to Tensors, Spinors, and
R;l%t)ivistic Wave Equations (Blackie & Son Ltd., London,
1953).
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(1/2)A*1 + cos §) (—1/v2)sin 6 (1/2)A7*(1 — cos 6)

(10)
DM’Mm'm

(1/v2)A*sin @
(1/2)A*(1 — cos 0)

This allows one to compute the polarization ampli-
tudes parallel and perpendicular to some arbitrary
plane. Inverse rotation through the angle ¢
cos™! [(cos 8 — B)/(1 — B cos 6)] and the application
of a column vector (¢4, 0, 0) gives

¥(1 + B8 cos 6)én
0

0

Application of Eq. (3.12) gives the same polariza-
tion in S and in 8. Eq. (3.14) shows directly that
the helicity is unchanged, corresponding to the fact
that the photon spin is parallel or antiparallel to
its direction of motion for all Lorentz observers,

In the case of the quantized photon field, Stokes
parameters may be formed quadratic forms of the
annihilation and creation operators ¢ and a*. One
suggested” form is

(3.14)

+ + + +
P, = ala, + a%a., P, = aia, ~ a%a,,

+ + o 4+ +
P, = aia, + aza, P, = i(aza — ala,),

where a, and a, correspond to the transverse com-
ponents of the field. Transformations of ¢ and o*
have been shown by Weinberg'® to again be gener-
ated by the representations D®® and D" but not
by the 4-vector representation D, Hence the
present formalism may also be applied in the
quantized case.

Ta = %7'(";(15/100)2

1+ cos’ 6+ (ko — k)(1 — cos §) —sin® §
5¢ —sin® ¢ 1+ cos® 6
0 0
0 0

where k, is the incident photon momentum, % the
scattered photon momentum, 9 the angle of scatter-
ing, and r, the classical electron radius. Equation
(4.1) is in units of m.c® = 1, which will be retained
throughout. The differential cross section is then
given by

" 20 ] Jauch and F. Rohrlich, The Theory of Photons and

Electrons (Addison-Wesley Publishing Company, Inc., Read-
ing, Mass., 1955), p. 45.

(—1/v3) A sin 0
1/2)A7*(1 + cos 9)

cos @ (3.13)

(1/v3) sin 6

IV. APPLICATIONS-COMPTON EFFECT

The formalism developed in the preceding sec-
tions may be applied to all processes involving
polarization effects and especially to scattering
phenomena. Here the above results provide a con-
venient method of determining the polarization
dependence of the cross sections, of transforming
the cross sections between any two Lorentz frames,
and of finding the state of polarization of the
scattered beam all in one operation. The particular
example chosen will be that of the inverse Compton
effect. The method applies for any conditions on the
incident and scattered light and on the scattering
electrons. A useful means of calculating the polari-
zation dependence of Compton cross sections has
been given by Fano® wherein a matrix describing
the scattering process is applied to a four-com-
ponent column “vector’’ composed of the four Stokes
parameters. Cross sections are then obtained by
applying a similar four-component row ‘“vector”
which describes the type of polarization to which
the analyzer is sensitive. Fano’s matrix is set up
for incident polarization basis vectors lying in and
perpendicular to the plane of scattering. Hence, for
incident plane polarized light polarized parallel to
the scattering plane, the incident normalized column
vector with elements (P, P,, P P;) becomes
(1, 1, 0, 0). After averaging over electron spins,
Fano’s matrix becomes

0 0
0 0 , (4.1)
2 cos 0 0
0 2 cos 6 + (ky — k)(1 — cos 6) cos 8
do 138
Eb- = 5 '.',‘E_O T;kw.-v,,, (4.2)

where v, are the components of the incident Stokes
“vector” and w; are those of the analyzer. Equation
(4.1) is derived for the process seen in the rest
frame of the electron, a frame which is not always
that of the observer, particularly in the astro-
physical case. The formalism developed in Seecs. 1I
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and ITI now allows us to readily calculate the cross
sections in any Lorentz frame moving in any di-
rection with respect to the electron rest frame. Let
us assume head-on collision between the electron
and photon, ie., the electron is moving into the
beam of light, and that the photon is scattered at
an angle § as measured in the electron rest frame.
Transformation of cross sections to the laboratory
frame of the scattered light is seen thus to be exactly
that of the example treated in Sec. II, where 6 is
now the scattering angle. Hence the Stokes param-
eters as we have written them are unchanged in
going from S to S’ (except for an over-all normali-
zation factor), and therefore Eq. (4.2) applies in the
laboratory frame. Hence the differential cross sections
for scattered photons polarized parallel and perpen-
dicular to the scattering plane are known immedi-
ately to be the same in all frames. Such cross sec-
tions are of course dependent on the electron energy
due to the Doppler shifting of the incident light.

In many cases it is experimentally more con-
venient, and perhaps necessary, to measure the
cross sections for light scattered parallel and per-
pendicular to the plane of polarization of an incident
beam. Here the differential cross sections are not
invariant but differ in S and §’, and it is in cases
such as this that the present formalism provides
a much simpler method of calculation. The extreme
relativistic limit of this case has been treated by
Milburn,® but, if the electron energy is not always
high, such an approximation may break down and
a more general result is desirable. The exact form of
the transformed cross sections in this case is ob-
tained by applying the results of Secs. II and IIT
in the following manner. We consider first the
process as seen in the electron rest frame, using
polarization basis vectors appropriate to Eq. (4.1).
For a linearly polarized plane wave polarized at
an angle ¢ with respect to the scattering plane, the
incident Stokes “vector” becomes

1
< coqu&)
—sin2s ) .
0

Equation (4.1) is applied to this. The resulting
column vector must now be transformed to a sys-
tem 2 of whose axes lie along the direction of inci-
dent polarization and along the incident beam.
Following Milburn,”* we take the z axis parallel to
the beam and the z axis parallel to the direction
of incident polarization. Application to this new
Stokes vector of an analyzer (1, 1, 0, 0) will yield

4.3)

21 R, H., Milburn, private communication.
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the differential cross section for scattered photons
parallel to the plane of polarization of the incident
photon, while application of (1, —1, 0, 0) will give
the differential cross section for outgoing photons
polarized perpendicular to the incident reference

plane. Such a transformation gives P), = P, as
expected, and
P} = —P,sin’ 6 cos’ ¢ — P, sin® 9sin’ ¢

+ 2P, cos 6 cos¢psing, (4.4)

where 6 is the scattering angle. P} is not needed in
the cross section calculation and P; is always zero
in this case. So far everything has been performed
in the electron rest frame.

In the laboratory frame, Eq. (4.3) is unchanged
as the photon beam and the electron are moving
antiparallel to each other. We are measuring the
polarization relative to our originally chosen axes at
this point, hence we can apply Eq. (4.1) to Eq. (4.3).
This gives the scattered Stokes vector for polari-
zations perpendicular and parallel to the scattering
plane. This has been seen to be invariant, and thus
we have the same form in §’. A change of reference
axes may now be performed in S’, using the trans-
formed equation (4.4). This is the only nonin-
variant form, as 6 must be replaced by ¢ =

! [{cos 8 — B)/(1 — B cos 6)], the laboratory
scattering angle. Inserting this change and apply-
ing (1, 1, 0, 0) to the transformed Stokes vector
gives the differential eross section in the laboratory
frame for scattered photons polarized parallel to
the plane of incident polarization. One obtains, for
arbitrary velocity and with £ = cos 6,

do 12 15__ : kg(l - x)2
(E)lab 1 - ZTO(/CQ) (]. + ]C(,<1 —_ I)
Xl_l (1+6)2cos¢}+(1+x2)
{1 + % cos® 2¢[1 + (-(f__-——ﬁ—fzj
1 [(11 i _|(2 cos 26 + 1)}+ @ — 1)
X {cos.%[l — oS’ ¢ — L (1:;)2 =+ 286 - 21)2:‘

1l —=z

1 [__
2y* L1 — Bx)®

r — B
]} AT
Similarly, application of (1, —1, 0, 0) gives the

laboratory cross section for photons perpendicular
to the plane of incident polarization:

sin’ 2¢) - (4.5



SPINOR FORMULATION

(3. - <k)(-f:(k<—)>

T COS 2¢] + @0+

i a
<

— 1 cos 2¢[ 1+ (%)2

1 1-—

2—725-——) (2 cos 2¢ + 1):‘} + @ ~ 1)

e 1 1—2" 1 x—ﬁ>2]
X {cos 2¢[cos ¢'Yz 1= Bx)z (1 — B8z

1 1= s1n 2¢)
2y (1 — Ba)°

Taking the extreme relativistic limit 8 — 1, v — «
and averaging over the angle ¢, one obtains exactly
the result given by Milburn in Ref. (6).

In astrophysical applications, the incident light
is usually unpolarized,'®** e.g., starlight. For cross
sections measuring the components parallel and
normal to the plane of scattering and for incident
unpolarized light (P, = 1, P, = Py = P, = 0),
a direct application of Eq. (4.1) gives

q

|

U

X

-+

+ =3

} + 2:1: (4.6)

2 F, Hoyle, Phys. Rev. Letters 15, 131 (1965).
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(%), - wB) 22 o] an

and
el b SR

Application of Eq. (1.1) gives the degree of polari-
zation of the scattered light in both cases as

=1 — 2H{k1 — 2)°
X[ 4+kd-o]" 4+ +1}7" 4.9)

The dependence of these quantities upon the relative
velocities of the two frames is obtained from the
value of %, in the electron rest frame, given in value
k; in the observer’s frame. The scattering angle in
the laboratory frame is transformed to z = cos 6,
the electron rest-frame cosine, via the standard
formula. The electron energy is E = ymc® = v in
our units, and k, = v(1 4 @)k, for our geometry.
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A model for the Stark mixing of orbital states in the annihilation of particles at rest is solved by
using the dynamical group techniques. The Schriodinger equation for the problem is given meaning
in a representation of the three-dimensional rotation group and reduced to a two-dimensional linear

homogeneous differential equation.

I. INTRODUCTION

N attempting to give firmer theoretical grounds
to the Stark mixing of orbital states in the an-
nihilation of mesons and antibaryons at rest (the
so called Day—Snow—Sucher effect), Leon and Bethe
considered a semi-classical model." It is the purpose
of this paper to give a solution to this model by
using dynamical group techniques.

Let us briefly describe the model. The basic
physical process involved in this Stark mixing is
in the close encounter of the mesic atom (or anti-
baryon proton atom) with the protons of the hy-
drogen molecules in the bubble chamber. Leon and
Bethe idealized this process as the collision of a
hydrogenlike mesic atom moving (on a straight
line with constant velocity) through the field ®
of a fixed proton screened by an electron. The
internal states of the mesic atom are described
quantum mechanically by the standard Schroédinger
equation. The field & is supposed to induce dipolar
transitions among the internal states only at a given
energy —in >

Let the internal wavefunction of the mesic atom
at time ¢ be

W) = 2 au(t) Ina).

a=]1

Here « is some set of internal quantum numbers.
The physically relevant set we eventually use con-
sists of the orbital numbers I and m. |na) is the
bound-state wavefunction of energy E, = —in~?
and internal quantum number «. In appropriate
rotating axes, ¥(f) obeys the equation (which is
the mathematical description of the model)

n?

da(t) = ;_; {@(t)(na| R, nB)
+ G(O)(na| L, nf)las(®).  (A)

For a more complete description of the physical

1 M. Leon and H. A. Bethe, Phys. Rev. 127, 636 (1962).

problem, and for the precise forms of ®(f) (which
represents the action of the field ®) and of G(¥)
(which is linked to the rotation of the axes), we
refer the reader to Ref. 1. However, as far as this
paper is concerned, they are of little significance.
The solution of the system (A), which we present
in Sec. IV, is a useful computational tool. Indeed,
antibaryon annihilation requires the consideration
of values of n up to 20-30, which makes (A) a
system of 400 to 900 coupled linear differential equa-
tions, while we need only solve a simple system
of two or three such equations.

However, what interests us most here is the
group-theoretic aspect of the model. It provides us
with an example of a dynamical problem, the solu-
tion of which can be obtained by pure powerful
group-theoretic techniques. It is of interest to re-
capitulate the successive steps of this approach.
We first identify the states of the physical system
as an irreducible representation R of some group G.
Secondly, we give a meaning to the various terms
in the Schrodinger equation relative to this group
G (here we identify the terms with representatives
of the Lie algebra & of G within R). Then the
Schrodinger equation can be given a purely abstract
meaning, and can be solved by group techniques.
It is noteworthy that the second step involves the
identification of R (the usual position operator)
in terms of the elements of the Lie algebra ©&. Thus,
more generally, we should expect that, in more
difficult calculations of the same type, not only the
expressions of the elements of G or @ in terms of
the observables R, P (and functions thereof) are
required, but also the knowledge of the observables
in terms of elements of G or @.

This program is carried out in the next sections.
In Sec. II, we collect a few hydrogen-atom prop-
erties, well known since Pauli’s early work.” In
particular, the needed dynamical group G here is the
group O, (rotations in a four-dimensional Euclidean

* W. Pauli, Z. Physik 36, 336 (1926).
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space). At the end of Sec. II and in Sec. III, we
identify the matrices (na |R| nB) and {na |L| nB)
as the representatives of the Lie algebra of O,
in the n’-dimensional irreducible representation of
O.. We refer the reader to the Appendix for the
proof of similar properties on the infinite multiplet
of the scattering states at a given energy of the
hydrogen atom. In Sec. IV, we present the announced
group-theoretic solution. To carry it through, we
had to develop a new mathematical technique for
handling a certain kind of linear homogeneous first-
order differential systems having a Lie algebra
structure.

II. THE HYDROGEN ATOM AND THE GROUP O,

In this section, we recall some well-known facts
and introduce notations. R and P are the usual
position and momentum operators satisfying the
canonical rule [R,, P;] = %8,;. Choosing i = 1,
then the Hamiltonian of the hydrogen atom is

H = p*/2m — ¢'/R,
L is the angular momentum operator
L; = &P = R x P);,
and
A is the Lenz vector
=@2me) 'L xP—-P x L)+ R

with B = R/R.
The following commutation rules hold:
(L, H] = 0 = [A, H],
[L;, L] = i8;uLy, [L;, A)] = i8;:4,

since A is a vector with respect to L; and finally

[Ah 1] =

4 8.,,,HL,¢

We now consider these commutation rules on the
multiplet of bound states of energy H = —|E,|,
and we introduce K = A(me/2 |E,|)!. On this
multiplet, the above commutation rules become
those of the Lie algebra of the group O,.

(L;, L] = 8, Ly,
[Ki: KI:] = isiuLz, [L;, Kk] = 'I:Si,,;K;.

It is well known that this Lie algebra is isomorphic
to O; X O,. This is easily recognized through the
substitution

=3iL+K), G=4%L~-K),

1925

50 that
[F.,G] =0 forall i,j=1,2,3,
[F;, Fi] = i8;u.F4, [G), Gi] = 18;uGh.

The irreducible representations of this Lie algebra
are labeled in the standard way by the values of
F? and G,

=M+ 1),

@® = u(p + 1), X\ and p are half integers >0.

To distinguish between O, and O; X Os, a further
algebraic relation is needed. It is provided by the
property L:A = O sothat y = Aand F* = G =
(A 4+ 1) on the multiplet of bound states H =
—|E,]. Then we want to relate A to a physical
quantity. This identification is carried through using
the algebraic relation

1 — A? = (—2/meYH(L® + 1),
whence we compute

|E.| = §(me*/n”) with n =2\+ 1.

Therefore, every bound-state multiplet of the hy-
drogen atom with energy —|E,| is a realization
of an irreducible unitary representation of the group
0, labeled by the index A, (2A + 1 = n), and there
exists a one-to-one correspondence between the mul-
tiplets of bound states and the irreducible representa-
tion of O,. The restriction of L to a multiplet is a
set of three matrices which represent three of the
infinitesimal generators of O,.

III. IDENTIFICATION OF R

To identify R within a multiplet, we calculate
the commutation relations of R with L and A.
Since R is a vector with respect to L, we have

[Li) Rk] = iS,-“R;.

Then we compute the commutators of A and R in
such a way as to separate out the nonzero part
on a multiplet of bound states:

[4:, B)] = 2 &l + 262 [H, 5,;R* — R.R,].

Hence we have the following lemma.

Lemma 1:
[Au R ] 2 StikLk

on a multiplet of states of negative energy E, =
—me*/2n°.
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We now introduce the vector Q,

Q = R — §(¢/2 |E)A,
which has the properties,
[Z;) Q] = €, [K: Q] =0,
We are thus led to Lemma 2.

i,j=1,2,3.

Lemma 2: Three n® X n’ matrices V;, commuting
or not commuting among themselves, but satisfying
[L;, Vi] = i8:;i Vs, [K., V] = 0 on the n’-dimensional
unitary representation space of O,, are three null
matrices, V; = 0.

Proof: Immediately [F;, Vi ]=%i8;..V,, [G;, Vil=
348, V,, where F and G were introduced in Sec. II.

Thus V is the same vector with respect to two
commuting rotation groups, and as such must be
zero. An explicit proof is trivial, e.g., using Jacobi
identity

(@5, [Fy, V,]] = [F,, [Ge, V2]] = 0.
On the other hand,
4(G,, [Fy, Vo]l = =V,
thus showing that V is zero. Note that this proof
is valid for any representation of 80; X S0,.
We can now state the theorem.

Theorem 1: On the multiplet of the n® states
of negative energy E, = (—me*/2n’) of the hydrogen
atom, the position operator R and the Lenz vector
A are to be identified with each other as follows:

3 &

2z A

R =

= 2ng,K, where a, is the Bohr radius.

Remark: Between two different multiplets, R has
much more complicated properties and has to be
identified with other operators no longer in SO(4)
but in SO(4, 1), which is a dynamical group for
the whole set of H-atom bound states.

Let us state some of the consequences of this
property.

We are going to use the preceding theorem to
give a group interpretation of some properties of
the H atom. We remark that, with respect to O,
it is natural to consider two bases in the n’-dimen-
sional representation space.

Basis I: This is the basis |fg). F., and G, are
diagonal,

F, lfe) = 1 lfg),
G. Ifg) = g |fo)-

G. FLAMAND

Basis II: IF and L, diagonal I = F + G). The
states will be labeled |lm), they are essentially the
usual angular momentum eigenstates.

To go from one basis to the other is a standard
problem in the recoupling of angular momenta.
We adopt the following phase normalization®:

my = X @1+ D=~ > N ! } lfa),
h f g —m

fo) = 3 @1 + 1)*(—1)’"[x Mol } lm).
" i g —-m

We already can understand Basis I: That F, and
G, are diagonal means K, and L, ie., R, and L,
are diagonal. Thus, Basis I essentially corresponds
to the so called parabolic coordinates (or ‘‘Stark”
coordinates) up to phase normalizations. It is also
clear that the coefficients connecting angular mo-
mentum and Stark eigenstates (Appendix of Ref. 1)
are essentially Clebsch—Gordan coefficients. We
do not enter any more detailed analysis of these
facts.

Now, we verify that Basis IT exactly corresponds
to the usual angular momentum eigenstates Y .(r) =

(MR, (r), and that the unitary scalar product is
the usual [ @2 ¢¥,¥(,,. Because of the properties of
the spherical harmonics Y7(f), we already know
this to be true with respect to ordinary L rotations.
We just have to check that the action of K on
|lm) is identical, up to the overall constant factor
2na,, with the action of R on ¥,;.(#), which we can
compute directly. The following formula tells us
how K. acts on |im).
K, fim) = 2= " i@l + DL+ 9P

m’ a m

X DA+ DEN+ DR T+ 1m)

e+ et —

’
-_m’ a M,

+2(=D"7]

X x4+ DN + 1)]*{i 1 ’;‘} 11— 1 m).

We compute the Racah coefficient by using Racah’s
formula*

{‘ 1 "l} (-1 { @\ + 17 — ] }*
NN el ) AN[2N + 1[N + 148 — 1]

3 A. R. Edmonds, Angular Momentum in Quantum Me-
chanics (Princeton University Press, Princeton, New Jersey,
1957), Chap. 3.

¢ Reference 3, p. 99.
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We then derive

e+ —mp
K, |tm) = [4(1 FO - 1]

X [N+ 12—+ D1+ 1, m)

P —m

3
+ [w_—ﬂ e+ 0" = PPl -1, m).

Now we compute 2¢1um,

. A+ D —m* |
z““‘fm{ha+nz—m4

X [ — (1 + D ieim
l2 —_ s 2 214

Comparing these last two formulas gives us the
announced result.

IV. THE GROUP-THEORETIC SOLUTION OF THE
STARK MODEL

Theorem 1 enables us to rewrite the system (A)
mentioned in See. I as

da(t) = ; (F(na] K. nf)

+ G(txml Lu lnﬁ>}aﬁ(t): (AI)

where
FH) = $n3(h).

We now write
a.(t) = ﬂZ_} U.s(t)as(0).

Therefore, the matrix U(f) is the solution of the
equation

Uar(® = 2 {F(){na| K, nf)

=1
+ G()na| L, nB)} Us, (),  (A”)

and U(0) = 1.

Now, we notice that together K,, L, K, form
a Lie subalgebra of O, which is isomorphic to the
standard angular momentum algebra,

[K:n Lﬂ] = iKu [Lu; K-] = 'iKz, [K., K,] = 1:L,.

The set of states |na) also forms a reducible
representation space for this Lie subalgebra. Thus,
we can give a more general formulation of the
problem. We consider a linear vector space B which
is a representation space for the angular momentum
" s H. A. Bethe and E. E. Salpeter, Quantum Mechanics of

One- and Two-Eleciron Atoms (Academic Press Inc., New
York, 1957), p. 253, Eqgs. (60)—(67); p. 263, Eqs. (63)-(65).
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Lie algebra. We assume that all the topological
operations we perform are valid, which is cer-
tainly the case for finite-dimensional spaces. In
particular, we assume that the exponentials of the
operators J;, 7+ = 1, 2, 3, which represent the Lie
algebra, can be defined; and so can the products
of such an exponential with the others or with the
J’s. Besides, differentiating an operator with respect
to ¢ is allowed. On B, the system (A’’) generalizes
to the equation (B) below.

With these provisos, we purport to reduce the
study of Eq. (B) to the solution of a much simpler
problem. We now write the system (B):

U = { i_; a;(t)Js}U(t), uo) =1. @®

U(t) is an operator acting on the vector space B;
a;(t) are three arbitrary numerical functions with
“good” properties, and the precise form of the
boundary condition is not important.

Following Ref. 6, we parametrize the solution
U(t) with three arbitrary functions

U() = exp [f())J.+] exp [g(t)J-] exp [A(§)J5].

It is a simpler problem to find the three functions
1), g®), and R(?).

We use the following definition for J,:
Jo = @7, £ 1Ty,

thereby redefining the commutation rules
[Js, J5] = —&J5, [Je, J_c] = &J,
Now we compute UU™,
UU™ = fJ. + g exp [fJ,1J- exp [—J.]

+ hexp [f7,] exp [gJ 175 exp [—gJ ) exp [—1J.].
Assuming that the Baker—-Hausdorff formula
exp [AA]B exp [—2A4]

= B NA, B + 504, 14, B + -

(& = %1).

is valid, enables us to calculate UU ™" as an element
of the Lie algebra spanned by J,, 2 = 1, 2, 3.
Moreover, since the J’s are linearly independent
(provided J;  0), we can write the following
system of equations for f, ¢, and A.

f—= g3 — kf + 3(9] = e,
g+ hg = a-,
gf + Al + gf) = o,

where o = (27 (e, — 18a). 03]
¢ J. Wei and E. Norman, J. Math. Phys. 4, 575 (1963).
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Then the derivatives of the unknowns are
ho=a; — af,
§ = —oag + a(1 + fg),
f=af—aGf) +a,

where we decided to compute & as an integral over
a; — a_f. Next,let A =g B =1+ fg,and C =
f + 3f’g. Clearly A, B, and C are not independent;
indeed, they verify the relation B* — 24C = 1.
However, the great virtue of this change of un-
knowns is that (2) can be linearized in a most
interesting way. Thus we get

@)

A= —aA + o B,
B=aClC+a.Ad, ®3)
C’ = aac + a+B.

We can rewrite (3) in matrix form.

.

A A
B =[a3Ms+a_.M_+a+M+] B s
C C
where
-100 10
M,=[ooo], M_=F01J,
001 000
and
000
M, = [100J'
010

In the M matrices, we recognize the standard three-
dimensional irreducible representation of the angular
momentum Lie algebra. We thus have the result
that, in order to solve Eq. (B) in the space B, it is
enough to solve the same system on the three-
dimensional space of the standard three-dimensional
irreducible representation.

Going one step further, we easily check that
w(4, B, C) = B® — 2AC is constant in time (1 = 0),
thereby confirming the fact that ABC are not in-
dependent. This leads us to the question of whether
there exists a change of functions u(4, B, (),
v(4, B, 0), [and w(4, B, C)] such that % and v
satisfy Eq. (B) on the two-dimensional spin rep-
resentation of the angular momentum algebra. We
prove that the answer is no because the constant
w(ABC) has the value 1. u and v would verify the
conditions (up to an irrelevant constant equivalence)

G. FLAMAND

oy () + 0‘+(2)—*v:
_aa%v + a_(2)—’u.

Now, the derivative with respect to ¢ of any func-
tion ¢(4, B, C) can be written as

¢ = [aa 0 +a-0_ + o, a+]‘P;

“= @

D =

where
0 = —A3,+Ca, d.=Ba, +Cas,
9, = Adz + BJ..

(These three operators verify the angular momentum
rules up to obvious factors —1.)

Since we want system (4) to be satisfied inde-
pendently of the precise forms of the functions a,
we must have

du =0,
v = (27,

au = (27Y,
aav = —%v, 6+1) = 0.

From these equations, one easily derives the algebraic
relation

®)

Now, since system (3) is linearly homogeneous, it
has two types of boundary conditions,

w= B —24C =1

ww = 0.

and
B? — 24C = 0.

In the first type, we deduce uv = 0, which indicates
that there does not exist any appropriate change
of functions; this, unfortunately, is our case. In
the second type, condition (5) is automatically
satisfied and the proper changes of unknowns are
readily found to be

A=3%) B=©Q%W, (=15.

We are going to present another way of solving
the same problem. Here, we use the parametriza-
tion and the notations used in Ref. 6.

U(®) = exp [()H] exp [g()E] exp [f()F],
where
E=J,—1J,, F=-J,—1J,
H = -2J,.

The only significant difference between our pa-
rametrization and that of Ref. 6 is the fact that,
in Ref. 6, exp [hH] appears on the left instead of
on the right of the other two factors. We carry
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out a similar calculation, and reduce the system
(B) eventually to the following nonlinear system:

f=ce,

g- - be2h — ce-zhgz,

(6)
h=a—cge®,

where a= —3}a,, b=3%(la.+a,), and c=3(a.—a,).
Now, the authors of Ref. 6 reduce system (6) to a
Ricatti equation. Here we depart from their ap-
proach. We introduce the following successive
changes of functions: First, let
h=4%Logy toget yf=c,
yg = by2 - ng, (7)
¥ = 2ay — 2cg.
We compute f in terms of the other functions,
f = [ (¢/y) dt, and concentrate on the last two
equations of (7). Setting

g = uy, y=uv,
then (7) has the form
% = —au + by, v = av — cu.

Finally, weset X =u+ 9, Y =u —v,and Z = (3),
a two-dimensional column vector. We then have
the formula

Z = [aD}o. + a(D}o, + a(D}e.)Z,

where the o,’s are the standard 2 X 2 Pauli matrices.
Hence, solving the system (B) on the space B is
reduced to solving a homomorphic system on the
two-dimensional representation space of the standard
representations of the angular momentum Lie al-
gebra. The price we pay here for reducing the num-
ber of dimensions to that of the lowest faithful
representation is in the logarithm needed to com-
pute h = % Logy = Log .

From a purely mathematical standpoint, one can
guess that interesting problems are lurking behind
these simple calculations. These questions will be
discussed in a separate paper to be published later.

Before closing, let us comment briefly on the
application of the solution obtained. The physical
problem is to investigate the effect of the Stark
mixing on the relative rates of annihilation in the
orbital S and P states of the initial system (proton—
antiproton, etc.). Thus, we have to work in the
angular momentum basis |nlm), and we face a re-
coupling problem in an irreducible representation
of O,. This is a matter of standard Clebsch—Gordan
and Racah coefficients.
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In view of the nature of this paper, we defer
numerical calculations to another less abstracted
paper, where we also study the effect of absorption,
and try to assess the value and the limitations of
the model.
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APPENDIX. IDENTIFICATION OF R WITHIN A
MULTIPLET OF SCATTERING STATES OF
THE HYDROGEN ATOM

We present here another instance of the identifica-
tion of an observable in terms of the elements
of the underlying dynamical group. We identify R
with —3(2mE)*K (note the minus sign) on the
multiplet of standard regular scattering functions
of the hydrogen atom at energy E (we call these
states the multiplet E). Thus, this Appendix is
an extension of Sec. III.

On the multiplet E, the commutation rules of
the components of the Lenz vector become

[A:, 4,] = ~ et Bl

We are thus led to set

so that

[K,', K,] = —iLk-
Thus L and K obey the commutation rules of the
Lie algebra of the proper homogeneous Lorentz
group £1.

A. Identification of the Multiplet E with an Irreducible
Unitary Representation of £

This is a very straightforward task, since a de-
tailed account of the structure of the Lorentz group
is presented in Naimark’s book.” We use his nota-
tions:

H*=L1:I:iL2 Ft’:Kl:':iKg
H3=L3 F3=K3.

An irreducible unitary representation R of £ is in-
finite-dimensional. It is labeled by two numbers
[c (pure imaginary orreal 0 < ¢ < 1) and k, (positive
integer or half integer)]. k, is the lowest weight of
the representation of the three-dimensional group

" M. A. Naimark, Les représentations linéaires du
de Lorentz (Dunod Cie., Paris, 1962). groupe
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contained in R. Since S-wave Coulomb scattering
exists, we already know that %k, must be zero. We
now use the Casimir operators to identify ¢. Con-
sider first

AN=H,F_+HVF.,+FH_+F_H,+4H ,;F;=4KL
on R;

A’ == —4’ik08
(Ref. 7, p. 138). We know that K-L = 0, therefore
ke = 0.

Consider next
A=F.F_+4 F_F, + 2F;
- (H.H- + H.H, + 2H3) = 2(K* — L),

on R,

A= =20k + - 1.
Since

1—QE/meYK* = (—2E/me)(L* + 1),

we conclude that

ky+ ¢ =

Thus, we consider the multiplet E as an irreducible
unitary representation of £} belonging to the
principal series and is labeled by

ko"-'O, sz—

—me'/2E.

*/2E.

Now we finish the proof of the above statement
while analyzing this representation B in more con-
crete term. We show that the standard regular
wavefunctions given on p. 22 of Ref. 5 can be
identified with a standard basis f,, of the representa~
tion space of B (in the sense of Theorem 2 on p. 98
of Ref. 7), up to normalization factors we compute.
The mass is put equal to one for convenience. Let
us call

ViE) = VIO Grymie”

X FQ+1—n,20+2, p) = Ya(®filp),

where Y !(#) are the standard spherical harmonics,
p = 21,(2E’)*r n = —1ie /(QE)* and
ala + 1) 2°
BB + 1) 2!
Since K is a vector with respect to L, it is enough

to compare Ks.(E) with formula (54) on p. 98
of Ref. 7, which, in our notations, has the form

(A1)

F(a,ﬂ,z)—-—l-{—- z 4+ + -

G. FLAMAND

i I
Ty

L+ *
e e

Now, we know K is an explicit differential operator

K, = [26 (L‘ 9 _ 29 L*) + cos 0]-

We now gather a few formulas from Appendices
A-37 and A-22 of Ref. 5:

Ka‘l’m = (I + m)( — m)]*[{jrlz

— il +m+DI—m+ 1)}*[

= Y10
[“*zzm?:a"“] = o
L [(5 +4;§>(l - m)] Yy *[j— 3+ 1)]ft(")

cos 0Y . (A)f.(r)
- [(z +m+ D = m + 1)}*1,1%(,,)

A+ -1
[ G meem [y
We can now write
K@) =  LEDA =1 [y

x [ -2(L+ 1 LR 4o

.(l+m+1)(l—m+l) +1
"“[ ¥ D -1 ]Y’;" ®

x [2(1 + 1)((‘;’; - ;f) + n]fz(p)-

The problem is thus reduced to finding the nor-
malization ¢, in (Al) in such a way that the set
of f(p)’s fulfill the equations

@ — 2)ialp) = { [

and

[+ 1D — 2P o)

- {-—-2(1 + 1)[5; - ;f] - n}fz(p).

We spare the reader the term-by-term comparison
of the series expansions, just stating the result that

a = {=0 (=)L =) - @ =)},

+ “l—_’:"'l] + n}f:(l’)
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where £ is some arbitrary number. The standard
basis in Naimark’s sense can be written as

[l =) - (@ — oW
@l + !

Xe PPl 4+1—n,2l+ 2, p).
B. Identification of R on the Multiplet E

YalB) = You(i)(—p)

Lemma 1 in Sec. IT can be used once more to
yield, between states of energy E,

3
I:K.'; <g’mcE7) %mezRi] = 18:Ls.
Since

[K:, K;] = —18:1Ln,

it is clear that the vector @ = K 4+ 2(2mE)'R
satisfies the properties that (1) it is a vector with
respect to L and (2) it commutes with K,

[L:, @] = 18,1,
[Ki) Qi] =0, 7:) .1 =1,2,3.

Theorem 1A: Such a vector operator is rep-
resented by the null operator on an irreducible
representation of £! such that k, = 0.

Proof: An irreducible representation R of £! is,
of course, a reducible representation for its subgroup
S0(3) with infinitesimal generators L. As such, R
is built up as a direct sum of irreducible representa-
tion spaces M, for SO(3), (2k + 1)-dimensional.
If kb, = 0 (ie., if L-K = 0), then B contains all
I sfork = 0,1 --- & (each 9, once); and if R is
unitary, then x = .

Wecallf},» = —k, —k 4+ 1, - -+, ++k a standard
basis for 91;. Then Naimark proves that® (our K
coincides with his F)

Kaf’: = (k2 - Vz)kokﬁ_l - [(k + 1)2 - V2]§Ck+1fl:+l
with
_ (B =7 )*
Ci = ’(4/& —1
(¢ € 0,or —1 < ¢ < +1 for R unitary).

Morever, a careful scrutiny of the derivation of
the above formula reveals that any vector operator
V (with respect to L), tndependently of its commuta-

8 Reference 7, p. 98, Eq. (55), and p. 100, Theorem 3.
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tion relations with K or with itself, verifies the
formula®

Vsﬁ = (kz - Vz)}Ck(V)f:—l
— vAV)fs — [k + 1) — VD, (V)"

and analogous formulas for V., V_.

Now we want to examine the consequences of
[V, K;] = O0foralls j =1, 2, 3. Since Vand K
are both vectors, it is enough to consider [V, K5] = 0
and [V;, K,] = 0.

Let us apply [Vs, Ks] = 0 on f5. A straightforward
calculation shows that

Cu(V)Cyy = CCin(V), A (VYC, = CLAy(V),
Diii(V)Crsz = CosiDiin(V),
AV)Chiy = CrarArni(V),
(& — )CIC(V) — D(V)]
= [k + 1)* = ¥l[Coss(V) — Dpun(V)].
From the above relations, one easily derives
A(V) = a, CV) = bC, = D(V).
Thus, we now write
Vifi = —af) + b8 — )0}
~ [k 4+ 1) = FPCrafi™).

Then we recognize V; = —alL; + bK,.

It is now clear that
[Vs, K. =0
impliesa = 0 = b, i.e, V = 0, as stated.

Remark: It should be obvious that the proof we
have just given, also goes through for an irreducible
representation of SO(4). Indeed, the only thing to
be changed is the value of C; which becomes

Cr = (B — &)/ — DI

This does not affect the proof.

We can also remark the interesting fact that one
goes from an irreducible representation of SO(4)
to one of £! by a proper analytic continuation of a
Racah coefficient [n” = (2\ 4+ 1)® becomes ¢7].

Theorem 2A: On the multiplet £, E > 0, R =
—3/(8mE)*K.

® Reference 7, p. 94, Eq. (36).
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The relation between the mass and spin-parity Jr, and internal quantum numbers of elementary
particles, hints at a nontrivial connection between the external symmetry, namely the Poincaré group
or its Lie algebra, and a so-called internal symmetry. Studying this connection mathematically, we
find that any extension of (resp. by) the Poincaré Lie algebra @ by (resp. of) a semisimple Lie algebra
« is equivalent to the trivial one, ® @ X. Moreover, if we are looking for a Lie algebra containing @
and X in an economical and nontrivial way, namely what we call a (nontrivial) unification of ® and X,
we find restrictions on the possibilities of choice of &, which exclude compact internal symmetries. An
explicit treatment of SL(3, C) as internal symmetry, related to the external symmetry by the unifi-
cation process of Lie algebras, gives a mass formula which is in very good accordance with the experi-
mental data, and can be theoretically interpreted by means of a so-called “classification principle”.

1. INTRODUCTION

ARIOUS authors have recently investigated
the possible connections between external and
internal symmetries, or the possibility of inter-
preting the isotopic-spin space as reflecting “real
internal motions” in Minkowski space. From ex-
ternal formalism treatments, one knows that ex-
ternal motions of elementary particles are invariant
under the universal covering P* of the Poincaré
(inhomogeneous Lorentz) group P (because of half-
integer spin values, we consider P*). On the other
hand, internal quantum numbers (such as I, I,
B, S) have been phenomenologically introduced,
which are conserved by strong interactions, and we
know from Noether’s theorem that (nondiscrete)
conservation laws are related to (continuous) sym-
metry groups. Naturally, the question arises: what
is the possible connection between isospace, or,
more generally, “internal space” and Minkowski
space? Are P* and the so-called internal symmetry
group independant, or does there exist a certain
connection between the two? Physically speaking,
the question is that of finding relations between
external spin J (or possibly spin-parity J?) and the
squared physical mass of a particle —¢*p,p, on
one hand, and internal quantum numbers on the
other hand. Mathematically, the problem can be
formulated as follows: given the Poincaré group P
(or given P*) and an internal symmetry group X,
which, in general, is taken (for simplicity) as semi-
simple, can we find a group which contains both
and connects them in a nontrivial way (in a sense
to be explained later on), and which is physically
interesting with respect to the above problem?
One can try and treat this problem by using, as

Michel' did, the theory of group extensions. Michel
studied the central extensions of P and P* by an
Abelian gauge, or by an internal symmetry group,
from the algebraic point of view. The only non-
negative results he obtains are phase relations of
the kind (—1)%"* = (—1)*’ (obtained by studying
the central extensions of P by an Abelian gauge).

As we are looking for a connection of nondiscrete
type between internal and external formalisms (in
view, for instance, of a mass formula), and as
—g"’ p,p, belongs to the (center of the) enveloping
algebra of the Lie algebra @ of the Poincaré group
P, and also for other reasons, the details of which
we do not diseuss now, it will be worthwhile working,
at least as a first step, with Lie algebras instead
of Lie groups—but of course with Lie algebras on
the real field.

Assuming that the internal quantum numbers are
related to a semisimple internal Lie algebra <,
several authors’ obtained, under somewhat re-
strictive assumptions, negative results concerning
the connection between ® and X. We also see
in Sec. 2 that any extension of ® by (semisimple)
%, or of X by @, gives the direct sum ® P X. Ac-
cording to these results, it would seem that “in-
ternal”’ and external motions of elementary particles
are independent. But what we see later in Sec. 3
(coneerning the unification of ® and an internal
Lie algebra &) and the following remarks hint very
strongly at the nonindependance of these motions.

1. Lurcat and L. Michel, Nuovo Cimento 21, 574 (1961).
L. Michel, Extensions centrales du groupe de Poincaré, pre-
print, Ecole Polytechnique (1964); Nucl. Phys. 57, 356 (1964).

2 W. D. McGlinn, Phys. Rev. Letters 12, 467 (1964); see
also E. C. G, Sudarshan, J. Math. Phys. 6, 1329 (1965), and
references therein.
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If we consider elementary particles in the SU(3)
classification (for instance), we see that to every
supermultiplet (set of particles classified in the same
representation) a certain spin-parity J? is assigned.
Physically, this may be justified by the fact that it is
in accordance with experience (or by semi-empirical
treatments). But there exists no mathematical reason
of this fact, since, as we see later, each unification
of @ and of the Lie algebra $u(3) is trivial, ® @ su(3),
that is to say that any spin can be attributed to
any classification-representation, and that for in-
stance there is no group-theoretical reason why there
should not be an octet of particles of spin-parity 27(1).

But, from the phenomenological point of view,
it seems that (for baryons) the sequence (J», I,
I;, V) of quantum numbers defines at most one
baryon. This shows that there must be a close link
between internal and external statistics, and that,
because of this, there must also exist a link between
“internal”’ and external motions: the baryon, a
fermion with respect to external statisties, is prob-
ably also a “fermion” with respect to the internal
formalism. Therefore there must also be, in internal
statitsics, a kind of exclusion principle for baryons.

The Okubo-Gell-Mann mass formula, or all
similar formulas obtained in compact groups, is in
fact purely phenomenological: this formalism does
not explain the connection between —g¢*'p,p, (the
squared relativistic physical mass of a particle)
and the strong mass splitting. Indeed, if the link
between ® and the internal algebra X ig the direct
sum @ P X (and it is so if the internal group X is
compact, or even under somewhat less restrietive
assumptions, as we see in Sec. 3), there is incom-
patibility between the notion of mass in external
formalism and Gell-Mann-Okubo-like formulas giv-
ing what ig supposed to be a strong mass splitting;
for in that case, g*'p.p, commutes with every ele-
ment of X, and therefore all the particles classified
in the same representation of % should have the
same mass: supposedly those representations that
give a ‘““mass spectrum’’ give a degenerate spectrum.,
And on the other hand, the method used contains a
mysterious process of “symmetry breaking”, the
significance of which is that it works. Actually, all
that is done in the works of this type consists in con-
sidering the mass (or any function of the mass, if it
seems more convenient) as a tensorial operator, and
then in applying the Wigner-Eckart theorem. But if,
for us, the use of this theorem is clear and well justi-
fied in problems concerning angular and magnetic
momenta of particles, the consideration of an
operator like the mass operator as a Wigner-Eckart,
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operator, and moreover the precise specification of
its tensorial type, is an @d hoc hypothesis without
any theoretical justification.

We consider the (squared) mass operator as
~g""p,p,. Our problem is therefore first to find
a Lie algebra AU containing both ® and % in an
economical and nontrivial way (in a sense to be
explained), so that ¢*"p,p, will not be an invariant
of U—and this excludes the trivial connection,
® P «. In order to get an invariant, we have to
add to —g¢"p,p, a “correction”, which, in some
“good” cases, can be expressed as a nice function
of internal quantum pumbers (such as I, I, Y).
This invariant is constant in every (irreducible)
representation of A, and the constant is one of those
that characterizes the representations of U, and
therefore also related to representations of X (e.g.,
by induced representation technique). The correc-
tion (in niee cases) gives the strong mass splitting
in the supermultiplet [and the constant may then
be considered as the squared mass of a (sometimes
hypothetic) singlet, related to the supermultiplet].
We can also look directly for the spectrum of the
operator representing —g¢*“p,p, in irreducible rep-
resentations of U (but then, the expression of the
mass-splitting in terms of internal quantum num-
bers is less clear). Within this frame, we have there-
fore no mystery of broken symmetry: the concept
of mass is a geometrical one, given by the connection
between external and internal formalisms,

However, this interpretation of mass raises some
difficulties—but mass must be somehow interpreted
in some external formalism, and the most natural
interpretation is the usual relativistic one. In the
finite-dimensional representations of @ (and also
of the “unification” ), the p,/’s are nilpotent
(they are even such that p = 0 in 4-dimensional
representations of @); therefore we cannot hope to
get a real mass spectrum (by taking the eigen-
values) except in some infinite-dimensional repre-
sentations (skew-Hermitian Lie algebra representa-
tions on Hilbert space, for instance) of some unifi-
cations U (of ® and of some well-chosen internal
Lie algebras %), because we need (real) eigenvalues
not only for the invariant, but also for the “cor-
rection term”. Nevertheless, the mass formula,
which gives the strong and electromagnetic mass
splitting obtained in the case of SL(3, C), is in very
good accordance with the experimental data if we
give it a formal meaning without considering the
justification of the passage to the eigenvalues. And
in any case, if we do not classify strong particles in
suitably chosen infinite-dimensional representations,
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the problem arises of connecting the two facts that
(1) we classify particles according to some finite-
dimensional representations of the internal group,
and that (2) we can hope to give an exact meaning
to the mass formula only in some infinite-dimen-
sional representations. We therefore propose the
introduction of a classification principle: we classify
particles by means of finite-dimensional representa-
tions of the strong group (considering a vector
space of fields on which the representation trans-
formations operate), and for each one we give
a formal semse to the mass formula by relations
between the masses of the particles classified in that
representation. This might be related with some
mathematical connection between finite-dimensional
representations of the internal symmetry and
infinite-dimensional representations of the unifi-
cation (acting, e.g., on states).

It is then possible that the partial success (from
the phenomenological point of view) of unitary
symmetries is due to the fact that the results we
deduce from them are a good approximation of
what would be obtained from infinite-dimensional
unitary representations of the “good” group (non-
compact), and that they reflect a symmetry of
states rather than of a Hamiltonian. This is, in a
way, analogous to nonrelativistic atomic spec-
troscopy, where the state of orbital momentum L
is invariant under SU(2(2L -+ 1)), whereas the
Hamiltonian is only SO(3)-invariant [SO(3) has
only a geometrical meaning]. In ‘‘elementary-
particles-spectroscopy”’, in which states of higher
and higher energy are measured, one can fit experi-
mental results by using (phenomenologically) uni-
tary symmetries of higher and higher dimension—
whereas, according to the results to be developed
in Sec. 3 concerning the unification process of Lie
algebras, and to geometrical considerations de-
veloped elsewhere [cf. Refs. 3 and 4; the “internal
P, C, T operations” can be defined in internal sym-
metries containing the Lorentz group in a way
similar to that developed in Ref. 3}, it is most
probable that the ‘“Hamiltonian” symmetry of
strong interactions is “‘space—time-like”.

We conclude this introduction by two remarks.
The first one is to insist on the fact that the internal
quantum numbers, with which we want to get

3 M. Flato, G. Rideau, and J. P. Vigier, Nucl. Phys. 61,
250 (1965); see also M. Flato, Symélries de lype Lorenizien et
interactions fortes (Gauthier-Villars, Paris, 1966), Chaps. I and
111, Sec. 3.

4D. Bohm, M. Flato, F. Halbwachs, P. Hillion, and
J. P. Vigier, Nuovo Cimento 36, 672 (1965); M. Flato and
D. Sternheimer, Compt. Rend. 260, 3532 (1965).
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a mass-splitting expression, have been phenomeno-
logically introduced, by generalizing what was
known. For instance, the isospin I has been intro-
duced in a way analogous to ordinary spin, on the
basis of Heisenberg’s idea that the proton p and
the neutron n are two states of the same particle
(the nucleon N), their masses being very close; the
hypercharge Y has been in fact defined by the
Gell-Mann-Nishijima formula, which generalizes
the charge formula for nucleons. And although it
has been claimed that the only (nondiscrete)
exactly conserved internal quantities are those
already introduced (I and I;, B, S), this does not
necessarily imply that the mass is a function of
those quantities alone. It may well be that, for
instance, other quantities, not conserved in the
nowadays-observed strong interactions (i.e., they
are not “good quantum numbers”), occur in a mass
formula. Maybe there exist other quantum num-
bers that we have not noticed yet, because they are
not conserved in strong interactions (and until
now we studied the quantum numbers mainly from
the point of view of conservation laws), and with
which the classification or the mass formula, for
instance, can be written in a very simple way. It
might also turn out that the mass should be taken
as an independant feature characterizing the parti-
cles. (As to the mass, we take these possibilities
into account implicitly when we look directly for the
spectrum of the operator representing —g“’p.p.).

The second remark is not less basic. Until now,
we implicitly assumed that our internal Lie algebra
was a finite-dimensional one—and, as a matter of
fact, very little is known on infinite-dimensional
Lie algebras. But let us look more closely at Yang
and Mills’s argument (developed by Sakurai’) as
compared to the usual theory. In the latter, we
know that, e.g., the conservation of baryonic num-
ber is equivalent to the invariance under a phase
transformation of the kind

Vo — exp (1bB) ¢

of the complex field ¥, (8 is a real parameter; b the
baryonic charge); the same applies to isospin and
hypercharge, e.g.; from that, one gets the conserva-
tion laws by direct use of Noether’s theorem, and
those phase transformations can be mathematically
expressed by the fact that the Lie algebra of the
corresponding Lie group is finite-dimensional. On
the other hand, if we examine Yang and Mills’s

5 C. N. Yang and R. L. Mills, Phys. Rev. 96, 191 (1954);
J. J. Sakurai, Ann. Phys. (N. Y.) 11, 1 (1960).
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argument closely, the local nature of field theory
implies here that we have a gauge transformation

¥a — exp (b)) Y.

of the first kind, where 8(z) is a certain real func-
tion of the z,’s (i.e., on Minkowski space). We
therefore get not only the existence of a vectorial
field undergoing a gauge transformation of the
second kind, but also that the Lie algebra corre-
sponding to the internal group may be infinite-
dimensional. Although we agree with a great part
of Sakurai’s philosophy (especially on his eriticism
of broken symmetries), we use other mathematieal
tools and introduce some new physical principles
(connection between internal and external sym-
metries, ete. . .), for his study can no longer account
for the many experimental data already known.
But, in view of Yang and Millg’s argument, the
internal finite-dimensional Lie algebra we consider
have to be in a certain sense an “approximation”
{more for what concerns its structure than its
dimension) of the infinite-dimensional Lie algebra
implied by their argument. Our work deals mainly
with the choice and the study of a suitable internal
Lie algebra (of finite dimension).

2. EXTENSION THEORY AND THE POINCARE
LIE ALGEBRA

We choose our internal Lie algebra according to
several criteria; we already studied some geometrical
ones,”* and our object in Secs. 2 and 3 is to de-
velop “‘algebraic” criterions, namely the limitations
on the possibilities of choice of an internal Lie
algebra & imposed by the necessary existence of
a suitable connection between @ and %. The first
idea in this way is to study the extensions of @ by
X, or of X by @. We recall the following:

Definition®: Let a and b be two Lie algebras
(L.a.) on the same commutative field K. An extension
of b by a is an exact sequence:

0—adbg5Hh—0,

@.1)

where g is & L.a. on K, g & homomorphism of g on
b, N an isomorphism of a onto the kernel of u
(ker 4 = Im N = a). Two extensions a & g % b
and a5 g’ % b are said to be equivalent if there
exists a (necessarily bijective) homomorphism f
of ginto g’ suchthat f oA = Mand p’ of = u. An
extension is said to be tnessential or a semidirect
product, and we write ¢ = b-a if there exists in
g a supplementary subspace of ker u which is

8 N. Bourbaki, Algébres de Lie (Hermann & Cie, Paris,

1960); C. Chevalley, Théorie des groupes de Lie (Hermann &
Cie, Paris, 1951, 1955), Vols. II and IIL
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a subalgebra; if there is such a subspace which is
an ideal, the extension is called frivial; it is called
ceniral if ker u is contained in the center of g.

A semidirect product can also be defined® by the
existence of an isomorphism » of b into g such that
u © » is the identity on b; it is equivalent to a semi-
direct product constructed in a canonical way with
an homomorphism ¢ of b into der {a), the deriva-
tion algebra of a (the L.a. of the K-linear operations
D of a such that

D[al, 52] = {Dalg a2] + [a’h Daz] (2'2)

Va,, a; € a), by defining the commutators on
the product vector space a x b as

[a, b), (a’, b)]
= ([a, a'] + ¢(b)-a’ — ¢(V)-a,[b, b']). 23

Here, ¢(b) is the derivation of a, image of b by .
Let us recall also the following results.

Proposition 1: Any extension by a semisimple
Lie algebra a is equivalent to the trivial one (and
then ¢ &~ a @ b, the direct sum). Any extension
of a semisimple L.a. b is inessential.

The first part is a consequence of a result of
Bourbaki® Corollary 1 to Proposition 1, Chap. 6,
No. 1, and the second is Corollary 3 to Theorem 5
(Chap. 6, No. 6), which is the Levi-Malcev theorem,
(see Ref. 6, especially work by Chevalley), ac-
cording to which any L.a. is semidirect product
of a Levi (maximal semisimple) subalgebra by the
radical (maximal solvable ideal). Moreover, it is
easily seen that any extension by a complete Lie
algebra (i.e., where all derivations are inner, and
with {0} center) is also trivial.

Therefore any extension of ® by & semisimple (or
complete) is equivalent to the trivial one (@ P X).
In order to study the inessential extensions of &
by @ (the only one for any X, as can be seen), we
must first study the structure of der (@).

Structure of der (@)

One knows that @ is a semidirect product of the
Lorentz L.a. £ by a four-dimensional commutative
ideal ®, (corresponding to the translations), the
defining homomorphism ¢ : £ — der (®,) = gl{4, R)
being the “Naimark representation” Dy of £, corre-
sponding to the realization of £ by the basic repre-
sentation of 80(3, 1) in 4 dimensions (cf. Appendix).
We denote by small German letters the Lie algebras,
except for those most used in this paper; see Ref. 7

7 8. Helgason, Differential Geometry and Symmetric Spaces
(Academic Press Inc., New York, 1962).
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for the notations 80(p, q), 8u(p, @), etc. Let p € @: it
can be written p = [ + p,, with ! € £ and p, € ®,.
Let pi = I 4+ Doy, P2 = I, + Po: be two elements
of ®. Then we have

[p., pz] = [, L] + ([lu Poz] + [Dor, lz])- (2-4)

Ifp =1 + po, we can write ] = L(p) and p, = T(p)
(L and T are linear operations). Let D € der (®),
p € @, and write

Dp = dp + Ap + ap + 4p, 2.5)

where dp = L(Dl), Ap = L(Dp,), ap = T (D),
and Ap = T(Dp,) if p = | + po. As one knows
(Bourbaki, Ref. 6, Chap. 5, No. 5, Proposition 6)
that any derivation of a Lie algebra sends its radical
into itself (more precisely, into its greatest nilpotent
ideal—but, as far as @ is concerned, these two
coincide), A = 0; one can also derive this last
result directly by an elementary computation. If
p, v’ € @, one sees immediately that

dlp, p'l = L(D[L, '}) = [, dp'] + [dp, V],
alp, p'l = T(D[L, I'])

= [ap, V'] + [}, ap'] = [ap, '] + [p, ap'],
Alp, p'] = T(D[L, p§] + Dlpo, I'])

= [I, Ap’] + [4p, V'] + [dp, pi] + [po, dP'].

Therefore ¢ € der (@), and consequently d -+
A € der (®@). The restriction to £ of the derivation
d + A of @is also a derivation of £, and it is exactly
d. £ being semisimple, any derivation is inner
(Bourbaki, Ref. 6, Chap. 6, No. 2, Corollary 3 of
Proposition 1), i.e., there exists an element § & £
such that d = ad, 8 (ad; standing for the adjoint
mapping of £). But ad § = ad, 6 is an (inner)
derivation of @, and it coincides with d on &£.
Therefore we can put

A'=d+ A —adg, 2.7

and A’ & der (@), A’ : £ — 0, ® — @, (exactly
as 4 did).

Thus we have decomposed D in a sum of 3 de-
rivations [with 8(D) & £]:

D = a(D) + A/(D) + ad 6(D),  (2.8)

where we wrote explicitly the dependence of each
term on D. Let us now take a basis (a; b,) of £
and (p;, pa) of @k = 1, 2, 3), the commutators
being the usual one (cf. Appendix). We have
lai, ] = 0 and therefore [a,, A'p,] = 0, Vk,
whence A'p, = ap, with @ = a(D) & R. But we
have also [b;, pe] = ps, and A'€ = 0; therefore

(2.6)

M. FLATO AND D. STERNHEIMER

A'py = ap;, with the same a. Now let = denote the
derivation

=14 p—po 2.9

(the projection on the radical—always uniquely
determined—®,); one checks easily that this is

a derivation of ®. We have then A’(D) = a(D)r,
for some a(D) & R.
Let us now write
a-a;, = Z,04p,, a-b = Z,6ip, (2.10)

(w=1,2,3,4;k = 1, 2, 3) and use the commuta-
tion relations of @
[ak, b] = 0, [an b;] = bs, (2-11)

(4jk cyclic); we get straightforward a(D) = ad p,(D),
where

[a;, a;] = @

po(D) = aip, + a§p= + Olfps — BiDss

[We could have given a more abstract proof: f =
d + a is a R-linear mapping of £ in the vector
space @ of the representation ¢ : | — ads [ of £;
therefore, in view of a lemma due to Whitehead
(cf. Bourbaki, Ref. 6, Chap. 6, No. 2, Remark 2),
and because

L v = DL, ) = [, (0] — [V, fO,
there exists —p(D) = 6 4+ p, in @ such that
Dl = —o(p = [p, I];
thus D = ad p 4+ A’, where A’ = A — (ad p) | &
(the last symbol means ad p restricted to @) is
also a derivation of @, which is zero on £ [cf. also
G. P. Hochschild, Am, J. Math. 64, 677 (1942)]; but
o | ® is the (complex) irreducible representation
Dy of £, and
[A’, ad I] = ad (A’]) = 0;

therefore A’ = ar (with o € R since 4’ is a R-
linear mapping of @).]

We thus obtained

D = ad (6(D) + po(D)) + a(D)m,
that is,
Dp = [6(D) + po(D), p] + a(D)po
ifp=p +1D. (2.12)

Moreover, it is clear that, if D,, D, & der (@),
then a({D;, D,]) = 0, and one can check easily
that:

8([Dy, Do) = [6(Dy), 6(Dy)],

and because [D, ad p] = ad (Dp) : po(IDy, D)) =
D\po(D;) — D,po(D,), which is equivalent to the
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fact that the mapping D — ad p,(D) is a deriva-
tion of der (@) fie.,, & der (der (®)) = der {®)].
It is not difficult now to see the structure of the
L.a. der {(®). Let us denote by ® the (5-dimensional)
solvable L.a. generated by ®, and a monodimen-
sional L.a. u(l), a generator of which we denote
by =’, with the communtation law [x', po] = po,
Po € @ @ is a semidirect product (u(l)-®,), a
defining homomorphism u(1) — der (&) = gl(4, R)
of which is given by

10
::r'—->I4=( 1)-
o 1

One checks easily that der (®,) is composed of
5 X 5 matrices (h.g) with ks = 0, the other being
any real number. If Dy denotes the representation
Dy @ O (0 is the trivial one-dimensional represen-
tation) of £, we have

der (6) & £ @, (2.13)

a defining homomorphism of this semidireet product
being Dy. Also,

der (@) ~ u(l)- @, 2.149)

a defining homomorphism here being u(1) — Rr C
der (@), and

der (@) =~ (£ @ u(1) &, (2.15)

a defining homomorphism being £ — Dy(£), «’ — I,
f#' is the generator of the u(1)]. Moreover, one
gets 8 five-dimensional representaiion of ® [and of
der (®)] with

L— (DN @ O)("B): Pu— (a'd pn) I 50 = Euﬁ

(in the canonical basis of the gl algebras), and for
der (@), = — I, D O = (ad ) | ® (for instance).
Let us now pass to the following.

Study of Inessential Extensions by ¢
0—-@—>R—>X—0.

They are the only extensions i X is semisimple—
and also the only one, since @ has {0} center and
der (®) = u(l). ®, in any case. We must therefore
seek all possible homomorphisms ¢ : £ — der (@),
and see what semidirect products they define. We
have, Vz & X,

e(x) = ad plp(x)) + ale())r, (2.16)

from the structure of der {®). If [X, X] = X (X is
equal to its derived algebra), any element of X is
a linear combination of commutators of elements
of %. But ¢ is a homomorphism, and the o’s of
commutators of derivations are 0. Therefore (X)) C
ad @; as the center of ®is {0}, ¢y = ad™? opis a
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homomorphism X — @, and therefore ¢ = 0 (e,
the extension is necessarily trivial) if &, supposed
semisimple, has no direct factor isomorphic to £,
or to #o(3) or 81(2, R). But the triviality of the
extensions holds in a more general contexi, as s
consequence of the following result.

Propostiion 2. Any inessential extension (2.1) de-
fined by a homomorphism ¢ = ad oy, where ¢ is a
homomorphism b — a, is equivalent to the trivial
extension a & b.

From the definition of commutators on the prod-
uct-vector-space a X b, we have

a, b}, (@', ¥)] = ([a + ¥(b), o’ + ¥(B")]

- ¢([by b,])r [bs b,])v (2'17)
for ¢ is a homomorphism, Now it is clear that the
mapping f : g — a & b defined by

6D @)D+ yvd),h)Ea®b (218

is a homomorphism (the commutators of ¢ &P b
being the usual one of a direct sum). Further, the
diagram

Y g B
Q- a< ' >B — 0,
*a@p”

where A : ¢ — (a, 0} and p : (@, b) — b, is commuta-
tive, i.e., f o X = A, p o f = u. Therefore® the two
extensions are equivalent. QE.D.

(2.19)

Any element (@, b) & g can be written

(C&, b) = (a + \&'(b)f 0) + (—“P(b)! b),

and it is easy to check that this expresses the de-
composition of g into the direct sum of two or-
thogonal (i.e., with zero commutator) ideals A(g)
and »'(b) = (—y¢(b), b); the set »(b)={(0, b) | b &€ b}
was only a supplementary subalgebra of A(a) in g;
thus, with nonzero ¢ (if there exists such a ¢), we
get what can be called an “oblique direct sum”,
because then A(a) is orthogonal to »(b) but not to
»(6), and this fact may hide the triviality of the
extension,

Corollary. If a is a L.a. with {0} center, any
inessential extension of a L.a. b by q, corresponding
to a homomorphism ¢ : b — der (a), the image &
of which in der (a)/ad a (ad a is the L.a. of inner
derivations of a) is {0}, is equivalent to the trivial
extension.

As a conclusion of this study (for which a direct
approach is just as short as the transcription of
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Hochschild’s general cohomological theory of exten-
sions), we may write down the following:

Theorem. Any extension of ® by X semisimple
or complete, or of X semisimple by @, is equivalent
to the trivial one. Any (inessential) extension of a
L.a. & such that [X, X] = X by @ is equivalent to
the trivial extension.

For instance, any (inessential) extension of ¢ &~ @
by @ is equivalent to the trivial one. The result
obtained is somewhat comforting, in a sense, be-
cause of the fundamental dissymmetry of the notion
of (nontrivial) extension; nontrivial extensions of
b by g, or of a by b, are very different. And if we
could get nontrivial results in extending @ by an
internal L.a. &, or & by @, there would remain to
understand why Nature prefers to extend @ by <,
rather than & by @, or the reverse.

We can now get some information on group ex-
tensions. More precisely:

Proposition 3. Any topological extension of the
Poincaré group P, or of its universal covering P*,
by an analytic group X whose Lie algebra & has
but inner derivations, is a central extension (and
therefore a trivial one, in the case of P*).

From the condition on X, Aut(X)/Int(X), the
factor group of all automorphisms of X by the
adjoint group Int(X), which is isomorphic to
Aut(X*)/Int(X) (where X* is the universal covering
of X, and Aut(X*) the group of its analytic auto-
morphisms) is totally disconnected, and therefore
cannot contain a non-trivial homomorphie image of
P* or P; hence any (topological) extension is central.
The last part follows from the work of Michel.!

It seems that a similar result is true in the case
of extensions of X by P (with {¥X, X] = & in order
to get the triviality of the extensions); it depends
mainly on the topological nature of the adjoint
group Int(®) = Ad P—whether it is a closed sub-
group of GL(10, R) or not.

Remarks on Field Extension

Let a be a L.a. on a {commutative) field K. The
following commutation law, on the produet vector
space a X a, defines a Lie algebra a’:

(@1, 41), (2, ¥2)]

= ([xl, ?/1] + {332, Z/z], [xli ?/2] + [x2' y!]); (2'20)

o’ can be obtained from a by extension to K[k] of
the scalars’ ring, k being an algebraic element of
order 2 on K (i.e., k & K, k* = 1), and then restric-
tion to K. It is a direct sum of two orthogonal
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ideals (3(1 % k)a), both isomorphic to a. If now
K = R, and if we denote by b

b=g()|r=a®C,

the “twin-form” of a (obtained by extension to C,
the complex field, of the scalars, and then restric-
tion to R, the real field), we have b(cC) = a'(¢)
(cf. Bourbaki, Ref, 6, Chap. 1, Exercise 4).

Therefore, as £ = a(c) | R, where ¢ is any simple
L.a. of order 3 [ie, 81(2, R), or 80(3) = su(2)],
£(¢) = a(c) @ a(c) and thus

(2.21)

L@ IrR=eRCrLPe.

The same thing is not true for ®, which, on the con-
trary of £, does not have a complex structure (e.g.,
see Ref. 7). In ® Q C, ¢**p,p. is no more an invariant;
we must indeed consider ¢*’(p, + ip,)(p, + ip,),
where ip, = ¢. stands for the element p, & 7 of
® ® C, and we get the invariants ¢"’p,q, and
g (p.p, — q.9,). We have therefore here a “cor-
rection” to ¢”p.p,, and a relation of the kind
m*=C-+m’, where C is an invariant, m*= —¢"*"p,p,
and m® = —g"q,q,. But in such an hypothesis, it
is not quite clear which is the internal Lie algebra,
and for this reason also one does not see how to
express the “correction” in functions of internal
quantum numbers.

We have thus seen that the extension theory of
Lie algebras failed to give us the desired connec-
tion between the external algebra @ and an internal
semisimuple algebra &. For what concerns group
extensions, their possible nontriviality (in cases
when the Lie algebras extensions are trivial) is
due to the relative positions of a discrete subgroup,
as it is in the case of U(2)=U(1). SU(2) [semidirect
produet, isomorphic to (U(1) X SU(2))/Z,], from
where one can deduce the phase relation (—1)*'=
(—1)7; thus, in such a case, the consideration of
group extensions gives us only phase relations—
similar to those obtained by Lurcat and Michel'—
but one cannot in such a way get “nondiscrete”
relations, such as a mass formula. The theory of
field extension also does not seem to give any
interesting result. We are then naturally led to the
considerations of Sec. 3.

3. UNIFICATION OF LIE ALGEBRAS

The most natural solution—and which, contrary
to the extension theory, is symmetric—is to find
a L.a. containing both ® and an internal L.a. % as
subalgebras. Formulated in that way, this problem,
studied by various authors (cf., for instance, Gar-
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diner,®) is highly indeterminate, and cannot give
any criterion for &, as it is always possible to
imbed ® and & in another algebra of sufficiently
high order {and even to do it in such a way that @
and & do not commute]. In order to get criterions
for the choice of &, minimality conditions have to
be imposed on the Lie algebra containing @ and
. And besides, if the algebra containing @ and &
is too large, the physical meaning of the super-
fluous generators (those of a supplementary sub-
space of the subspaces @ and ) will not be clear.
Though one of us (M.F.) announced as early as
May 1964 (in seminars, in Marseilles and Torino)
the main features of the results of this part, the
first results published in this direction were nega-
tive.? In such attempts, it was supposed that we
are given a Lie algebra, the underlying vector space
of which is the direct sum of those of @ (with
generators M,, and p,) and of a semisimple L.a.%¢
(with generators X,.), and such that [£, X] = 0,
ie., (M., X.] = 0 V g, v, a, or with apparently
weaker (but in fact equivalent) hypotheses (such as
IM,,, X.] = 0, Ve, for some M,,). A calculation
on structure constants, eventually simplified by
use of a Weyl basis (use which is somewhat delicate
when dealing with real L.a., with which we must
deal if we want, e.g., to look at topological con-
siderations) gives [®, X] = 0. We give here a simple
proof of this result, in a somewhat more general
context; this lemma will be useful in what follows.

Lemma 1. Let % be a semisimple Lie algebra
{on R, e.g., or on any commutative field with charac-
teristic zero) of finite dimension, and suppose there
exist isomorphisms ¢ and ¢ of (respectively) ® and &
into a Lie algebra & such that G&=¢(®)+¢¥(X), (not
necessarily direct) sum of veetor spaces, and that
we have [¢(£), ¥(X)] = 0. Then ¢(®) N Y(X) = {0}
and R & @ P .

Here, £ stands for a Levi subalgebra of @ (iso-
morphic to the Lorentz L.a.), and it is always
possible to select a basis (M,,, p,) of ® such that
M,, is a basis of £, and the commutators are the
usual ones. Any element of (@) M () commutes
with the whole of ¢(£) by hypothesis; but, in @,
only {0} commutes with the whole of £; therefore
o(®) M Y{(X) = {0} and the sum of vectors spaces
is direct. Now, given any p, € @, there exist
(not uniquely determined, but it does not matter)
l € & and p} € @ such that p, = [I, p}] (indeed,
we have p, = (M 2] —gnppp])3 whence

8 C. W. Gardiner, Phys. Rev. Letters 11, 3 (1964).
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(@), o) = [¥(2), o([l, p2])]
= lp(D, [¥(@), @)l  (3.1)

because ¢ is a homomorphism, applying the Jacobi
identity and the hypothesis. From (3.1) we get,
again by the hypothesis, [¥(2), ¢(po)] € #(®), for all
T € X, po € @, and thus [Y(X), o(®)] C (@) : (@)
is therefore an ideal of @&, which is then an extension
of X by @, and, by the results of Sec. 2, isomorphic
to the direct sum ¢ @ «. This last result
can also be proved directly, using the Levi-Malcev
theorem, which shows that ® has as Levi sub-
algebra ¢(£) @ ¢¥(X), and the fact that gl(4, R) =
81(4, R) @ u(l) contains no subalgebra isomorphic
to £ @ %, VX simple L.a.,, which shows that
every homomorphism from ¢(£) @ ¢(X) to der (®,),
coinciding with the representation Dy on ¢(g£)
[in order to get ¢(®) by the semidirect product],
is trivial on ¢(X). We have, moreover, that @ =

2(®) D ¥(x).

Remark. Let us now suppose that we have ® =
¢(®) + (), direct sum of vector spaces, and that
¥(X) commutes with one regular element of o(£),
say ¢(l,). Then, by a similar argument, @ ~ ¢ @ «.
Indeed, there exist elements &, I, ¥, 1§, I that,
together with I, make up a basis of £, such that

o U] = x4, [, 4] = xl,
[, 1] = =L, [, U] =0 (& cyelic).

As [ (x), ()] = 0 V z € %, we get, by the Jacobi
ident'ity: N/(x), @(lkn e ‘P((P) (k = 2, 3) and
@), of)] € o(® (k = 2, 3, 1), and therefore

[¥(), o(0o)] € ¢(®) Vo € @ (aspo = [, PI));
hence ¢(®) is an ideal in ®, which is therefore an
extension of X by @, and thus isomorphic to ® @ «
(X being semisimple). In a similar way, if & =
¢(®) -+ ¢(X) without intersection, and if a regular
(or a semisimple) element @ of (%) commutes
with all ¢(®), we find, by use of a Weyl basis, that
¥(X)(c) is (See Ref. 2) an ideal in ®(c), and thus
®(c) is isomorphic to ®(c) @ x(c); therefrom,
passing to real forms (and because £ is already a
twin form), ® ~ ® @ %. However, it must be
emphasized that the assumption @ semisimple does
restrict generality (as long as € is noncompact)—
and this, regardless of the interpretation of the
commutation or noncommutation of Q with »(®).
The negative results of Ref. 2 are thus seen to be
special cases of our study in Sec. 2. We see later
that positive results can be obtained; but first let us
set our problem more precisely, and, for this purpose,
introduce the following definition.
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Definition 1. Let @, +-- , a, be n finite-dimen-
sional Lie algebras, over the same commutative
field K. A Lie algebra u over K is called a unifying
algebra of a;, --- , a, if there exist isomorphisms
M of apinto u(k = 1, --- , n) such that

u= xl(al) + R + An(an)v

not necessarily the direct sum of vector spaces.
We write 1w = Ulay, -+ -, a,).

(3.2)

This definition calls for a few remarks. First, we
do not suppose that all possible pairs of algebras
M(az) have null-intersection. We thus say that we
have a unification with (specifying if necessary
which algebras have such intersection) or with-
out intersection. In the case of two algebras with {0}
intersection, we get as a special case the notion of
inessential extension (in that case, one of the algebras
is an ideal in the unification). In any case, we have
always a (trivial) unification with {0} intersection,
namely the direct sum a; @ -+ @ a.. It may
happen that this is the only unification (with or
without intersection). For instance, it may be seen,
by trying to define the missing structure constants,
that there is no U(80(3), 80(3)) with one-dimen-
sional intersection, and from this (using the Levi—
Malcev theorem, and showing that the Lie algebra
of the inhomogeneous rotation group in 3 dimen-
sions is not a unification) that the only U(80(3),
80(3)), apart of 80(3) itself, is the trivial one,
80(3) @ #0(3). Moreover, if we try to define, a
priori, the structure constants of a unification,
we see that the Jacobi identity implies (in general,
quadratic) conditions, the number of which is
much greater (in general) than the number of the
missing constants. Therefore the existence of a non-
trivial unification is a somewhat rare, and there-
fore an interesting, phenomenon.

‘We see also that the notion of “minimality” is here
realized: we have dim ut < dim a; + --- + dim aq,
(being equal only in case of {0} intersection). If
two algebras (for instance) are imbedded in a
higher-dimensional L.a., the latter being not a
unification of the two former L.a., it can always
be considered as a unification of the two former
and of a suitable number of one-dimensional L.a.
u(1) (this notation being considered as having, a
priori, no topological implications on the com-
pactness or noncompactness of the corresponding
one-parameter subgroup of a Lie group correspond-
ing to the unification). If we limit that number a
priori, we can make more precise the wanted degree
of minimality.
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It is quite banal to state that any L.a. can be
considered as a unification of itself and of any sub-
algebra. Moreover, if two L.a. have a common
direct factor, their direct sum, divided by this
direct factor, is a (quite trivial) unification, with
intersection on this coramon direct factor (that is,
so to speak, ‘“put in common’). We are therefore
led to the following:

Definition 2. 1) A wunification uw = U(a, b) is
said to be trivial if, whilta X o, P o/, b~ a, DV,
one has u = a, @ o’ @ 0. In the same way, a
unification of n L.a. is said to be trivial if it is iso-
morphic to the direct sum, possibly up to a common
(to two or more L.a.) direct factor.

(ii) A unification u = U(a, b) is said to be banal
HbCaanduxa(orifa C bandu ~ b). Ac-
cordingly, a unification of n L.a. is said to be banal
if one L.a. contains all the others (possibly up to
a direct factor, or to a trivial unification).

We introduced the notion of banal unification
and distinguished it from that of a trivial one for
the following reason: In a trivial unification, any
invariant of one L.a. is an invariant of the unifica-
tion, while that is not (in general) the case for a
banal unification. We see for instance that @ C
su(2, 2), but g*’p.p, is not an invariant of su(2, 2)
(banal unification of @ and of itself).

Before we pass to the general study, we first
treat two particular cases (interesting in them-
selves), one with positive and one with negative
results.

Example 1. A nontrivial and nonbanal unifica-~
tion U(®, £ u(l) @ u(l)) with a 2-dimensional
intersection.

[We construct later a unification U(®, £) with
such an intersection]. Let us consider the semi-
direct product ® = £-&,, where ®, is a 10-di-
mensional commutative ideal, and a defining ho-
momorphism ¢ : £ — gl(10, R) = der (®y) ¢ =
Dy @ ad (ad standing for the adjoint 6-dimen-
sional representation of £). Denote by (g, ¢l)
(k = 1, 2, 3) a basis of the space of the representa-
tion ad; (px, p.) being a basis of ® C R, the
space of Dy, (Pr, P4, s, gi) is a basis of ®,, and
®R D (£-®) = @ In this basis, the commutation
relations of ® are those of @, in addition, with ®,
commutative and

la:, ¢;] = [a:, ¢f] =
[b:) 4] = eingis [b:, ¢/] = —e€iinse (3.3)

£ is a Levi subalgebra of ®, any other being of the
form (I + ad (p, + g0))£, where I is the identity,

4
€iinQks €:ixqk’y
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Po & @, and g, is a linear combination of the ¢;’s
and the ¢}’s. We are looking for a subalgebra £’
of ® isomorphic to £, with £ M @ minimal. For
this problem, it is enough to look for a £’ of the
form (I + ad go)&. If g0 = X (ouq + alg)), we
get £’ with a (canonical) basis (a], b;) where

a; = a; + o;qp — aug; + afgl — aig]
and

bl = b — ofqs + alg; + gl — oug)
(¢, 3, k cyclic here).

Now, in general, we have £ N £’ = {u(l) @ u(1)}, as
the general element >, (\yaz + b)) € £ belongs
also to £’ if and only if 6 linear homogeneous equa-
tions (the expression of which is evident from the
ay’s and the b)’s) in the N\’s and p’s are verified,
a two-parameter solution of which is readily seen;
moreover, wesee that if (A, p;) is a solution, (u, ~N2)
is also a solution. Therefore the intersection is a
(maximal) commutative 2-dimensional subalgebra of
£ (or the whole of £ if ¢, = 0), for

[L:: (Arae -+ pidy), :Z, (@ — Mb)] = 0.

In the nondegenerate case, we have
® = ¢+ £ + (u@) @ ul),

where ® = £-®,, non-direct sum of vector spaces,
and so R = U(®, £, (1) @ul))) with a 2-dimen-
sional intersection.

Remark. Here, ¢"’p,p, commutes with £, but
also with ®, (commutative), and is therefore an
invariant of ®. We see that this is a general phe-
nomenon in all unifications of ® and of a Lorentz
L.a. £. In order to avoid this, we have to consider,
as an internal algebra, a L.a. containing strictly £
(and not as a direct factor).

Proposition 1. Every unifying algebra U(®, 8u(3))
is isomorphic to ® @ 8u(3). Every unifying algebra
U(®, su(3), u(l)) is isomorphic either to ® P 8u(3)
[1-dimensional intersection, between u(l) and @,
or 8u(3)], tous(8) @ ® P u(1), or else to the pseudo-
trivial unification us(3) @ der(®).

We are looking for a unification ®—a L.a. such
that there exist injective homomorphisms ¢, ¥
(and possibly ¢'):

0 C-5®0—8uB3) L
[and possibly ¥/ : u(1) & @),  (3.4)
such that

® = ¢(®) + ¢(8u(3)) [and possibly ¢’ (u(1))].
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Let us denote by & a Levi subalgebraof ® : = ®. ®,
(®, is the radical); 8 must contain =~ £ (ie, a
subalgebra isomorphic to £) and & 8u(3). More-
over, dim ® < dim & < 18 [or possibly 19, if we
add a u(1})], and, if dim ® > dim £ + dim 8u(3) = 14
(or possibly 15), we must have & O ~®, because
with every p, © ®,, [£, po] gives ®,. B cannot be
a real form of types a, or g, (as none contains £),
nor of type b, [none contains 8u(3)]; & cannot be
81(3, C) (type a, & C), the latter being of dimension
16 and not containing ®. The only real form of
type a; containing 8u(3) and £ is 8u(3, 1), which
does not contain @ [and has no real 4-dimensional
representation, a fact that eliminates the possi-
bility of constructing @ by a semidirect product of
8u(3, 1) and a 4-dimensional—at most—commuta-
tive ideal, because we are dealing with L.a. over R].
Therefore ® cannot be a simple L.a. If now ® =
B D+ D ®, with ®; (j =1, --+, k) simple,
by the same argument, a single ®; cannot contain
both ~~ £ and =& 8u(3); therefore £ P su(3) is a
semisimple subalgebra of ® (and of ®) [and, by
Lemma 1, U(®, 8u(3)) is isomorphic to @ @ su(3)].
This is then a Levi subalgebra, because it is con-
tained by no other semisimple L.a. of dimension
< 19, containing @ if its dimension is > 16. As
8u(3) has no real 4- or 5-dimensional representa-
tion, the homomorphism £ @ 8u(3) — der (®,),
defining the semi-direct product ®. ®, (with ®, of
dimension 4 or possibly 5), and coinciding with
Dy on & (R, must here contain a 4-dimensional
commutative subalgebra, ®,) is 0 on 8u(3). There-
fore

U(®, su(3) ~ ¢ @ su(3) (3.5)
and also

U(®, su(3), u(l)) = su(3) @ U(®, u(1)).

The proposition follows then from the lemma;:

Lemma 2. U(®, u(l)) ~ @ (banal unification),
or ® @ u(l) (trivial), or der (®).

(3.6)

Indeed, £ is a Levi subalgebra of such a unifica-
tion ®, which is therefore ® = £. ®,, ®, being a
solvable 5-dimensional ideal (if it is not the banal
unification); but £ has no 5-dimensional real repre-
sentation containing Dy, except Dy @ O (O is the
trivial 1-dimensional representation). Therefore,
R~ (£ D u(l))-® (since ® must contain @, 4-
dimensional commutative L.a.). Dy being irreduci-
ble, the only matrices of order 4 commuting with
Dy(L£) are scalar matrices, and therefore the image
of u(l) by a defining homomorphism is either {0}
or all the scalar matrices, whence the result.
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Before we go to the general study, let us recall
two theorems, that we need later on (see Ref. 7
for the first one, and Ref. 9 for the second).

Theorem A (Iwasawa). Let go be a real semi-
simple IL.a. There exists a decomposition (the
Twasawa decomposition)

go =Tl + o+ 1 3.7

(direct sum of vector spaces), where [, is a maximal
compactly imbedded subalgebra, a, a maximal
Abelian subspace (with semisimple elements—cf.
Ref. 6 for this notion) of the subspace P, corre-
sponding to the Cartan decomposition go = T, 4+ 9o
(t, + ©h, is then a compact real form of the com-
plex L.a. g, of which g, is a real form), and n, a
nilpotent subalgebra. There exists moreover a
basis of g = @,(C) such that the matrices of
ad (£, + <p,) are skew-Hermitian, those of ad n,
lower triangular, and those of ad a, real diagonal.

Theorem B (Malcev). In a complex simple L.a.,
the maximal dimension of commutative subalgebras
(with nilpotent elements then) is [3(n + 1)°] for
a, 3n (n — 1) + 1for b, (n = 4), 3n (n + 1) for
G, 3n (n — 1) for b,, and 3, 5, 9, 16, 27, 36 for
@2, bs, fi, €, €, and es, respectively, and they are
all conjugate by automorphisms except for by, b,
(2 classes), g, (3 classes) (and for aj, a,).

For real forms of those complex simple L.a.,
the maximal dimension of commutative subalgebras
with nilpotent elements is at most that of the
corresponding complex L.a.; even for noncompact
forms, it may be smaller. For instance, one checks
that for 8o(p, 1) this dimension is p — 1, which is
definitely smaller than the above number for p > 9.

We begin the general study by the case of the
simple L.a. that are contained in ® (and there-
fore in £), i.e., 80(3) and 81(2, R) (type a,). We
denote by D, a 4-dimensional real representation
of £, nonequivalent to Dy, and nonreducible by
real transformations [one gets it by considering
subalgebras of 8{(4, R) isomorphic to £ in a basic
representation of 8[((4, R), or by considering the
basic representation of 80(3, 2) as ép(2, R), in
4 dimensions; c¢f. Appendix]. We prove now the
following lemma, on U(®, X) and U(®, %, u(l))
for % of type a,—here, as in the whole study, we
study the influence of the addition of a one-di-
mensional algebra on the triviality of the unifica-
tions, because of the possible physical interpretation

9 A. I. Malcev, Transl. Am. Math. Soc., Ser. 1, 9, 214
(1962) (original in Russian, 1945).
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of this addition. [Moreover, the results are very
similar for U(®, &, u(1) @ u(l)).]

Lemma 3. Every U(®, 80(3)) is either trivial
[® @ 80(3)] or banal (®). Every U(®, $0(3), u(l))
is either trivial or banal [®, ® @ 80(3), ®¢ P
80(3) @ u(l), or ® @ u(1)], or pseudo-trivial
[80(3) @ der (®)], or else a semidirect product
(£:®Ry) defined by the representation Dy @ D, of
£, ®, being an 8-dimensional commutative ideal.
The same holds for 81(2, R)—with the obvious
transposition.

Indeed, the unification ® cannot be a simple
L.a. because it must be of dimension < 13 [or
possibly 14, if adding a u(1)] and contain ®. Now,
go(4, 1) = U(L, 80(3), u(l)), but we cannot form
a semidirect product of that algebra with ®, so as
to get @ (it has no 4-dimensional real representation).
The same holds for 8[(2, R) with 80(3, 2) (the
4-dimensional representation of that algebra giving
D, on £, and not Dy). Therefore any Levi sub-
algebra ® of ® is isomorphic either to X @ £ or to
£ (% being here of type a,). If it is X @ £, then
Ue, ¥) ~ ® @ «x from our lemma, and
Ul®e, x, u(l)) =~ (£ @ X)-R,, with ®, solvable
and 4- or 5-dimensional, containing ®,; the de-
fining homomorphism must then be null on &«
[for a, @ a; D a; € a,, from Ref. 10] and & ~
x @ U(®, u(l)). If it is £, ® = (£-R,) with solv-
able ®, of dimension < 8, and we must be able to
“translate” a subalgebra of £ isomorphic to & so
that to obtain ® = £ + X + (possibly) u(l).
Further, the defining homomorphism must contain
Dy as a “direct factor” (so as to obtain @ = £-®,);
therefore, ®, must be 8-dimensional-commutative,
and the defining homomorphism Dy @ D, (or a
similar expression, with D, replaced by a representa-
tion equivalent to D,—possibly by complex trans-
formations), because one checks that Dy @ Dy
gives a (too large) intersection between £ and <.
It is now easy to check that this is a unification,
as described here above [for instance, if we
take a basis p,, ¢, of & and X =~ X' C &g,
then (I 4+ 2 ad aq)%X’ = X will do, the added u(1)
being, e.g., generated by g,].

Proposition 2. Let X be a simple compact L.a.,
distinct from 80(3). Then every U(®, &) is trivial
(® @ %), and every U(®, X, u(l)) banal or trivial
[@ D xor ® D x P u(l)] or pseudo-trivial
[ @ der (®)).

10 E. B. Dynkin, Transl. Am. Math. Soec., Ser. 2, 6, 111,
245 (1957) (ongmal in Russian, 1952).
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It follows from such a result that compact simple
L.a. are excluded by our criterion on possible in-
ternal symmetries (we see later that all compact
symmetries are excluded).

Let & be the unification, ® a Levi subalgebra
of ®, containing the image ¢() of L in ®; B D ¥(X)
strictly, for 8 D =& also. Then either ® is simple,
or ® is semisimple—nonsimple, in which case & ~
X P £ because of dimension considerations. In
that case, by Lemma 1, and by the same considera-
tions than in the case of su(3), U(®, X) & ¢ P X
and U(®, x, u(l)) = ¥ @ U(®, u(l)). Let us
therefore suppose ® simple; we have dim & <
dim & < dim % + 10 {or possibly 11). But we
learn from Dynkin'® that maximal semisimple sub-
algebras of greatest dimension are in a,, @,-,; in
By Do in €y, €y @ ay;in b, Dueq; In o, 65 In f4, e,
¢z, ¢, Subalgebras, the dimension of which is smaller
by more than 12 than the dimension of the algebra.
Therefore ® =~ £ (P X, except perhaps in case X
is of types g, 8u(n) (n = 2, 3, 4, and possibly 5),
go(n) (n = 5,7, 8,9, 10, and possibly 11), because
of the difference of dimension between the above-
mentioned algebras, and the fact that the non-
compact real form of g, (that, following Freuden-
thal* we denote by g..,) does not contain £ (we
denote the compact form by g,,0).

As no real form of b; contains both £ and g,
(compact), the hypothesis € = g,, fails. We al-
ready treated the cases of 8u(2) = 80(3), and
8u(3) (in that case, we had the announced result).
For & = su(4) = 80(6), ® simple can be only
either 80(6, 1) or 8u(4, 1); but then & must be the
whole unification ®, which it is not, since those
algebras do not contain =~ @. [The ‘“noncompact
part” of 8o0(6, 1) is of dimension 6, and that of @
is of dimension 7; for 8u(4, 1), we check it in a
basic representation. Besides, if it were a unifica-
tion, the intersection between ¢(®) and ¢(X) would
be at least 3-dimensional—a compact subalgebra
of ®—and not, as imposed by dimension considera-
tions, 1- or possibly 2-dimensional.]

We have the same result for & = 8o(5) = 8p(2),
because €0(5, 1) = 8u*(4) D =@, and has no real 4
(or 5)-dimensional representation. For X = 8o(7),
it is clear that g, & C does not fit; but 80(7, 1) also
does not fit, since it does not contain @: the nilpotent
subalgebra of 80(7, 1) in the Iwasawa decomposi-
tion is 6-dimensional but commutative, while @
contains a 6-dimensional noncommutative nilpotent
subalgebra. Besides, one sees from a basic repre-

1 H. Freudenthal, Math. Ann. 156, 263 (1964).

1943

sentation of 8o(p, 1) that these algebras (for p = 4)
contain the “inhomogeneous 8o(4)”’ L.a., but not
the “inhomogeneous 80(3, 1)’ L.a., for which we
need, among the algebras 8o(p, ¢}, p > 4and ¢ > 2.
Thus $0(7) fails.

In the case of % =280(8), the (only) possibility 8=
® = $0(8, 1) fails for the same reason (and, besides,
the nilpotent subalgebra is 7-dimensional, but
Abelian). The cases of 80(3), 80(10), 80(11) are simi-
lar (and, besides, the intersection of a supposed unifi-
cation ® = ® must be at least 3-dimensional, which
is impossible). Hence wehave @ & £ @ X. Q.E.D.

Proposition 8. If € is semisimple and no simple
ideal of % hag a real representation of dimension
at most 10 [resp. 11}, then either X D &~ @, in which
case U(®, X) &~ @ @ X [resp. U(®, &, u(l)) =~
X P U@, u(1))], or ¥ D ~@, in which case there
is also the banal unification X [resp. &, or € @& u(1)].

It is sufficient to prove the proposition for simple
. From the Levi-Malcev theorem, the unification
® = B-®, (B is a Levi subalgebra); 8 D =x. If
® is not simple, 8 =~ £ P %, and the result follows.
If ® is simple, it has, a fortdor?, no real representation
of dimension at most 10 [resp. 11];50 ® = & @ Ry;
but ® D ~® and B D ~L£, s0 that 8@ O ~@
from the structure of ® (which is not a direct sum
of two subalgebras), and therefore ®, = {0} [resp.
{0} oru(1)]. Q.E.D.

Among the remaining simple algebras, all contain
£ except for the following three (noncompact):
31(3, R), éu(2, 1), and Q2,2

Lemma 4. Every U(®, 81(3, R)) is ® &P 8((3, R)
and every U{(®, 81(3, R), u(l)) is U(e, u(l)) @
81(3, R), up to isomorphism.

Let ® = ®-®, be a unification, @ being a Levi
subalgebra. ® D &£ and & 81(3, R), and therefore
cannot be any real form of b, or g,. But dim ® < 18
(or possibly 19) and 8I(3, C) D ~@®; the only
remaining possibility is thus 8((4, R). However,
the inhomogeneous 8I(4, R) L.a. is not a U(e,
81(3, R), u(1)), as we can verify easily by consider-
ing its structure (which we read immediately from
Table I.a. in the Appendix and from the basic
representation of that algebra, written in the Ap-
pendix). Q.E.D.

Lemma 5. We have gu(2, 2) = U(®, su(2, 1))
and, in a similar way, 80(4, 3) = U(®, g,.), the
intersection being the (only) nilpotent nonecommu-
tative algebra of order 3 (denoted by ¢; in Bourbaki,
Ref. 8, Chap. 4, Exercise 9).
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Let us take as generators of 8u(2, 2) the (a,, af, ¢;
by, Bf, ¢, ¢s) with which Table II is written (cf.
Appendix). su(2, 1) can be represented in 8u(2, 2) by

(%(ais + 3;}, %(a{ - + 232); %(éi + ci}s
30 + by), %’(bz - b3), 3(b, + ¢s)), (3-8)

a8 is easily seen in a suitable 4-dimensional repre-
sentation of §u(2, 2), in which 8u(2, 1) is represented
by 3rd-order matrices. We can represent @ in
su(2, 2) by

(@x; bey 2r = (af + b)), ps = (61 + c2)). (3.9

We have also other ways (equivalent for our pur-
pose) to represent these subalgebras in 8u(2, 2).
With @ and su(2, 1) thus represented in 3u(2, 2),
and with the aid of the above-mentioned 4-repre-
sentation, one checks easily that their intersection
is the only nilpotent noncommutative L.a, (iso-
morphic to that of lower triangular matrices, with
zero diagonal, of order 3) generated by

3 =(al+c) +Gi+ea)=p+ps,
(ay + af) 4+ (b5 + bs)

=p+ (@t b) =2, (310
(@ + @) — (b: — B

=1+ (@ — b)) = 7,
with commutators
[z:, 2] = 3, [22, 5] = [0, 25] = 0. (3.11)

[We notice that this is the Lie algebra of the ca-
nonical commutation relations.] Since

(£ D u(d))-@, ~ der (®)

is a (nonsemisimple) maximal subalgebra of 8u(2, 2)
(generated by ai, by, D, Ds, Ca), and 8u(2, 1) is a
(simple) maximal subalgebra, the described unifi-
cation (up to conjugacy) is the only one; this can
also be seen from the Iwasawa decompositions of
8u(2, 2), 8u(2, 1), and a similar decomposition of @,
decompositions in which we specify the commutative
part of the nilpotent subalgebra, and the classifica~
tion of all 3-dimensional (order-3) L.a. (cf. Bourbaki,
Ref. 6, Chap. 6, Exercise 23), by a close study of
the nature of the intersection needed to obtain the
wanted unification.

The case of g.. and 80(4, 3) is very similar;
indeed, we have the decomposition:

822 = (8u(2) 4+ su(2)) + [(Abelian subalgebra with
semisimple elements of order 2) - (nilpotent
subalgebra of order 6, and with order-3
commutative part)] = 8u(2, 1) + {sub-
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space generated by two ‘‘compact gener-
ators”, one noncompact semisimple and three
nilpotent generators}.

8,2 I8 irreducible in 8o(4, 3) (with respect, e.g.,
to the basic 7-dimensional representation *°).

80(4, 3) = (3u(2) + su(®) + su(®)) + [(Abelian
subalgebra with semisimple elements, of
order 3) - (nilpotent subalgebra of
order 9, with order-5 commutative part}]
80(4, 2) + {same subspace as above}

= su(2, 2) + {same subspace}

[as 8u(2, 1) is real-irreducible with respect to the
6-dimensional representation of 80(4, 2}], and there-
fore,
80(4, 3) = (@ + su(2, 1) with order-3 intersec-
tion) + {same subspace}
= (@ + §.,, with order-3 intersection).

Thus 80(4, 3) = U(®, g.,.) with a 3-dimensional
nilpotent intersection.

il

i

Thus, we cannot have nontrivial and nonbanal
U(®, x), with simple X, except perhaps with 40
simple L.a., namely g,,, and 8u(2, 1), and 38 L.a.
containing £ as subalgebra;

£ = 80(3, 1) = 81(2,C) = 8p(l,C) = 80(3,C);
80(3,2) = 8p(2, R), 80(4, 1) = 8p(1, 1);
8i(4, ) = 80(3, 3), su*(4) = 805, 1),
su(2, 2)= 80{4, 2), su(3, 1) = 80*(6);
81(3, C); 80(5,C) = 8p{2,C);
8o(p, 9l < ¢ <p,7<p+ ¢ <10

{including 80*(8) = 80(6, 2)]; p(n, R) (n = 3, 4, 5);
su(3, 2), su{4, 1); 8l(n, R) ¢ < »n £ 10); and
8l(n, C) (n = 4, 5). This does not mean that, with
each one, we can have other than trivial and banal
unifications U(®, X). However, with any other
simple L.a., any U{(®, %) is either ® @ &, or, if
® C ¥, the banal U(®, X) = £ DO ® (O £ then),
or else, if % is of type a,, the banal unification
U(®@, X) = @ (which is of no interest for our problem).

Now let ¥ be g semisimple L.a., X=X, D~ - -BXs,
where %; is a simple La. (=1, +-- , k), and
suppose that no ; is of type a,, nor contains £,
nor is 8u(2, 1) or g, [ U(®, X;) is then trivial for all j].
Set U{(®, X) = ® = ®-R; (& being Levi sub-
algebra). Then we have & =~ %[ @ --- B «x{,
where %/ is simple. We eannot have &’ < k because
we would then have either

SC{ 3 (%IZ; @ 9:2 and I~ ee')
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or

X OX, Px: and X D (X; and = L),

if we order the X;’s and %/’s in a suitable way;
and both hypotheses are excluded by dimension
considerations, according to Dynkin’s classification
of semisimple subalgebras of simple L.a..’ Thus
either k' =k + 1, X, "L, X=X, G=1,-+-,k)
{and thus, by our Lemma 1, U(®, X) =~ @ @ X)
or k' =k, X} = X; (j > 1) and therefore (X} -®,) =
U(®, %) and U(®, X) = (By>1 %) @ U(@, X)
from the same lemma. In a similar way, the results
for U(®, X, u(l)) are extended to semisimple L.a.

If now X be a compact Lie group, its L.a. X is
reductive, ie., X = X, P X,, where X, is maximal
semisimple and 9, Abelian. Now, except the case
in which &, has 80(3) as direct factor (in that case, a
banal unification is possible), U(®, ;) &~ ® P X,.
If o0, ~ %! D 80(3), we may have also the unifica-
tion U(®, X)) ~ ® P «.. Therefore, a Levi sub-
algebra ® of U(®, %) necessarily contains £ @ %,
(or possibly £ @ ). By virtue of dimensionality,
this must be, in fact, the total Levi subalgebra;
therefore, the only possible unifications are

U(e, x) = U(®, %;) P %1, (3.12)
with &/ = X, or possibly %, &~ X} @ $0(3),
and with
U@, x,) =~ £ U(®,, X2, (3.13)

where X, € %, and dim %, — dim X < 1. More-
over, if we distinguish between compact and non-
compact generators of the Abelian subalgebra of
U(®, ) which will come from 9C,, we can have either
P xor ®P %, P X}, with dim X, — dim Xj=1—
or else, if X[ P 80(38) =~ %1, ® P X, D X..

Therefore, ¢*"p,p, is an invariant of any ®@ =
U(®, «) for any L.a. € of a compact Lie group X
if we want to recover X by passing to a Lie group
of Lie algebra Q.

We sum up our results in two theorems.

Theorem I: Let X be a real semisimple Lie algebra.

() If x C &£ [strictly, i.e., 80(3) or 8I(2, R)], any
U(®, X) is esther trivial (® @B X) or banal (®, un-
Tnleresting case for our purpose).

(i) If X = su(2, 1) [resp. X = g,..], one can have
8u(2, 2) = U(®, 8u(2, 1)) [resp. 80(4, 8) = U(C, g».2)]
with intersection on the nilpotent noncommutative Lie
algebra of order 3.

(iii) If no simple ideal of X has a real representa-
tion in dimension < 10, every U(®, X) is either
trivial (® @ X) or banal (%, if X D @).

(iv) If X contains no subalgebra isomorphic to
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£, nor any simple ideal of the types considered in
(i) and (ii) [80(3), 8(2, R); 8u(2, 1), gs,2), then every
U(®, x) is trivial (® P X).

Corollary. In order to get U(®, X) # ® P X
and 7 @, with semisimple &, it is necessary, if
o(®) M Y(x) is semisimple (in particular, {0}),
that & contain a subalgebra isomorphic to £, and,
in any case, it is necessary that & be non-compact.

If X is a compact Lie group, with Lie algebra
L = X P %, (X, s La.), every U(®, X) is
isomorphic to U(®, X,) @ «xf, where X{ € «x, and
o differs (possibly) from &, only by a direct factor
80(3) (‘“put in common” with ®). Moreover, the only
topologically interesting unifications are ® @ <,
where X’ € & and may differ only by a direct factor
u(1) or (possibly) 80(3).

Theorem II: Let X be a real semisimple Lie algebra,
containing no subalgebra isomorphic to £, nor any
stmple ideal of the types considered in (i), (ii), of
Theorem I. Then every U(®, %, u(l)) <s tsomorphic
toxXx P U(®,u(l)), i.e., either ® P X, or ® DX Pu(l),
or X P der (®). In the cases of 80(3) and 8(2, R),
there are also the banal unifications @ and ® P u(l),
and the semidirect products @& = £-(®, P ®}),
with a 4-dimensional commutative ideal ®R). In the
cases of 8u(2, 1) and of @,.., we have also the same
result as in Theorem I (ii), with (or without) a possible
direct factor u(1) in addition.

To conclude this section, we first give two ez-
amples of wunifications, the first with £ different
from the one already shown and the second with
the de Sitter algebra 8o(4, 1) (with which we
get a nontrivial correction to ¢*’p.p,). Next, we
study, a priori, the general form of the unifications
U(®, %), for simple <.

Ezample 2. Let ® be a nontrivial unification
U(e, £) with £ =~ £, ® a Levi subalgebra of
unification: 6 < dim ® < dim& <16, and & D ~®
if dim ® > 12. In this last category, the only
possibility is 8 = ® = 80(4, 2), but the structure
of this algebra (cf. Table Il.a in the Appendix)
shows it is not a U(®, £’) with order-1 intersection.
Therefore, 8 &~ £; indeed, ® of type b, (noncom-
pact real form) is excluded, because the inhomoge-
neous de Sitter Lie algebras [X-®, with 5-di-
mensional &, and X = $0(3, 2) or 80(4, 1), the
defining homomorphism being a 5 dimensional real
representation of %] are U(®, %, u(l)) with inter-
section on £, but are not U(® £’). Therefore
R = (£-®g), and, if we do not want the banal
unification @, we must have @ = £. (Ro P )
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with 4 or 6-dimensional commutative @, (commu-
tative, because if the defining homomorphism is a
representation reducible by real transformations, we
do not get a unification). As 6-dimensional real rep-
resentation of £, we examined the adjoint, which
is (in a suitable basis) “I, @ D; + J, &Q D,”,
where I, = (5 1), J. = @ 70), and D, is the adjoint
representation of 80(3). The above expression
means that an element z € 80(3) is represented by
I, ® Dy(z), and Jxr & J8o(3) [J is a complex struc-
ture of £ 22 80(3) X C (see Ref. 10)] by J, X D,(x).
We have a similar result with “D; ® J, + D; ® I,”.
We notice that the representation we denoted
by D, is obtained in a similar way by considering

= 8l(2, R) ® C from a basic 2-dimensional real
representation of 8[(2, R). Now, if we take Q, 4-
dimensional, we cannot take the defining homo-
morphism of (£-®,) as Dy &P Dy because a computa-
tion shows that, in that case, the intersection is
at least 3-dimensional, and we have thus only
U(®, £, u(l)). But we can take Dy @ D, and

(@) = £:@, Y&) =+ adg)e

for g € Q. A not too difficult computation shows
then that we have intersection on

kZ (>\lcak + Ilkbk) cL

if a system of 4 homogeneous linear equations in
the 6 (A, w) is verified, system which has, in
general (for nonsingular ¢,), a solution in, e.g.,
My, py for fixed s, us (the solution being never such
that all the A,’s or all the u;’s are simultaneously 0),
and that if (A, ) is a solution, (u,, —\;) also.
Therefore, we have, in general, a U(®, £') with a
2-dimensional commutative intersection.

Remark. Given U(®, £), we have
e, eide) =2l e (319

(£!, £5 isomorphic to £). Thus we have all the
possible unifications of @ and £, &P £,

Ezxample 3. Now, let ¢ = 80(4, 1), take as basis
the generators (as, af; bi, c,) of 80(4, 2), and form
the semi-direct product (X:®,), with 10-dimensional
Ry, by the adjoint representation (in that basis). This
representation splits on £ = (a;; bs) in Dy P adg;
let us take as basis of ®, the elements (ps, 24, g1, q7),
and let g, be a general linear combination of the
q’s and g’s. We may take

YEX) =X,  o@® = (I + ad g)(L-®);

R, being commutative, one sees that, as a conse-
quence of our treatment of the first example of
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U@, £, u@) @ud) = £-®

(with the same ®, as here), we have

® = o(® + ¥X) + ¢ ul) @ u)).

Moreover, the adjoint representation of 8o0(4, 1)
being “orthogonal” [more exactly, in 80(6, 4) re-
alized by its basic representation], we have an
invariant

C=gpp+ 2(G—a) (B.15)
of that unification, and thus a nontrivial “correc-
tion” to —g""p,p, (we choose iy = i, g = —1).

Types of Unifications

Now let & be a stmple L.a. and set U(®, X) =
® = (®-®,), where ®, is the (solvable) radical;
we have ® = ¢(X) 4+ ¢(®). There are then two
possibilities: either & = ¢(X), or ® D Y(X) strictly,
if ® is a Levi subalgebra containing ¢(). We
suppose ® nontrivial (%@ P «).

If, in the first case, moreover, X O /@, we have
® & (X-®,), where the semidirect product must
clearly be nondirect. From dimension considerations
(on the possible intersection of the supposed unifi-
cation), ®, must be either {0} (banal case) or
solvable and 6-10-dimensional. If X D =@, we
have ®, O @,, the semidirect (nondirect) product
being defined by a representation containing Dy on
a subalgebra =~ £ of X (X D ~& for X is here
a Levi subalgebra of the unification).

Now if ® = (B-®,) with & D X (strictly), and if
® D R®P, Ry D @, and thus dim & — dim X < 6;
then the only possibility is [by dimensional con-
siderations of the algebras, or of their representa-
tions, and by the structure of the inhomogeneous
8[(4, R) algebra, 8((4, R):-®, with 4-dimensional
commutative ®,] the banal unification @, for X of
type o,. If ® D =@, dim ®, > 5 or =0, and

10 > dim ®, + (dim & — dim %) > 6,

the dimensions of subalgebras of ® (an intersection
of two L.a. is a subalgebra of both), and the classi-
fication of simple L.a. (and of the dimensions of
their basic representations) show that ®, = {0}.

Therefore, there are only three possible types of
nontrivial and nonbanal U(®, X) = ®:

UD) & ~ (X-Ry), X D ~E®, &R, solvable of
dimension 6-10.

(UID R & (X-Ro), X D P, Ry D @, the de-
fining homomorphism giving Dy on a sub-
algebra =~ £ of X.
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(UIIT) ® simple DO & (strictly)—and of course
then ® D ~@.

A priort (we must still verify in most cases that we
have indeed a unification, and this may very well not
be), (UI) can be the case of 81(5, R) with a 10-dimen-
sional representation; of 8l{n, R) 6 < n < 10)
with a basic representation; of 8l(n, C) (n = 4, 5),
8p(5, R), 8o(p, @) withp > 4,¢ > 2, p + ¢ < 10;
and 8u(3, 2), with basic real representations. (UII)
is surely the case of £, 81(4, R), and perhaps other
algebras. (UIII) is the case of the “exceptional”
unifications, for 8u(2, 1) and g.,,, and perbaps of
80(p, @) = X [with® = 8o(p + 1, ¢) or 8o(p, ¢ + 1),
p2¢p+qg<10,andp+12>4¢220rp =4
g+ 12 2 orsgl4 R) = X [with ® = 8I(5, R)].

Note. This work was written before L. O’Raifear-
taigh’s structural considerations'® were published.
One may notice that these (however unwieldy their
development) are essentially parallel to the study
of types of unifications we made here [both being
based on the Levi~Malcev theorem and the fact
that @ = £-®, wherefrom if ® = (®-®,) is any
L.a. containing @, either there is a Levi factor ®
containing @, or ® C ®,]. As to the problem of the
spectrum of the operator M representing —g“p.p,
in some representation of a Lie algebra ® D @ in
which it is self-adjoint, the claimed result of O’Rai-
feartaigh is not true,"® though it must be said
that it did lead to a public clarification of the
question. In fact, a much weaker result could be
proved by Jost'*—and the (final version of the)
proof shows that all the assumptions are needed in
an essential way-—namely that for irreducible uni-
tary (continuous) representations of a connected
(finite-order) Lie group G D P, the spectrum of
M is a connected set (thus, while an isolated eigen-
value is the whole spectrum, eigenvalues with
“continuous background” are not excluded). This
does not hold as far as only Lie algebras are con-
cerned (and we dealt mainly with Lie algebras in
this paper), and counter-examples can be given.'

4. APPLICATION TO A MASS FORMULA

We have seen that, except for two “exceptional”
cases, any interesting semisimple internal L.a.
must contain & £. But £ itself is not enough, since
we have only type (UII) unifications (as is easy to

12 L. O'Raifeartaigh, Phys. Rev. 139, B1052 (1965); see
also Phys. Rev. Letters 14, 332, 575 (1985).

13 M. Flato and D. Sternheimer, Phys. Rev. Letters
15, 934 (1965); 16, 1185 (1966).

1 R. Jost [private communications; the final version is
published in Hely. Phys. Acta. 39, 369 (1966)].
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check), and then, the ideal being commutative,
¢"’p,p, is an invariant. On the other hand, we have
some reasons to think* that the internal L.a. is a
subalgebra of 8{(4, C). Now, the (phenomenological)
classification of elementary particles according to
some representations of the type-a, complex algebra
[the compact real form of which is 8u(3)] seems
until now, at least for baryons, in good accordance
with the experimental data. For these (and other)
reasons, we are particularly interested [besides the
exceptional unification 80(4, 2} = U(®, 8u(2, 1)),
the implications of which we deal with more details
elsewhere (our interest is this unification arose first
during informal discussions with Dr. G. Rideau)],
in the possible unification of ® with the algebra
81(3, C) = &u@@) ® C [which contains £ and is
contained in 8((4, C)].

Let us therefore look for the unifications U{®, X)
and U(@, %, u(l)), for X =~ 81(3, C). If ® denotes a
unification, we write, as usual, its Levi decomposi-
tion ® = ®-R, where ®, is the radical and ®
a Levi subalgebra. If ® is not isomorphic to X
(which is of complex type a. @ az), we have at
least ® of types a; or a; P a;, the dimension of
which is greater than 27; since by extension of
the base field, a unification remains a unification,
we must have ® = X:®R,, where the semi-direct
product gives @ with a subalgebra &~ £ in % and a
commutative subalgebra ®, C ®.. Now, ®, is of
order < 11; because of the dimensions of the real
irreducible representations of £ in dimensions < 7,
and of the irreducible representations of X in di-
mengions < 11, we may a priori have &, of orders
8, 9, 10. Thus, our first step is to look for a real
8, 9, or 10, dimensional representation of & =
8{(3, C) containing Dy on a subalgebra &~ £. Then,
we must prove that we indeed get a unification
fand, in the case we consider, we see that this
is a mere consequence of our study of U(®, £)].
Once we have a suitable unification, we try to find
a “correction” to ¢"'p.p,, and then express it in
terms of internal quantum numbers.

As we do not know the exact way in which the
representations of % split on the various subalgebras
~ £(80(3, C) and 8((2, C)), we start from some re-
duced representation of a certain subalgebra £, C X,
and try and build therefrom a representation of X,
that is to say find 10 more matrices, representing
generators of a supplementary subspace. Let us
first consider the 10-dimensional representation
Dy@® ad £ on &, = 8(3, C) = (a; by (in the
basis of Table I1l.a—cf. Appendix). But if we then
try to determinate the coefficients of the represent-
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ing matrices of £, /2 81(2, C) C « (for instance),
we arrive at contradictory conditions, and the same
thing occurs if, instead of ad £, we take another 6-
dimensional real representation of £, obtained from
the canonical 3-dimensional complex realization as
$0(3, C) by doubling the dimension. Again, the
same thing occurs if we take £, = £; [e.g., see the
Appendix for this notation of a 8[(2, C) subalgebra
of 8{(3, C)] and try to extend it to (a; by) =
80(3, C) C «. If one seeks an eight-dimensional
representation of X, decomposed on a subalgebra
L. & £ in Dy &P D, one arrives at the same im-
possibility, whether one takes £, = (a:; b;) or £, =
&; (or, which is equivalent, £, or £,).

Our problem is mainly to get a real-irreducible
(irreducible by real transformations) representation
(with real coefficients, of course) of 8I(3, C) = &,
and then to see if, on some £, C %X, it splits so that
we get Dy @ (another real representation of £,). We
do know that the Dy representation of £ & 8((2, C)
is the Kronecker product of a (basic) 2-dimensional
representation by its contragredient, and this sug-
gests the consideration of the Kronecker product
of a (basic) 3-dimensional representation of & by
its contragredient, which will contain Dy on a
81(2, C) subalgebra of & (ie., a subalgebra like
£, £, or £;), and be real. If, moreover, among
all complex-equivalent representations, we ecan
select one that splits on a £ C X in a way so as to
obtain a unification, our first (and most unwieldy)
step is accomplished.

We therefore iry and build a 9-dimensional repre-
gentation of X, which, on £, splits into Dy @
(=D, @ 0, where —D, is also a representation of
£ (the ~ standing for transposition), and O is the
trivial representation in one dimension. For com-
modity in the caleulation {and also in order to
check the 10-dimensional case from another point of
view), we try and prolong the 10-dimensional repre-
sentation Dy @ (—D,) @ 0@ O of &5 to all X. In
this way, we obtain a U(®, &, u(l)).

We take as representing matrices of the generators
(3¢, --- , $bs) of £; (cf. Appendix), those obtained
in representing the elements (a;, --- , b;) of £ by
Dy and (—D,); we need 10 more basis elements.
Let us then set

@ = > AapBagle, 8=1,2,++-,9,00 (4.1
a.B
(B .p is the canonical basis of the gPs). We have

3a; = By — B + %(Ees — By + Egr — Erg).

If we write down the conditions given by [as, a:] = a,,
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and then by [a,, a5] = @,, we get @, and a, with
only 40 coefficients N (instead of 100), in 10 sets
of 4. Now we put

b = 2 NisElg, (4.2

and express [as, b,] = by, [bs, @s] = by, to get by, by
with 40 coefficients N’ (same expression as above
with the N's). Moreover, [a,, b)] = —b,, whence
the A’s in terms of the N's. We then write [a4, a,] =as,
from where we obtain relations in the MN's, and
[by, b:] = —a,, whence (opposite) relations in the
A’s, with which we can make those in the A’s more
precise. We further write down the relations be-
tween the A's obtained from [a,, b,]=0, [b;, a:]=bs.
As we construct a matrix Lie algebra, the Jacobi
identity is automatically verified; using it, we find
that all the commutation relations of the algebra
£, = 80(3, C) = (ay; b,) are verified. The conditions
on the A’s we get are too long to be given here,
even after simplification by use of vectorial con-
siderations. We give them a much simpler form by
supposing (this seems to be necessary, from the
general look of the conditions) that the repre-
senting matrix of a, (a ‘“compact generator”, ie.,
generating a compact one-parameter subgroup by
the exponential mapping, in the given 3-dimensional
realization, for instance) is skew-symmetric (there-
fore, that of a, is also a skew-symmetric matrix).
We can now simplify the conditions by considering
the commutators

b; = {619 b;] = {b21 c;] = [b;l’, bl])

and also by expressing them in a vectorial form.
We obtain (for @, = 2, A .sE .5 as above)

ALuﬁ = —Aﬁa) )\26 = )\15

= ¢os § CoOB g = )\45 = 7\37 = }CFKSQ = kk’)\m,

where k> = (1 + k%) (kis const # 0),0 < 6 < }=,
0 < ¢ < 2r, and 3 similar sets of equalities, the other
coefficients being null. If now we write [¢{, b)’]=2a,,
we get k> = 1 and sin 2¢ = 0, or sin 2¢ = 0 and
sin 26 = 0. We now verify that (if £* = 1 in both
cases) [as, b}’] = 2¢, and [a,, B5] = 2¢;, and that
we get the desired results with the commutators of
¢! with b/, a,, by; of ¢, with a,, bj, b}’; of ¢} with
by, as; of ¢, with a,, b}, b}’; and of ¢, and ¢ with
ai, by, bl, bl’, a,, by, b}, bj. By use of the Jacobi
identity, we check that all other commutation
relations are verified (of course, one uses also the
antisymmetry property of commutators).

All the matrices representing elements of X are
then of the form
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(A4 kk'a Ka
k'8 h k|,
K8 kh h

where A is an 8 X 8 matrix, ¥* = k¥ = 1, ais an
8-component column vector and 8 an 8-component
row vector, the representing matrices of the base
elements being either symmetric or skew-symmetric.
The matrix

Iy 0
V= O_I_(Iclc’ k/)=V—1
V2 \Ek —FkK
brings them to the form
A V2a 0
v2g 2n 0],
0 0 O

and thus reduces the obtained representation to
D, @ O, where D, is a 9-dimensional real repre-
sentation of % (I, denotes here the order-n unit
matrix). This is an trreducible representation, be-
cause (after reduction) 2¢, + ¢; is represented by

-2I, 0 O
A, = 0 I, 0] cos2p
0 0 4

(with cos® 20 = 1), thus by a regular matrix, that
cannot be reduced into a direct sum of an 8-dimen-
sional matrix @ 0 by a similitude 4, — V;'4,V,,
(V, being the regular 9-dimensional matrix). How-
ever, D, is reducible when restricted to the max-
imal compact subalgebra 8u(3) generated by
(as, b, ci, ¢}) (k = 1, 2, 3), and only into an 8-
dimensional real representation (equivalent to the
adjoint) @ O (O is the trivial 1-dimensional repre-
sentation) as can be seen by an argument similar
to the one we just used (the representing matrices
of the above-mentioned base elements have a 9th
row and column which is v2 times the 4th). Actually,
we obtained here two (irreducible) representations
Dg and D} (since @ is defined modulo 7 only, there
are 2 possible choices of ¢ such that sin 2o = 0),
and these coincide with Dy @ (=D,) @ O on &,
and are related by Dy(£,) = D4(L,) and Dy(L,) =
—D}(£,). Thus, they are essentially the same repre-
sentation. In the Appendix, we have given D,.
More precisely (Table IV), we have given the
commutators between % and the ideal ®, in the
semidirect product ® = %-®, of defining homo-
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morphism D,, from where it is easy to get D,. We
have taken a basis (p,) (u = 1, 2, 3, 4) of @, C ®,,
(g.) of @ C ®,, and r, = V2r} of a supplementary
subspace; we see that, e.g.,

[a:, ] = —@q. cos 8 — g, sin 6.

As we take the basis of ®, in the ordering
(Pr, *** , Ps} @, *** , G4} To), this shows that the
matrix representing a@, has a first column with 0
coefficients, except —cos # in the 5th row and
—sgin 6 in the 8th. Similarly, the relation

fa:, ¢;] = sin 0, + ps — 10)

shows its 8th column is 0 except for sing in the
1st and 4th rows and —Vv?2 sin 4 in the 9th. Here, we
have a representation (and therefore a unification)
depending on a parameter (0 < ¢ <%x, mod =),
although we do not need this fact in the following.

It is then easy to check that we have a unification

& = U(®, x, u(1)), (.3)

with a (commutative) 2-dimensional intersection
between ® and . First (and this is because of the
irreducibility of D,) one can check, by an elementary
computation [looking for commutation relations of
®, such that Do() C der (Ro), 1.e., Do(x) € der (Ry).
Vz € X; we express this on a basis] that ®, must
be commutative (and not only solvable). Next, we
consider the algebra

£ = I + ad g))&s,

where ¢, is & linear (real) combination of the ¢.'s.
For instance, we may take ¢o = 20q,, where a is a
(real) constant. Since ®, is commutative, [£], @] =
[£s, @], ie., [, o] = [ls, Po] VDo € @o, s € £,
I = (I + ad g,)ls. Thus, we have

(@) = (I + ad ¢)(L:+ ) = O. (4.9

But, one checks, exactly in the same way as for
U(®, £ with Dy @ D,, that, in general (and, in
particular, for ¢, = 2aq.), £ M £; is a commuta-
tive 2-dimensional subalgebra. Therefore, I M o(®)
is 2-dimensional (for ‘“nondegenerate” g¢,’s), and
X-R, = R is a unification U(®, X, (1)), the added
u(1) being generated by r,, for instance.

Let us now pass to the second step, the search
of a suitable correction to ¢""p,p, in the above unifi-
cation. ¢”’p,p, is a second-degree term in the en-
veloping algebra of the unification ®; we would like
to find an element in the center of that enveloping
algebra which contains it. But the representation
D, of 8I(3, C) = & is not “orthogonal”, i.e., Do(X)
is not contained in a 9-dimensional realization of a
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real form of the complex algebra b,. We know that'®
as @ a, is a maximal regular semisimple algebra of
b, and is also maximal (nonregular, nonsimple) in
as [as is SL(3) X SL(3) in SL(9)], but is not con-
tained in b,; this is a fortior:z true when passing to
real forms. As we see later (and can guess from
Dynkin’s remarks on invariants'®), this is a source
of difficulties, since we are looking for a second-
degree invariant in the enveloping algebra of ®.
Indeed, let

xr yy z E fr, Yo, gO; hO E (ROy

and set
'Yél = [70;2]1 g(') = [x) go],

[xy ho]y

7(,) = [’YO: y]x
y =[z,yl, M= and 2 = [z,2].

Since ®, is a commutative ideal in ®, one sees im-
mediately that

[z, (v + 90)°] = 2@z + g0y’ + gily + 90)
+ v, g + ly, gt + v/, 2,
[vo, (0 + 90)°1 = 296y + g0) + [v, 76),
[z, ( + go)(z + ho)]
= + g3 + ho) + (y + g + A,
[yo, (¥ + go)(z + ho)]
= (2 + yv) + (voho + go¥3").
[It is also possible to make these considerations more
precise by writing
®o = @ + Q + (ro)
and
x = 8u(3) -+ Jsu(3)
= (ax, b/, ci, ) + (b, bi, &1, ca),

but we need no such considerations.]
If now we are looking for a second-degree ex-
pression

D@+ g)+ 2@+ g)e+ ho

commuting with all &, we must have, for all z € X,
[e, X y" + 2wl =0, (4.6)

and therefore > 3° -+ 2, yz will have to be a Casimir
operator of . If, moreover, we want an expression
commuting with all ®, it is not possible to take
all the go’s and hy’s as zero, and then it is necessary
that

(4.5)

> > g+ 2 gkl =0 “.7)
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(in any case, this is needed if we are looking for
an invariant really containing ¢""p.p,), and it is
sufficient if we take every y and z as zero.

So, we must find a second-degree expression in the
elements of ®, containing —m*® = ¢*’p,p, and (if
possible) commuting with all . We know that
[m?, £5] = 0, and see further that [c¢/, m*] = O.
We now write out a big table (not reproduced here)
giving the commutators between the 16 base ele-
ments of & and all 45 two-by-two products of base
elements of ®, (ie., p}, ¢, rs, p.p, and g¢.q, for
U ¥ v, Do, Puls, 4uTo). Int this table, we see that

%[ah g‘"pppw + 5“'9;&»] = —¢@, COS 0(7'0 _— 2p4)

— gy 8in 0(ry — 2p) = [a;, 2p4ro). 4.8)

In the same way, we see that

gwpupv + 5"'%% - 2])47‘0

commutes with all the generators of the maximal
compact subalgebra of X, su(3) = (ax, b}, ci, ci),
but not with the other generators of X. Moreover,
it is enough to look at the commutators of £, and of
@, with the 2-by-2 above-mentioned products in
order to be convinced that no second-degree ex-
pression in ®, can commute with all 9. Therefore
there exists, in the enveloping algebra of ®, no
(global) invariant of degree 2. On the other hand,
the expressions

Ci = ps + 370 4.9
and
C. = pi + p2 + p3
+ip -+t eat+at+a (410
and therefore also
~C = C, — 40}
=p"—pi+ "+ ¢ —2pr (411)

(where p* = 2.2 p%, @ = 2.} ¢?) commute with
the 8u(3) = (as, by, ¢/, ¢;) subalgebra, and of course
also with the ideal ®,. An inspection of C, and C,
shows (once more) that D, is reducible on 8u(3) into
an 8-dimensional (“orthogonal’’) representation,
@ 0. We have

2p47'o = 201”'0 "7'02.
Thus

m’ = —g"p.p,

=C—2Cro+ €+ ¢t +1, (4.12)

where C' and C, commute with 8u(3) and ®,, and
therefore with the subalgebra 8u(3)-®, of ®.
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Remark. By using the inclusion a, @@ a; C b,
and the already mentioned fact concerning the in-
clusion a; C a3 = b; (and its consequence on 6-di-
mensional representation of a,), we can get a 12-
dimensional “orthogonal” representation of X,
which is real-irreducible—because it can be obtained
from a 6-dimensional representation of 8u(3) by
doubling the dimension of the (complexified) 6-di-
mensional representation of . With the correspond-
ing inhomogeneous algebra, we have a quadratic
invariant, but in order for it to give us what we
want, it is necessary for there to be, among all the
equivalent representations, one that, on a certain
£, C «, splits into Dy P (something else); and
even then, we have to add at least two supple-
mentary u(l) in order to get a unification. In our
case, we can also have a global invariant’® but it
will be of higher order (probably of order 9—a
determinant—), and thus a most unwieldy expres-
sion, in which it is very difficult to find a mass
formula.

We now express the ‘“correction” in terms of
internal quantum numbers'®; but before, we show,
by use of a “81(3, C) contracted model”’, why it can
be considered that we obtained a correction term.

Letu ER = £ R, and set u = a + b + r, where

a € a = 8u(3d), bE b = Jsu3),

o -+ b being a Cartan decomposition of 8[(3, C) = <,
and r € ®,. The commutation relations of & (Table
IIT) give us the following relations:

[a, a] = a, [a, b] = B,
[a, Re] = (@ + Q) C Ro,
[b’ b] = ay [by (RO] = 6)lO-

If we multiply the generators of b and ®, by p € R,
and set ' = pb, &) = p@5, we get a L.a. R(p),
isomorphic to ® = ®(1) for p # 0, the structure
constants of which depend on p, and can be written
as follows:

®p) : {a, a] = a, [a, ] =V,
[a, R3] = (O D &) C &,
[0/, '] = p'a, [V, ®] = p®S;
ie., the structure constants of ®(p) are those of ®,
except for the last two types of commutators. If

p — 0, ®(p) has for a limit (in the sense defined,
e.g., by Segal'®) the limit-algebra ®(0) ~ a- (b, P Ry),

(19241;4. Flato and J. Sternheimer, Compt. Rend. 259, 3455
1. E. Segal, Duke Math. J. 18, 221 (1951).
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semidirect product of $u(3) by an Abelian (8 +
9 = 17-dimensional) ideal, defined by the repre-
sentation ad, @ D, (which, as we have seen, is
reducible on 8u(3)).

We develop here some remarks on the physical
meaning of the notion of limit-algebra, also called
contracted algebra.'” It is well known that, in
physics, the commutation or noncommutation of
quantities, as well as the commutatiors themselves,
characterize the “level’” in which we are working.
For instance, at the ‘‘classical level”, everything
is commutative (only functions are considered);
at the “quantum level”, the p’s (e.g.) commute,
and also the ¢’s, but [p, ¢] # 0. At a “finer”’ level,
the p’s (e.g.) do not necessarily commute. On the
other hand, a very small change in structure con-
stants (in commutation relations) do not change
the level in which we are working, and besides,
from the experimental point of view, a suffi-
ciently small change in the structure constants
cannot be observed. These considerations may give
physical meaning to the notions of “neighboring”
algebras (in the sense of Segal, i.e., with “neighbor-
ing” structure constants) and of limit-algebra, of
which we have here shown an example. Moreover,
it is not very surprising that in the limit we get
what can be called an “extended 8u(3) model”,
containing 8u(3) and the squared mass-operator
[and besides it happens, as seen later, that the
operators used in the mass formula are composed of
elements of the subalgebra 8u(3)-®,, of which C
and C, are invariants], since we know that, phe-
nomenologically, 8u(3) has given, to a certain
extent, suitable results.

In the limit-algebra ®&(0), C and C, are global
invariants. In ®(p), we have [/, C!] C p®}, and
[6/, C'] C p®}®}, where C’, C] denote the elements
corresponding to C, C, in ®}®R} (set of linear combi-
nations of elements r'r{, where v/, r/ € ®}) and ®}.
For very small p, [0/, C{] and [V, C'] are very small
compared to, e.g., [a, m””] (where m”* = —g*plpl),
ie.,

—2Cirt = =207 + e(p),
and ¢’ = ' + ¢(p), where ¢/ and (! commute
with all ®R(p) and e(p) have commutators [with &(p)]
very small compared to [a, m'?]. In the L.a. R(p),
isomorphic to ® for p % 0, we thus have the formula
m?® = 0" — 20l + ¢
+ ¢ + 18"+ ep) + alp).  (4.13)

17E. P. Wigner and E. Inonii, Proc. Natl, Acad. Sci.
U. 8. 39, 510 (1953).
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Therefore, Eq. (4.12) gives us (after expressing
the correction term as a function of internal quantum
numbers) a mass formula in our original sense (cf.
Introduction), up to a perturbation which is as
small as we want. Rigorously speaking, we consider
that we do here a contracted unification of X, @,
and u(l), which is also a unification of 8{(3, C)
contracted to 8u(3)-b,, of a u(l), and of @ con-
tracted to 80(3)-(®, @ @,) where ®, is an order-3-
Abelian ideal. We further notice that, in these
contractions, the commutation relations of the sub-
algebra 8u(3) -®, (in which are contained the squared
mass-operator, its correction, and the expression of
that correction in terms of internal quantum num-
bers) are the same as in the unification ®.

Now, set

8; = (I + 2 3d aq4)£3 = eXp (2(1 ad Q4)£3,

and take ® = £} ®. Denote the generators of £}
by J:, N, the Ji's being generators of the 80(3) in
£4. Denote by

R = (B) = (o, 3b3’, 3a2)
the “rotation vector” of £, (k = 1, 2, 3):
[B:, B;] = ek,
and set J = (J.), @ = (1, 2, ¢s)- From the defini-

tion of £, we have then J = R + aq and N, =
3c; — aq., from where we deduce

q = (/)T ~ Ry

= (1/)J +R — J-R —R-]), (414

ie.,
¢ = (1/a)(J? + R® — 2]-R),

where ﬁ- stands for the symmetrized expression
1(J-R + R:]). Moreover, we have a = a(J), fixed
for fixed J.

Now, we consider R represented linearly in an
operator space §; we have

R=§¢QE, J=8REF,

where E and E’ are 3-dimensional real vector spaces.
If (which is always possible) we suppose that a
duality between those spaces is defined, we can define
the symmetrized scalar product J-R & & We also
notice that the definition of & &) E is actually that
of irreducible tensor operators (in the sense of
Wigner-Racah).

If 4 is a matrix belonging to SO(3) in its 3-di-
mensional (real) realization, since it conserves the
scalar product of vectors, we have

(AJ-AR) = J-R.
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However A & Aut (80(3)) also, since it is easy to
check that

Aut (80(3)) = Int (80(3)) ~ SO(3).

Thus, [AR;, AR;] = AR, and similarly for J.
Moreover, it is always possible to choose 4 so that,
when taking the eigenvalues of the corresponding
operators_(represented in &), AJ = (0, 0, 4J;);
and then R-J = (4J,) (AR,) (for given J).

It is necessary to stress one point, in regard to
what we have done here, and in general, with the
expression of a mass formula. The treatment done,
concerning applications to finite-dimensional classi-
fication representations, is purely formal, because
the spectra of the considered operators can be
calculated only in infinite-dimensional representa-
tions. Finite-dimensional representations will there-
fore have to do with fields, or with a so-called
“subquantum level”.

Now, we do the identification R = I (isospin), the
product 2J-R defining (PC)I; = AR, and giving
2A()(PC)I; for fixed J in the formula. Here,
following standard convention, PC stands for the
particle-antiparticle passage. We can also identify

Ty = BPC)Q + v(PCO);, (4-15)

which defines the electric charge @ [by means of the
added u(1)], and ¢ = —B°(3Y?) (as q. is a difference
of “noncompact generators”), or, if it seems more
convenient,

gi = —nT" — g”GY") (4.16)
(as ¢ contained also an I’ term), where Y is the
hypercharge, and B, v, 8, 7, are ‘“identification
constants”’. Now if we apply the Gell-Mann-
Nishijima formula [which relates the added u(1)

to the enveloping algebra of ], and put 8 + v = 4,
we have the formula

m? = (C + a”’J) — C.8PC)Y

+ (@ = ) — 2(Ci8 + o MNINPOV,

+ BOI,Y + &I + (8 — BT (4.17)
We can remark here that the identification R = I
and J = exp (2a ad ¢ )R, ie., the fact we get J
from I by a special automorphism of the unification
® (which, in view of our identification of g}, is

closely related to the strangeness S) is fully com-
patible with the phase relation

(=D = (=17, (4.18)

which we can obtain from the already mentioned
relations (—1)* = (—1)¥ and (—1)*’ = (—1)%*%,
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and which shows that, for a fixed S, I and J are
not independent; this automorphism expresses a
kind of “J~I symmetry”.

Moreover, the presence of J?, of @ = «(J), and
of A(J) in the formula hints at a kind of “J» assign-
ment’ that we get by fixing J when going from
representations of ® to that of the classification
L.a. & (J does not appear in the intersection ® M X).

If 8# = B we have no Y* term, and it can
be shown that the experimental situation suggests
such an identification. In the formula, we have two
kinds of coefficients: C, C,, @, A(J) depend a prior:
(by their origin) on the classification representa-
tion, while the others (83— and 8’'—, §, and possibly
n) are “‘identification coefficients”, which do not
necessarily depend on the representation. We thus
get the following mass-formula:

m* = m’ — a(PC)Y + bI(I + 1)
+ ¢YI, — d(PO)I, + eI (4.19)

(4fY* eventually), where m, a, b, d depend, a
priori, on the representation, and ¢, ¢, (and f) do
not. As it is easy to verify, the average of I on an
isomultiplet is

(I3

Thus, identifying 8°
formula

(m® = mj — aPCOYY + b'I(I + 1),

(I 4+ 1).

87, we get the strong mass-

(4.20)

.21y

where b’ = b 4+ 3%e (and is numerically very close
to b, as is seen later), and the electromagnetic cor-
rection

¢YI, — d(PC)L; +ell; — 31 + 1)], (422

the average of which on each isomultiplet is 0.
It is interesting to notice here that, even with some-~
what different identifications of generators appear-
ing in the “raw’’ mass formula, the strong mass-
splitting given by (4.21) will be similar.

For completeness we now give some indications on
the experimental verification of the mass formula,
following J. Sternheimer (Ref. 15, and private
communications). It is seen that we can consider
the (identification) coefficient of ¥* to be 0, since
the influence of such a term is less than half of the
experimental margin (while that of the I3 term is
similar to the margin); m3, a, b are much greater
than ¢, d, e (which can be considered as constant
when J varies), ¢ and d being greater than e. This
shows that the numerical contribution of the *in-
variants” C and C, in the formula (and that of a™")
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is greater than that of the ‘‘identification co-
efficients”.
If we apply the strong mass-formula

(m® = mi — a(PO)Y + VI(I + 1) + f¥* (4.23)
to the case of the basic 1* octet, one finds —f =
0.001 = 0.0015 BeV?, and therefore, in that case,
it is fully justified to identify 8 = 8%, so that f = 0.
For the 2* decuplet, we have phenomenologically
I =1+ 3Y,andso

Y? =4I+ 1) — 6Y — 8.

In that case, there will necessarily be a compati-
bility condition, which is written later, as a con-
sequence of (4.23), and so nothing opposes the
identification f = 0. We see that the formula (4.21)
seems very well verified for the § spin; besides,
we see that it is possible to consider the identifica-
tion coefficients (which appear in the electromag-
netic correction) as constant as the spin varies.
Therefore, the mass formula will be taken without
a Y? term. For the It term, we first notice that I3
itself becomes appreciable only for |3 = § or
more. Next, we see that, in the case of the 3" octet,
the coefficient of I2 is about 2 x 1072 BeV?, while
c~6 x 107 BeV® and d ~ (8.5) x 107° BeV?,
and that these values are also appropriate in the
case of the ¥ spin (for other spins, there are yet
no experimental informations on the electromag-
netic correction), the coefficients a, b, and mj being
much bigger (the smallest, b, is about 9 x 107* BeV?,
for these two spins). So, on one hand, the introduc-
tion of an I term is not appreciable in the strong
formula, and on the other hand there are now only
two indications in favor of such a term in the mass
formula.

Let us now denote by mz the mass of the particle
E(Je, I, Y, mg), or the strong mass of the corre-
sponding isomultiplet. In the case of the basic 1*
octet, we get from (4.21) the following compatibility
relation:

4(my + mzZ) = 3m3 + 5ms, 4.29)
which is verified with a precision of 0.05%, for an
experimental margin of 0.087%,, while the Okubo-
Gell-Mann formula shows a difference of 0.5%, for
the same margin. Moreover, we get the following
electromagnetic compatibility relation (there are
two such relations, if we neglect the I? term'’):

(mz- — mz) + (mi: — ml) = (mi- — mz+) (4.25)
from (4.19), which is verified with a precision of the

same order than the well-known corresponding
linear relation.
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Obviously, the same formulas hold for antiparti-
cles. In the case of this octet, the only experimental
indication in favor of an I3 term is the value of mx-,
which is found by the most recent experiments to be
about 1197 MeV (instead of 1196 as before).

In the case of spin £¥, with the quadruplet A,
the triplet Y%, the doublet E*, and the singlet

@, we find a strong compatibility relation:

2
ma- + 3my,,. = mi + 3mi,..,

13

(4.26)

which is verified with a precision of 0.0359, for an
experimental margin of 0.18%,. There are also
3 (or 4, if we neglect the I; term) electromagnetic
compatibility relations, of which only one can be
verified at present (and the experimental situation
is not very clear):

(m?!u" - m'ZEM‘") + (mi"' + —m2A°)

= (m2y“»+ - mir“n—). (4.27)

The most serious indication in favor of the I; term
is given by recent values of mass differences of the A
particles, for it seems now that m,++ is very close,
but slightly superior, to ms-.

For spin §*, it seems now possible (as predicted
in Ref. 15) that Y* (?, 1, 0, 1650 == 6) has a spin
$%, and that it is also the case of the particle
=% (2,% —1, 1816 +3) (also considered with that
spin in Ref. 15). With NX($", %, 1,1688) and
YEET, 0, 0, 1815), we see that the compatibility
relation [which is a consequence of (4.21)]

4(m¥q“t + m?g,») = 3mz;'|t + 5m2y“n (4.28)

is verified with a precision of 0.129, for an experi-
mental margin of 0.3%. We also notice that there
exists at present no other formula that gives a
suitable mass for EZ* (the Okubo mass formula
gives 1865 MeV, and the other formula are worse).

For mesons of negative parity, we remark that our
D, (real) representation of 8((3, C) may permit to
classify the nonets of presently well-established
mesons (pseudo-scalars and vector mesons) with
spins 0~ and 17. It is found phenomenologically®®
that it is convenient to replace in formula (4.21)
the hypercharge ¥ by a quantum number n that
takes integer values (maybe a kind of principal
quantum number) and therefore to replace (4.21)
by the formula

(m® = mi + an + bI(I + 1).

For spin 07, with 4, K, =, and (92w), we find, by
elimination of m3, a, b,

(4.29)
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2 2 2

8mx — 3m, — 5m,
2 z
M2y — My

8ng — 3n,

—5n,,=g

PY—— 3 (4.30)

with a precision better than 0.19,. If we take (in
accordance with the above relation) n, = 1, ng = 2,
Ny = 3, Ny = 4 [thus, n distinguishes between
7 and (n27)], we get'® a compatibility relation that
is verified with a precision of 0.08%, for a tolerated
margin of 0.15%,.

In the case of spin 17, we take p, K*, ¢, and w.
Here, the experimental situation does not allow
us to attribute, with certainty, values of n to the
different particles; if we take for n the values 0, 2, 4,
and 1, respectively, for the above-mentioned parti-
cles, we get a very well verified compatibility rela-
tion. In both cases, by attributing different values
to n, we may predict the masses of some particles.
[One can also introduce such a “principal” quantum
number by ‘“degeneracy-lifting”’ considerations in
Riemannian manifolds.'®]

In the case of negative parity for baryons (and
positive for mesons), we cannot say, at present,
anything in favor of, or against, the proposed
formula.

CONCLUSION

We end this work by three remarks. The first
(which we develop in more detail in other papers—
see, e.g., Refs. 13 and 19) is that it must be worth-
while to consider the “exceptional” unification
su(2, 2) = U(®, 8u(2, 1)) [thus taking 8u(2, 1) as
the internal L.a.], because of (among other reasons)
the physical meaning of the conformal group, the
Lie algebra of which is 8u(2, 2), and then, for
instance, to try to apply [by a study of the in-
variants of 8u(2, 2)] our treatment of the squared
mass-operator (or a similar one) in order to get a
mass formula (or look directly for the spectrum of
the mass-operator'?®).

In that case also, difficulties due to the problem
of unitary representations of SU(2, 2) (or of repre-
sentation of its Lie algebra) will arise, and this also
leads us to our last remark.

The second remark concerns finite “internal”
groups: several attempts have been made in this
direction. It is true that (non-connected) extensions
of [resp., by] P by [resp., of] finite groups (or ‘‘uni-

13 M. Flato, D. Sternheimer, J. Sternheimer, J. P. Vigier,
and G. Wataghin, Nuovo Cimento 42, 431 (1966).

19 M. Flato, D. Sternheimer, and J. P. Vigier, Compt.

Rend. 260, 3869 (1965); D. Bohm, M. Flato, D. Sternheimer,
and J. P. Vigier, Nuovo Cimento 38, 1941 (1965).
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fications” of these—in the sense of coset-products)
may give a mass-spectrum (spectrum of the operator
representing —g¢*’p,p,), though no real mass for-
mula. But, as will be shown, this is about the only
feature of some interest to be expected from such
a treatment, that on the other hand raises many
difficulties which cannot be overcome [such as
natural derivation of charge-independance (which
is usually supposed ad hoc in this type of models,
if we want the discrete ‘“internal” group to play
the role of invariance group), nonpossibility of
getting pure mesonic states, etc.]. This being said,
we may proceed freely to our last remark.

We have seen that, because of the noncompacity
of the groups we consider, because of the nilpotency
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of the p,’s in finite-dimensional representations,
in order to give a nonformal sense to the mass
formula, etc. . . , we must study infinite-dimensional
(unitary or “local”’) representations (and these do
not always give the wanted result concerning the
eigenvalues of the operators appearing in the
formula). We have thus introduced a classification
principle, which enables us to give a formal sense
to the (then experimentally well verified) mass
formula, and to eclassify the particles as usual.
Mathematically, this principle raises the problem
of the connection between some infinite-dimensional
representations (of the unification) and some finite-
dimensional representations (of the internal sym-
metry). Physically, this principle too suggests the

Tasie La. 814, R).
1
\ a1 a2 as b [ bs a’ a’a a’s b’y b2 b di ds ds
[
a1 0 as —a2 0 bs —~b2 0 a’s | —a’s | —2(d2—ds) —b’s b 0 by _——T—'—;
a2 ~as 0 a1 —bs 0 by | —a’a| O a’y b's —2(ds ~dy) —bn =b’2| O b
a3 as —ay 0 ba —by 0 a’s | —a'y 0 —b’s b1 —2(d1 —d2) 3| =b's| O
b 0 b —be 0 ~—as as 2d1 b’s b’y 0 a’s a’s 2a1 | a1 71_
ba —bs 0 by as 0 —a1 [2¢] 2d2 [} a’s 0 a’y a’z | 20’2 | a’s
b b2 —b1 0 —a2 a1 0 [} b1 2ds a’s a’1 0 a’s a’s | 2a's
a’y 0 a’s —a's —2d1 | —b's —b"2 0 as | —a:z 0 ba b 2b1 b | b
a’s —a's 0 a’t —b’s —2ds | —b1 —as 0 a1 bs 0 b .13 2bs bs
a’s a’s —a’1 0 —b'2 —b’1 —2ds a | —a 0 b2 by 0 bs bs | 2bs
1 - 2(dy —ds) —b'g b2 0 —a's —a’y 0 —bs —b2 0 as —az 0 a1 | —m
b2 b’y 2(ds —d1) —=b"1 —a’s 0 —a’1 —bs 0 —b1 —as 0 a1 —ag 0 asz
b’s ~b's b’y 2(di—ds) | —a’2 | —a1 (] ~b2 | ~b1 0 a3 —a1 0 as | —as | O
d1 0 [2¢) —b's —2ay | —a’s | —a’s | —2b1| —bz | —bs 0 az —as 0 0 —-;;
ds ~b" 0 b's —a’t| ~2a’2| —a’s | —b1 | —2bz| —bs —a1 0 as 0 0 0
ds b —b’e 0 ~at | —a’s | —2a's| —b1 | —bs | —2bs a1 —az 0 0 0 0
Tasie L b. 8l4, R).
d1 —as+b’s aztb's bi1—a1 0 —as az T2 B3 —8":
a3+b’s dz2 by —a1 bz—a’2 as 0 —a —8's 3 B
—az+b'2 b¥1+a1 da bs—a’s —az a1 0 B2 —81 1
—d1
b14a’t bz-ta’s bs+a’s —d2 vz —8's Be 0 —a's a’z
—ds
8s 73 —81 a’s 0 —ay
—8'2 B 1 —a’2 a'L 0
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existence of a possible connection between our
quantum level and a so-called “subquantum level”,
or more traditionally, between states and fields.

APPENDIX. SOME LIE ALGEBRAS

We give here, in skew-symmetric tables, the
commutation relations of three L.a.: 8[(4,R),
8u(2, 2}, and 8I(3, C), and those of the unification
U(e, 81(3, C), u(1)) we have constructed (the ideal
®R, being there commutative). We also give the
basic representations of these L.a., and indicate
how the representations Dy and D, of £ appear in
them. The tables are expressed according to a certain
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basis of the considered L.a., as are the basic repre-
sentations, which are given in a condensed way by
a matrix constructed as follows: if the element z
is represented by a matrix, the coefficient of which
is X at a certain place, we write Az at this place;
and if, in addition, ¥ is represented by a matrix
with p at the same place, we write \z + uy, ete.
For a well-chosen basis (and a semisimple L.a.),
we can get all the fundamental invariants (i.e., a
basis of the polynomial ring which is the center of
the enveloping algebra) as coefficients of the formal
symmetrized characteristic polynomial of the matrix.

For 8l{4, R), (Table Ib) we give the basic four-

Tasww I1. a. U2, 2)
] .
AN [ ax as b by bs a't a's 4] [ by b2 b3 cx L
{
a1 0 a3 —as 0 by ~b2 (i} a’s ~-a'a 0 0 by —by 0 [}
as —as 0 a1 —bs 0 b —a's 0 a@’1 0 —b'3 0 b1 0 0
ay az —ai 0 bs —b: 0 as —a't 0 0 b2 —b"s 0 0 [+
b1 0 by —ba 0 —as a2 c1 0 0 a'1 c2 0 0 b 0
bs ~ba 4] b as 0 —m 0 [} 0 a’s 0 2] 0 b2 0
bs b2 —by 0o —az ar 0 0 0 7 a’y 0 0 c2 bs 0
a1 0 a’a —a's —c1 0 0 0 as -0 by c3 0 0 0 =b"
a's —a’s 0 a’t 1] —e 0 —~G3 0 a1 ba 0 12 [ 0 ~b's
a’s a's —a1 0 0 0 —C1 aa a1 0 bs 0 [ [ 0 —b’s
£ 4] 0 0 —a" —a'z —a's —b ~b2 b g 0 ¢ 0 —cs —c2
¥ 0 b’s —b’s —C2 0 0o —ca 0 o 0 o —as az —b1 —a’y
b'e —b's 0 (281 0 —c2 0 [} -3 0 [} as [ —a1 —bs —a’s
b's b2 b 0 0 0 —c2 ¢ 4] —e3 0 —ag at 0 —bs —a’s
cx 0 0 0 b1 —b’s —~b’s 0 0 0 ¢ b bs bs 0 —c
€ [ [ o 0 o 0 L ¢ s €2 a’1 a’s a’s L G
Tasre II. b. 8u(2, 2)
az+ib: ¢ -1 —a's —a's €1 ~c1
1a1—b1+qo 2(—p1-+p4) 2(ip1—py)
~-tas —bs a’1 0 —as as b by
g2 —iby @’z a3 0 —a1 ba b’y
—tartbidge | —2@p2+ps) 2(pr+p0)
4-ias—by a's o ax 0 bs ¥
3
az—ibs <1 b1 ba bs 0 cz
~2(q1 +q¢ 2(igr —qa) iay+bi—go
+ias+bs —cs 26 bz b3 &2 ]
—as-+ibz
-2{igr+g3) 2(g1 —ga) —ias~bi1—gs
“Figs-+bs
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Tapsz 1L 0. 33, €)
e o & | b b N IV VA Y I s i PR PR e e R 2
(o [
a,i O a; —-a, | O by —by { —2¢f —bi bl | —2c — by’ 271 2h] 1B 2B —-b @
2, | —a, 0 a, | —by 0 By | B |20 ol =] B | 2l A+ o) | ~b|—b5 =Bl —b — bl gy
o] @ —a, 0 | b —b, 0 | =By b =2 —b - B | —2f—bi| 2b | —bit 261 | ae
b O by —by, | O —a a, | —2 —b | B | 2, [ 14 — b1 27 | — ) — 20 b 1 b
byl — by 0 b, as [} —a, | b 2(c] + cp) —bi —bi|—2(c, ¥ ey bl |0l —b) b b | by
b| b —b, 0 | —a a 0 |=b B =2 b —B] | 2, | =Dy 2By} B |—20b] by
b 2 —b b | 2 —by’ 7|0 as | —a| 0 by —by| 2a, | —&y| 28, | —by | B
biy bi 1—2(c; + cy) —b] 1 =2{c] + e} ~bl' | —~as 0 a, | —b [4] by | =@z —a.| —by| —b,| bl
bl —bs b! 2c, | —bY by’ 2t | a —a 0 b, —b, 0 |—ay| 20, | —bs| 2bs | bf
bl 2! —By’ 5 | —2c, b ~bi| 0 by | —by| O —as | 6 | 20 |—~Bl—2al e |
b =20 o) bl L b 2oy )| b Dby 0 b | @ 0 — @y =~by | —by| @ | @y |bY
bi —bl’ b’ 2¢} [ 24 —b —~2¢,1 b, —~b, 0 | —a, a; O |—bs| 25,1 a; | ~2a4by
e |28 b b, |—2b 5 ¢ ol=2a) e | @ |28 b b1 01 0] 0] 0]a
e | Bl b, |—2b;) B By | —2b a a: | —2af b, b, =20 0 01 0] 0 |e
cr | —2b}" 4 s | 2b] —bj —bj | —2b, b, by | 2a, —as —az O 0 0 [ ;
s bl 244 -~2b31 =¥ —b 26, | B, b, —2b] —a, —a, 20, @ 0 0 0 |
Tasie I11. b. 8((3, €) ing matrices of (ai, b)) (we have @, = a; + af,
bk = Bk + ﬁ:’c)
., —as — thy | ap + b, We obtain a subalgebra isomorphic to £ with,
I ER Y v vy e.. [instead of (a, by,
as + ib; —c3 — ity | —a, — b, (als Qy, O35 8%, —81, ’_’}’1):
+bi + dby’ | e + def | +b] 4 b’ or
—a; — b, | a; + b, ., (n, o2, @35 ¥2, —B4, Ba),
+bf 4 iby’ | +bf +abfr| T T (@, a0, @33 Bor ¥s) —B0),

and six-dimensional representations as 81(4, R) and
as 80(3, 3). The correspondance between them is

a = §a —a), ol = i+ ab),
Bo=3b — ), B=3B+ (*k=123),
and  y, = I{d, + d; — d;) (vjk cyclic here),

The “compact generators” (those of a maximal
compact subalgebra) are (a:, af), or {a, ). In the
four- and six-dimensional representations, respec-
tively, we get Dy(£) and ad £ with the represent-

<€E{, aéy C!;; “B“;) Y3 ﬁl)r
(C{;, az’u a;; Y2, 63: “ﬁ'ﬁ’):
(alfy O(;, C\!;; 32! "B{! 71)'

Any two of these, having the same compact
subalgebra [(aq), or (af)] generate a 85(3, 2) sub-
algebra with a 10th element (an af, or o;). We get
D, (&) with £ written as (f, af, al; vs, B, —8}) in
the four-dimensional representation. This represen-
tation is not equivalent to Dy.

For 8u(2, 2) = 80(4, 2), we have given here the
basic four- and six-dimensional representations
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Tasie IV, Commutation relations {81(3, C), ideal], with ¢ = cos 8, § = gin 8.

I\ } P 2] Ps e a qz Qs L8 To
a1 —1C ~qa8 | —2C+gs8 | —q2S~qsC | —1C ~@S |  (pr+pa—r0)C 2C +psS —p2S+psC (p1+pa—r0)S 2(q:iC +4q48)
a2 @C—qs8 | —qiC—aS | qS—aC | —q20+ga8 p2C - paS (=pm4pi—r)C | (p1—patraS P28 +piC 2(qeC —q38)
as 2p2 —2p1 0 0 q2 —q1 a4 ~qa 0
by —18 44l | —g2S—C | q2C—qa8 | —qS+al | —(m4pi+r0)S —p2S+psC —p2C ~ps8 Pr+pi+roCl 2(—q18 +qsC)
23 @8 +@C | —~aS+ql | —1C ~@8 | —geS ~naC —p28 ~paC (p1—ps—r0)8 (P —ps—ra)C 2l —ps8 2{—g¢28 ~¢:C)
ba 0 0 —2m —2ps -y —q4 -1 —q2 0
by aC+a8 | € —gsS | @S+qC | qiC-+uS @1+ps+roC p2C +p3S —p2S+mC (pr+pitro)§ 2(@C +qus)
b2 g0 —q28 | —aC -S| aiS—qC | —qC+q8 —peC +ps8 P —pi—r)C | (—pr1+pi—ra)S —p2S —psC 2{ —q2C 935}
b's 0 2ps 0 2p2 q2 @ ~ —qs 0
b 18 —qsC g28 4g3C | —q:C+@S | a8 —@C | (—pr1—ps-tro)S ~paS +psC —p20 ~p3S P14+ps—r)C]  2(—@iS+q0)
(4 28 +q3C | —S +quC | —1C~quS | —q28 —qsC D28 +p3C (=p1+pa—r0)8 | (—pr+ps—ro)C —p2C +psS 2(gq2S +q3C)
b —2ps i} 2p1 0 —g5 @ 2} ~q2 0
ct —{p1-+pe) —p2 -3 —{p1+p4) 0 a2 qs Y 2r9
cs 2pa 0 0 2p1 @ —q2 ~qs a4 0
L4 ] —ps P2 0 -4 ) g 241 0
s 0 2ps ~2p2 0 o a Q2 —-a 0

(Table 11.b), with the basis that can be represented
in four dimensions (in terms of the elements of

8l(4, R)) by
a; = ty; (or <ys); al = —aj oFf —7%y,;
@, = —af {or —aby; a} =18 or —as;
as = if; (or 1963); a; = ai or —ifs;
by = v, or —ia}; bl = B, (or Bo);
by = —day or —p; b} = iy (or ia);
by = B; or dtaf; by = —Bi (or —BI;
€ = @y OF 7v;;
€ =B or -Bi;
€3 =1, OF —iog.
If we set pp = al + bf, pa = ¢, + €, We get @

with (a;; b; p.). In the first way, above, the p,’s
are represented by triangular matrices; as far as @
is concerned, we can multiply all of them by any
complex number. The second way is the canonical’
representation of su(2, 2), and in it, su(2, 1) is
immediately seen as order-3-matrices. In Table 11.b,
we have given only the first way: the second can
be constructed immediately (from Table Ib, for

example); there we set g, ¢ and g, = b} — ai,
gs = €; — ¢;. (In order to get the invariants by the
above-mentioned method, we have to ‘“normal-
ize”’ the nilpotent p,’s and ¢,’s by suppressing the
factor 2 in front of them.) We get a 80(3, 2) sub-
algebra with (as, .; b, bi) and a 80(4, 1) subalgebra
with {(ax, af; bi, €1).

For 81(3, C), we have taken the basis (a., bi, ¢, ¢3)
of 81(3, R) and completed it into a basis

(aky bkv b}’cy bl:’; ¢y, C3, C{, c.';)

of 81(3, C) (Tables III). We get 8u(2, 1) subalgebras
with the generators

(as, bi', ¢i, 2¢] + c5; by, bs, i, bE)
or With (ah {’) e(y 26; + C;; b?i b3y bgt bé)!

and a maximal compact subalgebra 8u(3) with
(ax, bY, €l, ¢}). We realize a subalgebra ~ £ as
80(3, C) by (a:; by), and three others, as 8l(2, C),
with the base elements 3(—a, by, ¢f; by, b}, €x),
which we denoted by £, (¢ = 1, 2, 3); here, we have
set —¢; = ¢, + ¢, and —¢} = ¢ + ¢}. Thus, 8((3, C)
can be considered as “coupling”, in a nontrivial
way, three ‘‘relativistic rotators”, ie., three sub-
algebras isomorphic to £.
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The concepts of instantaneous observables and dynamical variables are analyzed and generalized
to arbitrary spacelike hyperplanes. A formalism is developed which gives the basic equations of relati-
vistic quantum mechanics for dynamical variables on arbitrary hyperplanes a manifestly covariant
form. A covariant linear transformation on the Poincaré generators introduces the hyperplane gen-
erators which yield commutation relations displaying a clear separation of the kinematical and
dynamical properties of dynamical variables. An axiomatic study of the center-of-mass position
operator yields the uniqueness of the operator and completes the physical interpretation of the
hyperplane generators. The Poincaré invariance and hyperplane independence of the scattering
operator is related to asymptotic conservation laws in the hyperplane formalism, and finally, a
nonlocal, hyperplane-dependent, field theory of free spinless particles is considered.

INTRODUCTION

HIS paper contains a geometrical analysis of
the concept of a dynamical variable as it appears
in the framework of the conventional foundations
of relativistic quantum mechanics." The analysis
is presented in four stages. First, the dominant con-
cepts of nonrelativistic quantum mechanics—ob-
servables and measurements associated with instants
of time—are generalized to the relativistically in-
variant concepts of observables and measurements
associated with arbitrary spacelike hyperplanes.’
Second, the transformation equations, commutation
relations, and Heisenberg equations of motion as-
sociated with the geometrical invariance principles®
of relativistic quantum mechanics are written down
and discussed for arbitrary hyperplane dynamical
variables. A mnotational development is employed
here to effect a cleancut separation between the
dynamical equations of motion and the purely kine~
matical transformation properties of hyperplane var-
iables in a manifestly covariant manner. I believe
this is a novel result. Third, the presence of inter-
actions, via the old-fashioned device of separating
1 E. P. Wigner, Ann. Math. 40, 149 (1939); Nuovo Cimento
3, 517 (1956); R. Hagedorn, Nuovo Cimento Suppl. 12, 73
(1959); A. Barut and A. S. Wightman, 7bid. 14, 81 (1959);
E. Fabri, Nuovo Cimento 14, 1130 (1959); A. S. Wightman,
in Dispersion Relations and Elementary Particles, C. de Witt
and R. Omnes, Eds. (John Wiley & Sons, Inc.,, New York,
1960), p. 159. For a concise, up-to-date discussion see R. F.
Streater and A. 8. Wightman, PCT, Spin and Statistics, and
all That (W. A. Benjamin, Inc.,, New York, 1964), Chap. 1.
It is obvious that what I mean by the “conventional found-
ations of relativistic quantum mechanics” is the theory of
Poinearé invariance in Hilbert space.
? The Heisenberg picture, in which the operators describe
the evolution of the system, will be used throughout.
* A recent_extensive treatment of the role of geometrical
invariance principles has been given by R. M. F. Houtappel,

gbevss;n Dam, and E. P. Wigner, Rev. Mod. Phys. 37, 595

the Poincaré generators into ‘““free” and ‘‘inter-
action” parts, is considered and the connection be-
tween symmetries and conservation laws is discussed.
These very familiar topics are raised to display the
novelties of the presentation which arise from the
use of the covariant “hyperplane formalism,” as
it is called. In the course of this discussion, the
uniqueness of the “center-of-mass’’ position operator
is demonstrated.* The fourth and last stage takes
up the question of a field-theoretic description of the
evolution of noninteracting physical systems within
the “hyperplane formalism.” One is led quite nat-
urally to the introduction of nonlocal hyperplane
dependent field operators which, in the absence of
interactions, provides a description of free particles
completely equivalent to the familiar description
in terms of local quantized free fields.” This equiv-
alence seems to detract somewhat from the sanc-
tified position of the microcausality assumption
which has never enjoyed a secure physical founda-
tion.®

Throughout this paper, no new physical postulates
are invoked, and, in this sense, the treatment is
entirely within the framework of conventional rel-

4 The “‘center-of-mass’ position operator as well as two
other position operators which have received attention in the
past have been discussed in a covariant way in G. N. Fleming,
Phys. Rev. 137, B188 (1964).

5 See, for example, 8. S. Schweber, An Introduction to
Relativistic Quantum Freld Theor%(Row, Peterson and Com-
pany, Evanston, Illinois, 1961), Pt. 2, pp. 121-253.

8 Microcausality is usually based on the assumption of
the measurability of the fields. The classic discussion of this
topic is given by N. Bohr and L. Rosenfeld, Kgl. Danske
Videnskab. Selskab, Mat. fys. Medd. 12, No. 8 (1933);
Phys. Rev. 78, 794 (1950). A careful statement of micro-
causality is given by R. Haag and B. Schroer, J. Math.
Phys. 3, 248 (1962). The measurability of many fields is
undermined by superselection rules which were first considered
by G. C. Wick, A. S. Wightman, and E. P. Wigner, Phys. Rev.
88, 101 (1952).
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ativistic quantum mechanics. On the other hand, the
simplest pseudo-local interactions’ which can be writ-
ten down in terms of the nonlocal, hyperplane-
dependent, fields yield dynamical results that are
fundamentally different from those arising out of
local interactions of local fields. The detailed in-
vestigation of this exciting problem is under way
and will be the subject of subsequent papers employ-
ing the hyperplane formalism developed here.

It must be realized by now that the analysis of
the concept of observable presented here is in no
sense complete. I will concentrate almost exclusively
on the question of the transformation properties of
arbitrary dynamical variables with an eye to an-
swering kinematical gquestions without invoking dy-
namical assumptions. In particular, nothing is
said about the perplexing problem of deciding which
self-adjoint operators with complete sets of eigen-
states are in fact “measurable” or how they are to
be ““measured.’”®

Before proceeding to the main discussion, I want
to make clear the attitude adopted here regard-
ing the notion of instantaneous measurements. This
topic has been the subject of much discussion for
many years,” and the belief that the instantaneous
measurement is a useful theoretical idealization in
the relativistic domain is currently suffering a
marked decrease in popularity.

From the literature on the subject of time in

7 By pseudo-local I mean that while the fields themselves
do not obey the microcausality postulate the Hamiltonian
density, nevertheless, involves fields at only one value of
their space~time parameters.

& It has become inereasingly evident in recent years (see
Ref. 3, pp. 614, 625-627) that some of the most familiar and
common operators pose grave problems for the relativistie
quantum theory of measurement. Thus the projection
operators for position observables do not commute even when
they project onto mutually space-like regions [see Ref, 14
and G. N. Fleming, Phys. Rev. 139, B963 (1965)].% The
possibility that the hyperplane formalism may at least
permit an invariant characterization of the result of measur-
ing two noncommuting mutually spacelike projectors is
presently under investigation.

* N. Bohr, Die Naturwissenschaftern 251 (1928); L.
Landau and R. Peirl, Z. Physik 69, 56 (1931); L. Mandel-
stamm and I. Tamm, Zh. Techn. Fiz. 9, 249 (1945); V. Fock
and N. Krylov, ibid. 11, 112 (1947); H. L. Armstrong, Am.
J. Phys. 22, 195 (1947); L. Landau and E. Lifschitz, Quantum
Mechanics-Nonrelativistic Theory (Pergamon Press, Inc,
New York, 1959), pp. 150-153; W. Heisenberg, Physics
and_Philosophy (Allen and Unwin, London, 1959), Chap. 3;
A. Messiah, Quantum Mechanics (North-Holland Publishing
Company, Amsterdam, 1961), Vol. I, pp. 137, 319; Y.
Aharonov and D. Bobhm, Phys. Rev. 122, 1649 (1961);
H. Paul, Ann. Phﬁsik 9, 252 (1962); M. L. Goldberger an
K. M. Watson, Phys. Rev. 127, 2284 (1962); E. Frick and
F. Engelmann, Z. Physik 175, 271 31963]?,; 178, 551 (1964);
Y. Aharonov, P. G. Bergmann, and I. L. Lebowitz, Phys.
Rev. 134, B1410 (1964); Y. Aharonov and D. Bohm, 7bd.
134, B1417 (1964); W. C. Davidon and H. Ekstein, J. Math.
Phys. 5, 1588 (1964); H. P. Stapp, Phys. Rev. 139, B257
(1965); B. Rankin, J. Math. Phys. 6, 1057 (1965); R. Ompes,
Phys. Rev. 140, B1474 (1965).
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quantum mechanics, one may discern four principle
subdivisions. First there is the division between
internal time variables and the external time vari-
able, or parameter as it is frequently called. Second,
associated with each of these subtopics there are
questions of the existence of a theoretical lower limit
to the duration required for a measurement to be
made, or to the uncertainty accompanying any
measurement of the time of an event. I am concerned
here only with the external time variable which is
the independent variable of the state vector in the
Schridinger picture or of the operators in the Heisen-
berg picture. It has been known for some time that
one can associate Hermitian operators with the
internal times of interest such as the time delay of
scattering theory.'® In such a circumstance the
investigation of limitations on measurement can be
carried out in the traditional vein of looking at
commutators of the time operator with other ob-
servables. One does not have recourse to such techni-
ques with the external parameter, and any conjec-
ture of measurement limitations associated with it
involves fundamental modifications of the general
principles of quantum mechanics.

Limitations on the duration of measurements or
on the precision of time measurements are two very
different kinds of limitations and either could exist
without the other. Thus a lower limit to the length
of time required for a measurement does not
priort prohibit an arbitrarily precise determination
of the instants that the measurement began and
ended. Conversely, a lower limit on the uncertainty
accompanying a time measurement does not a
priors prohibit the expectation values of the terminal
times of a measurement from being arbitrarily close
together.

Any real measurement does, of course, require &
finite time for its execution. If the measurement
yields a result associated with the system of interest
at the instant the interaction with the apparatus
began then the measurement may be called post~
dictive'* and can be used to test theoretical predic-
tions of the evolution of probability distributions.
If the measured result is characteristic of the quan-
tum state at the instant the interaction with the
apparatus ceases, then the measurement may be
called predictive’ and can be used to prepare
quantum mechanical states. Measuring the momenta
of particles by observing stopping tracks in emulsions

0 B, T. Smith, Phys. Rev. 118, 349 (1960); 130, 394
(1963); 131, 2803 (1963). See, also, T. T. Gien, J. Math. Phys.
6, 671 (1965).

11 This is not the terminology of L. Landau and E. Lifschitz
{Ref. 9, p. 5).
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is a post-dictive measurement. Using accelerators and
electromagnetic selecting and focusing devices to
prepare monoenergetic particles is a predictive
measurement. The location of a particle via its
passage through a geiger tube connected to an
amplifying cireuit is both post-dictive and pre-
dictive. There is no evidence, at present, that the
time intervals required for these measurements or
the uncertainties in the times that they begin and
end cannot be arbitrarily decreased by technological
innovations.

This situation could be modified. An increased
understanding of the influence of cosmological struc-
ture on both classical apparatus and quantum sys-
tems could yield fundamental limitations on time
measurements,’””> while the discovery of an upper
limit to the mass spectrum of fundamental particles
could yield limitations on the duration of any meas-
urement.'® Such notions are highly speculative now
and can be pursued only with great difficulty. On
the other hand, taking the naive position that in-
stantaneous measurements at precisely determined
instants are theoretical possibilities and pursuing
this premise to the conclusions demanded by con-
sistency with special relativity should be enlighten-
ing. This is all the more likely if it is accomplished
independently of specific dynamical postulates such
as field theory or analytic S-matrix theory. This,
then, defines the attitude I adopt here regarding
measurements and observables defined at an instant.

In Sec. (1) the transformation rules for classical
dynamical variables are discussed in a general way
indicating the dependence of the solution on the
pointlike character of the variables. Quantum mech-
anical variables, which are not pointlike, are con-
sidered in Sec. (2) and the simplicity of the trans-
formation problem under the Galilean group is dis-
played. The translation of the description of quan-
tum mechanical measurements from one inertial
frame to another in the relativistic domain is taken
up in Sec. (3). In Sec. (4) the hyperplane solution
of the translation and transformation problems for
arbitrary relativistic observables is described and
briefly criticized. In Seec. (5) the transformation
equations for arbitrary dynamical variables under
the Poinecaré group are written down and this is
followed in Sec. (6) by the introduction of the hyper-
plane generators which simplify the transformation

12 H. Salecker and E. P, Wigner, Phys. Rev. 109, 571
(1958); C. A. Mead, 7bid. 135, B849 (1964).

1 One may expect the time required for a light signal to
traverse the Compton wavelength of the most massive
fundamental particle to be a natural lower limit to the
duration of any physical process.
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equations and display a clean separation of the
kinematical and dynamical aspects of the trans-
formation equations. In See. (7) the center-of-mass
position operator is defined axiomatically and proved
unique.’ It is employed here to demonstrate a
kinematical interpretation of the commutation rela~
tions between the free and interacting parts of the
hyperplane generators. It also establishes the con-
nection between the two dynamical problems posed
by the hyperplane formalism. A connection is needed
to maintain equivalence with the conventional for-
mulation in which the determination of the time
dependence of the dynamical variables is the only
dynamical problem. A brief discussion of the con-
nection between the Poincaré invariance of the
scattering operator and the conservation of hyper-
plane observables occupies See. (8). Finally, in Sec.
(9) the hyperplane-dependent field operator for a
free scalar particle is introduced providing a non-
local field theory of such particles completely equiv-
alent to the traditional local field theory. The hyper-
plane fleld operator is essentially the creation opera-
tor for the hyperplane generalization of a Newton—
Wigner position eigenstate.'

THE GEOMETRICAL TRANSFORMATION OF
DYNAMICAL VARIABLES

(1) Dynamical Variables in Classical Physics

In classical physics we learn the fertility of de-
scribing arbitrary physical systems in terms of
material particles having no extension and fields
defined over the points of space at instants of time.
This conception of the nature of physical systems
combined with the assumption of the arbitrarily
precise, simultaneous, measurability of arbitrary sets
of dynamical variables simplified the theory of
measurement in classical physics to the point of
triviality. In particular, the relations between the
results of measurements of one and the same funda-
mental quantity performed by observers in two
physically equivalent reference frames is very simply
expressed in terms of the transformation properties
of the points of space and instants of time them-
selves,

Thus all fundamental quantities refer to a point
of the space-time manifold whether they are field-
like quantities evaluated at the point of interest
or particle variables evaluated at a point on the

1 The corresponding proof for the familiar Newton-Wigner
position operator is given by T. D. Newton and E. P. Wigner,
Rev. Mod. Phys. 21, 400 (1949). See, also, A. 8. Wightman,
gzd:t.s‘}, 8é5 (1‘.162) ;fA. Gfg.lEnc{o, “On Ehe Uniqueness of the

osition Operator for Relativistic Elementary Systems”
(CERN Preprint, 1964). eniary. Bystems
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trajectory or worldline of the particle. In either case
one finds sets of quantities which, under homo-
geneous transformations of the space and time co-
ordinates, transform among themselves with a trans-
formation rule having the form,

ALP) = SUT)A4P). .1

In this equation the A,(e¢ = 1, -+, n) comprise
the set of fundamental variables, P denotes the
space—time point of interest, T the transformation
of coordinates, and S2(T) the dimensionless trans-
formation coefficients for the 4, (the summation
convention on g is implied). If the 4, are fieldlike
quantities, then on the right-hand side of (1.1), P
is replaced by (z;, f) and on the left-hand side by
(#';, t'); the coordinates of the point in question as
determined from the unprimed and primed reference
frames, respectively. If the 4, are particle variables
and the particles in the system are labeled by an
index ¢, then on the right we replace P by (4, t) and
on the left by (¢, t’), since the spatial coordinates can-
not be known until the equations of motion are
solved.

The transformations 7' form a group and the
coefficients SE(T) a matrix representation of the
group in the sense that

So(T:T:) = SUT)STY, 1.2)

where 7T, T, is the transformation resulting from the
successive application of 7 and then T,. Conse-
quently, the problem of determining the possible
transformations of dynamical quantities is related
to the problem of determining the matrix representa-
tions of the group of coordinate transformations
between equivalent reference frames.'

These considerations hold equally in the rela-
tivistic and nonrelativistic cases, and that is the
source of the ease with which one can make the
transition from Newtonian to classical relativistic
mechanics. The coordinate transformation rules are
different in the two cases, but the way in which
the transformation properties of fundamental quan-
tities depend on the coordinate transformations is
the same. In both cases the values of quantities
referring to one and the same space—fime poini are
related by the matrix elements of a representation
of the transformation group.

I have belabored these well-known matters in
order to emphasize the contrast with quantum me-
chanies.

% These common terms of contemporary theoretical
physics are defined, among other places, in k. P. Wigner,
Group Theory and its Application to the Quantum Mechanics
of Atomic Specira (Academic Press Inc., New York, 1959).
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(2) Nonrelativistic Quantum Mechanics

In nonrelativistic quantum mechanies, the con-
cept of a material particle retains a fundamental
status. The notion that such a particle has no ex-
tension in space, however, loses most of its usefulness
if not its meaning, Thus, there are particle variables
the measurement of which requires one to forego
any precise knowledge of the location of the particle.
Furthermore, the fact that the momentum of the
particle is just such a variable, leading to the
Heisenberg uncertainty relations, means that the
concept of the trajectory or world-line of a particle
plays only a limiting statistical role in quantum
mechanics. Nor is this situation to be attributed to
mere ignorance on our part of where the particle
is at any given time. We learn, very early, how the
superposition prineciple and the interferenece of proba-
bilities dooms to failure any attempt to retain such
a semi-classical picture of reality.’® One is rather
forced to give up the notion that quantum me-
chanical particles have definite positions, momenta,
or spins, ete., at any given time. Instead, one can
transform the particle into a state in which, momen-
tarily at least, a particular variable has a definite
value, by performing a predictive measurement of
that variable. What a quantum mechanical particle
does have at any given instant is an association to a
ray of a Hilbert space and a set of Hermitian opera-
tors defined on the Hilbert space, called observables,
which describe a statistical relation of the possible
results of measurements performed on the particle
to other measurements performed on other particles
prepared in an identical manner. The word particle
is used to describe the system because of certain
similarities between the measurements that can be
performed on it and those that can be performed on
classical particles. Thus it is possible to momentarily
localize the system in space by what is therefore
called a position measurement.

The only particle observables in nonrelativistic
quantum mechanics which refer to even finite
bounded regions E of space at a definite time are the
so-called projection operators II(R)}, having possible
values unity or zero corresponding to the system
being confined or excluded from the region E im-
mediately after the measurement of II(R). Geiger
counters, occupying the region E and connected
to an amplifying circuit only momentarily, at the
time ¢, provide a crude approximation to an ap-
paratus for measuring II,(R). That the position ob-
servable itself refers collectively to all of space at

18 For a modern proof of the absence of hidden variables
see J. M.. Jauch and C. Piron, Helv. Phys. Acta 36, 827 (1963).
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a given instant is demonstrated mathematically by
the familiar equation,

q:() = f z; dIL(X": 2t < z)), 2.1)
for the Cartesian components of the position operator
in terms of the projection operators for regions
containing all points x’ for which z! < x;, where
z; is given.'” The same fact is demonstrated phys-
ically by the necessity of using a battery of Geiger
counters extending throughout space and sensitized
simultaneously at the time ¢ if one is to be sure of
getting some result from a measurement of q(f)
employing Geiger counters.

Now the homogeneous transformations of the
Galilean group leave the time invariant. Further-
more, all transformations of the Galilean group
leave time intervals invariant. Consequently, a
measurement performed at a definite time in one
inertial frame looks like a measurement performed
at a definite time when viewed from another inertial
frame independently of whether the measurement
refers to space, pointwise, collectively or not at all.
It is therefore easy and natural to fit the quantum
mechanical concept of measurement into the space—
time structure of nonrelativistic physics.'®

(3) Relativistic Invariance in Quantum Mechanics

Such is not the case for relativistic physics where
the coordinate transformation group is the inhomo-
geneous Lorentz group, or Poincaré group ®, which
does not, in general, leave time intervals invariant.
If a measurement at a definite time, referring to a
finite region of space, or all of space, or not referring
to space at all, is carried out in one Lorentz frame
of reference, then the result cannot be uniquely
associated with any definite time in another Lorentz
frame moving relatively to the first. Therefore,
describing the measurements of physical observables
as occurring at a definite time is not a suitable
procedure for formulating the transformation prop-
erties of the results of measurements.

Two famous ways exist for solving, or rather
bypassing, this problem. The first way imposes the
restriction that all the observables of relativistic
quantum mechanical systems can be expressed in
terms of a fundamental set of field operators defined

17 A, S. Wightman (see Ref. 14).

18 The classic discussion of the nonrelativistic quantum
theory of measurement is J. von Newmann, Mathematical
Foundations of Quantum Mechanics, translated by R. T.
Beyer (Princeton University Press, Princeton, New Jersey,
1955). A recent discussion of current problems in the subject is
given by J. M. Jauch, Helv. Phys. Acta 37, 293 (1964).
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over the manifold of space-time points.'® The trans-
formation properties of the fields can be described
simply in the same way as for the classical case, and
the transformation properties for arbitrary observ-
ables are implicitly contained in the preseription for
constructing them out of the fields. The fields them-
selves do not have to be observables although that
was usually assumed in the early days of quantum
field theory. In general, the observables of such a
formalism are integrals over all space, at some time,
of a fieldlike integrand which is some local function
of the basic fields. If one places integrals of such local
functions over arbitrary spacelike surfaces on the
same footing as the instantaneous spatial integrals,
a manifestly covariant formalism results.?® The
transformation problem for arbitrary observables is
then essentially solved in an explicit manner because
the instantaneous observables transform into func-
tionals on flat spacelike surfaces.

Unfortunately, this covariant formalism is simple
and elegant only if all spacelike surfaces are treated
equivalently, curved as well as flat. Also this solution
of the kinematical problem of the transformation of
observables depends crucially on the dynamical as-
sumption of a local field theoretic description of
the evolution of physical systems.

The second way of handling the problem, rather
than imposing a restriction, relaxes a conventional
assumption, namely, the assumption made in the
introduction to this paper, that measurements can,
in principle, refer to instants of time. One envisions
a theory with observables referring to arbitrary
bounded regions of space—time, extended in the time
direction as well as through space.” Such regions
are invariant entities and the transformation rules
can be easily formulated. It is very hard, however,
to decide what the physically important observables
would be in such a theory. Presumably something
like position and momentum measurements at more
or less definite times exists. If so, how does one gen-
eralize these observables to finite time intervals
and what are the restrictions on the smallness of
the time intervals, if any? In general, the ambiguities
inherent in this approach to the theory of measure-
ment have left it essentially undeveloped except for
the efforts of the axiomatic field theorists who,
having already adopted the field theoretic approach,
find it mathematically convenient to work with

1 The detailed development of the consequences of this
point of view, quantum field theory, is given in many books.
One of the most comprehensive is S. S. Schweber (see Ref. 5).

20 8. Tomonaga, Progr. Theoret. Phys. (Kyoto) 1, 27
(1946); J. Schwinger, Phys. Rev. 82, 914 (1951).

% R. Haag and D. Kastler, J. Math. Phys. 5, 848 (1965).



1964

certain sets of bounded four-dimensional observa-
bles which form von Neumann rings of bounded
operators.”

A third approach to the problem of measurement
is that presented by axiomatic or analytic S-matrix
theory.? In that theory the notion of measurements
at finite times is replaced by the notion of measure-
ments of conserved quantities at infinite times. The
Poincaré group leaves infinite times infinite, and
so the S-matrix theorists’ conception of fundamental
measurements is relativistically invariant. Also, the
most interesting dynamical properties of fundamen-
tal particles are strictly conserved (in systems of
several particles) only in the asymptotically infinite
past and future. On the other hand, all real measure-
ments are performed at finite times, and it is under-
stood that the infinite time interval of S-matrix
theory is a convenient idealization of the extreme
ratio between the time intervals separating the ini-
tial and final measurements of a scattering experi-
ment and the time intervals during which the inter-
action of the participating particles takes place.
Very interesting efforts to formulate a bona fide
description of macroscopic finite time and space
intervals within the formalism of S-matrix theory
have been made but the ideas involved must at pres-
ent be regarded as very tentative.*

Field theory, then, provides the only extant solu-
tion to the problem of the transformation of observa-
bles in relativistic quantum mechanics. It does so,
furthermore, only when functionals on arbitrary
spacelike surfaces are given equal billing with in-
stantaneous observables. Otherwise, the demand for
relativistic invariance is satisfied only in the sense
that a prescription exists, having the same form in
each inertial frame, for constructing any given ob-
servable out of the field operators which do have
manifestly covariant transformation properties. One
does achieve, thereby, an equivalent description of
physical systems in each inertial frame but the
explicit transformation rules for most of the interest-
ing observables are undetermined. To evaluate such
a situation requires a clear understanding of the
precise demands which the principle of special rela-
tivity makes on arbitrary physical theories.

A very clear and careful discussion of this problem

2 R, Haag and B. Schroer (see Ref. 6). See Ref. 21, also.

n H, P. Stapp, Phys. Rev. 125, 2139 (1962); 139, B257
(1965); D. Olive, ibid. 135, B745 (1964); J. Gunson and
J. G. Taylor, ibid. 119, 112 (1960); J. R. Taylor, ¢bid. 140,
B187 (1965); 142, 1236 (1966); J. Math. Phys. 7, 181 (1966).

2 M. L. Goldberger and X. M. Watson, Phys. Rev. 127,
2284 (1962); M. Froissart, M. L. Goldberger, and K. M.
Watson, sbed. 131, 2820 (1963); R. Omnes, tbid. 140, B1474
(1965).
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occurs in a paper by Wigner written in 1955.”° In
that paper Wigner attributes to R. Haag the follow-
ing postulates as being included in any invariance
principle one may impose on & physical theory:

“(a) It should be possible to translate a complete
description of a physical system from one coordinate
system into every equivalent coordinate system.

(b) That the translation of a dynamically possible
description be again dynamically possible. Expressed
in a somewhat more simple language: a succession
of events which appears possible to one observer
should appear possible also to any other observer.

(¢) That the criteria for the dynamical possibility
of complete descriptions be identical for equivalent
observers.”

Wigner emphasizes that the concept of instan-
taneous observables referring to extended regions
of space does not allow, in any obvious way, the
translation required in (a) to be made since the
t = const hyperplanes of space-time are different
for different observers.

Clearly, if field functionals over arbitrary space-
like hyperplanes are admitted as observables, then
the translation can be made sinee instantaneous
hyperplanes transform into spacelike hyperplanes
under any element of the Poincaré group. It is
undesirable, however, that the introduction of hy-
perplane observables, which facilitate the solution
of the translation problem, should occur within the
context of the dynamical scheme of quantum field
theory.

In the next section, hyperplane observables are
introduced in a completely general way without any
commitment to a particular dynamical scheme.

(4) Observables on Hyperplanes

Consider an arrangement of apparatusdistributed
throughout some region of space and used to measure
in a predictive way some dynamical variable of
the system at the time ¢ If the measurement is
nearly instantaneous, the various pieces of apparatus
are observed to be open to interaction with the phys-
ical system of interest simultaneously at the time
. What does the same measurement look like from
an inertial frame moving relative to the original
frame? If the various pieces of apparatus are located,
roughly speaking, at the points x; in the original
frame, then the times, in the new frame, at which the
pieces are activated are

= [t — (v/S)xl1 ~ /)73,
% . P. Wigner, Nuovo Cimento 3, 517 (1956).

(“.1)
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while the locations of the pieces at the moments of
activation are

' = @& — v — /D), (4.2)
= X7, 4.3

In these equations v is the velocity of the origin of
the “moving’”’ frame relative to the original frame
while the superscripts || and | denote the pro-
jections of the vectors parallel and perpendicular
to v, respectively. The essential point is that in the
primed frame the various pieces of apparatus are
activated at different times and the measurement
does not appear to be an instantaneous one at all.

The number of pieces of more or less localizable
apparatus required in a measurement will differ
greatly from one measurement to the next. Hence
it is desirable to obtain a compact way of describing
the possible combinations of position and time co-
ordinates in the primed frame which can result from
apparatus used in instantaneous measurements in
the original frame. From Eqs. (4.1)-(4.3), it follows
that

A — v/ et — 1 — /D) v/0)-x) = ct
or, introducing the notation,
n =1 — ¥/ /e,
n =1 -0/ =1+ ),

we obtain

L
X;

(4.4)

@4.5)
(4.6)

@

as the equation relating the space-time coordinates
in the primed frame of apparatus used in an in-
stantaneous measurement in the unprimed frame.
For fixed ¢, (4.7) is the equation of a two-dimensional
plane which sweeps through the space of the primed
frame with a normal velocity of

u = (m/[nl)c > e. (4.8)

Each piece of apparatus is activated as the plane
sweeps over it. Since the plane is moving with a
velocity greater than light, any two space-time
points on the moving plane are separated by a
spacelike interval. Consequently, the three-dimen-
sional manifold of space-time points generated by
the moving plane is called a space-like hyperplane.”®

According to the Haag-Wigner postulate (a), the
physical equivalence of the two inertial frames re-
quires that the result of the measurement being

norh — nx' =¢t

% J L. Synge, Relativity, The Special Theory (North-
Eolland Publishing Company, Amsterdam, 1956), Appendix
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considered is a legitimate constituent of a complete
description of the physical system as observed from
the primed frame. Furthermore, since the original
reference frame could be any inertial frame, it follows
that the activation sequence of the pieces of ap-
paratus is constrained only to satisfy an equation
of the form

(4.9

ol
NIy = 7,
where,

70 2 1. (4.10)

Any such measurement appears instantaneous in
some inertial frame, and hence the primed observer
must regard all such measurements on an equal
footing. The measurements cannot all be associated
with a definite time ¢’, but each one can be associated
with a definite spacelike hyperplane (5, 7). Finally,
since the primed observer is also arbitrary, one is
led to conclude that an appropriate concept of
measurement in the relativistic domain and conse-
quently of observables in relativistic quantum me-
chanics is the concept of measurements and ob-
servables associated with, or defined on, arbitrary
spacelike hyperplanes.

An idealized example of the kind of measurement
discussed above is provided by the measurement
of the position x(f) of a particle via a battery of
small Geiger counters occupying the region R within
which the particle is already known to be confined.
By a prearranged setting of an elaborate clock mech-
anism, the amplification circuits for the Geiger count-
ers are closed simultaneously for a short time interval
and the position is measured.

In a moving frame, however, the circuits appear
to be closed in a very rapid sequence, the closing
time for any given circuit depending upon the spatial
location of its associated Geiger tube. The closing
sequence proceeds among the circuits more rapidly
than any signal could propagate and so it is clear
to the primed observer that the sequence is a result
of a prearranged setting of the whole battery of ap-
paratus. Notice also that in the primed frame the
time coordinate of the result of the measurement can
vary with repetitions of the measurement on iden-
tically prepared systems. Thus the primed observer
sees a probability distribution in the time component
of the position four-vector as well as the space
components. All of this leads the primed observer
to associate the measurement with a four-vector
Hermitian operator x,(y; r),* where (4, 7) determine
the spacelike hyperplane along which the circuit
closing sequence occurs.

7' = 1;
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The concept of a spacelike hyperplane is an in-
variant one and when, in the next section, I proceed
to write down transformation equations for arbitrary
hyperplane observables, it will be observables re-
ferring to one and the same hyperplane that are
related by the equations. In other words, one is
relating the descriptions by two observers of one
physical quantity. The parameters (y, 7) which
describe the single hyperplane are different for the
two observers and under the Poincaré transformation

zh = Az, + A, (4.11)
the hyperplane parameters transform according to

= A n,, (4.12)

T4+ 7" A,

Note that 7, is changed only by homogeneous
Lorentz transformations while = is changed only by
translations. I call 5, the timelike normal unit vector
or simply normal vector for the hyperplane and =
the “snvariant”’ parameter of the hyperplane.

The reader may wish to object to the earlier
discussion on the ground that in the primed frame
the measuring apparatus is moving, and it is reason-
able to require that the apparatus defining an ob-
gervable in a given frame be at rest in that frame.
Whether such a requirement is reasonable or not,
it seems likely that the same results could, in fact,
be obtained in the primed frame with the use of
stationary apparatus. To the extent that the Geiger
counters in the cited example yield results dependent
on the relative velocities of the counters and the
particle one cannot regard the counters as providing
an ideal measurement of the position of the particle.
In general, an ideal hyperplane measurement em-
ploys apparatus which yields results dependent on
where the apparatus is at the time of activation but
independent of the motion of the apparatus. It
is assumed that in principle such apparatus exists.
This assumption is already a tacit one in nonrela-
tivistic quantum mechanics where observers in dis-
tinct Galilean inertial frames are expected to be able,
in principle, to duplicate each others’ measurements
with apparatus stationary in their respective frames.

A second objection that can be raised is that, after
all, the original problem of relating the instantaneous
observables in two different inertial frames has not
been solved. This is correct, but what has been
made clear, I believe, is that this original problem
has nothing to do with relativistic invariance. In-
stantaneous observables in two inertial frames refer
in general to different sets of hyperplanes. The

(4.13)

=
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theory of relativity requires only the direct transla-
tion of the results of measurements of one and the
same observable. The problem of relating instan-
taneous observables in two frames reduces to the
problem of relating instantaneous observables in
one frame to hyperplane observables in the same
frame, but on hyperplanes which appear instan-
taneous in the second frame. This problem is es-
sentially dynamical since it requires the calculation
of

dA(n, 7)/0,

for a hyperplane observable A (y, 7).

Finally, one may regard the example of the ideal-
ized position measurement and even the more gen-
eral discussion preceding it to be too specific or
unrealistic to permit the extension, of the conclusions
reached, to arbitrary observables. However, the
entire problem of learning how to translate the de-
scription of observables from one frame to another
appears to be that of finding an invariant geometrical
construct® to which the observables refer. The only
invariant geometrical construct which can be as-
sociated with arbitrary observables defined in one
frame at a definite time, and without any further
a priort reference to geometrical entities, is the set
of all those space—time points which have the given
time coordinate in the given frame, i.e., a spacelike
hyperplane. Furthermore, the set of all spacelike
hyperplanes is the smallest set of geometrical entities
containing the instantaneous hyperplanes of a given
inertial frame and being invariant under the active
interpretation of the Poincaré group. In this sense
the generalization of the concept of cbservable that
is proposed here is the simplest one which is rela-
tivistically invariant.

To the reader who has found these lengthy dis-
cussions of frequently elementary topics tiring, my
apologies. My only justification is the desire to leave
no stone unturned in the attempt to make the gen-
eral concept of hyperplane observables physically
clear.

THE HYPERPLANE FORMALISM

(5) The Transformation Equations for
Hyperplane Operators

The discussion is simplified if I temporarily
refer only to the expectation values of the hyperplane
operators. The transformation properties of the
quantum mechanical operators are completely deter-
mined by the transformation properties of their
expectation values in arbitrary states. Furthermore,
the discussion is applicable to classical physics as
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well, when expressed in terms of expectation values.

Let A(q, 7) then denote the expectation value
of a single dynamical variable on the hyperplane
characterized by (», 7) in the original (unprimed)
reference frame. Under an infinitesimal homogeneous
transformation,

(5.1)

the description of the same hyperplane changes to
(', 1), where

zh =z, + ow’z,, dw, = —dw,”,

7]:& =9, + 67]# = M + 6‘*’1&”7" (52)
and the expectation value becomes
A’y 7) = A(n, 1) + H"(n, 7) dwpp. (5.3)

Since the infinitesimal coefficients éw,, are dimension-
less, the dimensions of H*” and A must be the same.
This fact motivates one to look for sets of quantities,

Ad(ﬂ’ T) (a= 1, s Yn)7
such that

Ay, 1) = 4i(n, 7)
and

Ay, 1) = Au(y, ) + H(n, 1) by,

where

(5.4)

Ha"'(ﬂ, T) = CawﬂAﬁ(n) T)r (55)

the C,*** being dimensionless numerical coefficients.
Such sets of quantities, called tensors,*” are relatively
easy to find and permit the formulation of equations
which are form invariant under Lorentz transforma-
tions. For finite homogeneous transformations

zl = a,z,,
they satisfy
A:t(rl,y 7') = Sap(a)Aﬁ(nr T)v (5-6)

where the S,? are the matrix elements of a finite-
dimensional linear representation of the homogene-
ous Lorentz group. The infinitesimal elements of
the representation are

829 + 8w) = 8.5 + C.*" 8w,

Under infinitesimal translations

6.7

’

zh = z, + éa,, (5.8)

the tensors satisfy

Aun, ) = Au(n, 7) + To"(n, 1) b2,  (5.9)

27 The restriction to tensors holds, of course, only for
observables. For arbitrary dynamical variables on hyper-
planes, spinors must also be admitted. This does not modify
the equations in any way.
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where

=

T+ 7" da,. (5.10)

In this case the infinitesimals da, have the dimension
of length, and so the T must be regarded as es-
sentially new quantities. They are, of course, new
tensors. Thus from

zy = a(x, + 8b,) = ', + a,” 8,
we have
AY = 82(a)(44 + T5" 8b)
= S8t (a)As + T.*'a,” 6b,.
Consequently,
T." a,” 8b, = S.%(a)Ts" &b,.

Since 8b, is arbitrary and

A

v A
e, a, = ¢,

this yields
T, = 8Ha)d Ty, (5.11)

and the T," are therefore tensors. The transforma-
tion of the A ,.’s under finite translations can, in gen-
eral, be very complicated, and the matter is not
pursued further here. In cases of practical physical
interest, the result is usually simple.

From the foregoing equations one can now obtain
general expressions for the commutation relations
of arbitrary operators 4,(y, 7) with the generators
M,, and P, of the unitary representations of the
Poincaré group® in the quantum mechanical Hilbert
space. I work exclusively in the Heisenberg picture
in which the concepts of observables and measure-
ment are foremost. The Heisenberg picture is de-
fined by two conditions:

(1) Theoperators corresponding to dynamical vari-
ables carry the dependence on the hyperplane param-
eters (v, 7) and therefore describe the evolution of
the physical system.

(i) Under a Poincaré transformation {a,’”, a,} of
the coordinate frame of reference the state vectors
and operators describing the system transform ac-
cording to

¥) = U5 0 |¥) = [¢), (5.12)
4.0, 1) = A (¢, 1), (5.13)
where
Ulwy’;a,) = exp [(i/W)P'a] exp [ — (/B)M iw,]
.19

2 K. P. Wigner, Ann. Math. 40, 149 (1939).
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is the unitary operator which induces the transforma-
tion in Hilbert space.

For an arbitrary state |y) and infinitesimal a, = 68b,,
it then follows that

W] A, ) W) = 85(g + o)¥] As(n, 1) [¥)

+ 8g + &)@ + " XY Te*(n, 7) [¥) 8b,. (5.15)

The arbitrariness of |¢) permits (5.15) to be
written as an operator equation,®”

Ulw; 8b) " Ao(n’, ) Ulw; 8b)
= 8.%(g + ) {4s(n, 7)

+ (9" + @")T6(n, 7) 8b},  (5.16)
to first order in 8b,.
Letting w,, = 0 and writing
U(0; 8b) = exp [(G/R)P 6b,]
o~ I+ (i/B)P* 5b, (5.17)

yields
3A . (n,
Au(n, 7+ 9 8b) — Au(n, 1) = *%L) 7" ob

= 2P, A.n, D] by + T, 7) oy

or
[PX, Aa("], T)]
- ih{T‘,’(n, D= %g’:il}- (5.18)

On the other hand, setting 8b, = 0 and making
w,” = dw,” infinitesimal yields

U(bw; 0) >~ T — G/BM " 36p  (5.19)
and
Au(n + 18w, 1) — Au(n, 7)
= L, A, 9122
+ CPA5(n, 1) Sun,. (5.20)

Since the 8w, are antisymmetric in A and p, it
follows that the variation 69, = dwanh automatically
satisfies the constraint

(5.21)
imposed by the fixed norm of 7,. Consequently,
Al + 180, 1) = Au(n, 7)

= [aAa(n) T)/a"b‘] 6(.0)‘,17/)

2 F. Riesz and B. Sz.~Na
Ungar Publishing Company,

7 o =20

(5.22)

, Functional Analysis (Fredrick
ew York, 1955), pp. 200-202.
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may be used in (5.20). The éw,,, however, cannot
be regarded as independent variations until the
coefficients of dw,, are made manifestly antisym-
metric in A and p. Once that is done, the infinitesimal
parameters may be removed to yield the commuta-~
tion relations

[M)‘p; Aa("lr T)] = ih{(oaﬁﬁ - Ca”ﬂ)Aﬁ(nr T)

g (el Mu)} (5.2

an)\ 317;»

The commutation relation for translations (5.18)
is the generalization to the hyperplane formalism
of the conventional Heisenberg equations of motion,
and the sense in which it describes the dynamical
evolution of the system is well known. Not so
familiar, although emphasized in the past by Dirac,*’
is the fact that the commutation relations with the
homogeneous generators of the Poincaré group may
also be complicated by dynamical considerations
and, conversely, provide part of the dynamical de-
seription of the system. Thus in the conventional
“instant’” form®® of relativistic quantum mechanics,
the generators M ;;(i, j = 1, 2, 3) refer to spatial
rotations at a given time, and their commutators
with instantaneous operators have the same form
whether or not interactions are present. The com-
mutators with the M, however, which describe
the results of pure Lorentz transformations depend
crucially on the presence and nature of interactions.
The latter commutation relations are as hard to
‘“solve,”” in the presence of interactions, as the
Heisenberg equations of motion. In the hyperplane
formalism, this complication is displayed by the
appearance, on the right-hand side of (5.23), of
the partial derivatives,

94 a/anl'

It is precisely these derivatives that determine the
relationship in a single reference frame, between
corresponding dynamical variables defined on differ-
ently oriented hyperplanes, and it is in this sense
that the question of relating ¢nstantaneous dynamical
variables in two different frames is primarily, if not
entirely, a problem in dynamics.

(6) The Hyperplane Generators and Dynamical
Equations
In 1949 Dirac®® presented a rather general in-
vestigation of several forms that could be used for
the description of relativistic dynamics. Two of the

P, A. M. Dirac, Rev. Mod. Phys, 21, 392 (1949); 34,
502 (1962).
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three forms discussed by Dirac are, in fact, special
cases occurring within the hyperplane formalism.
Thus Dirac’s instant form is the conventional de-
scription in terms of instantaneous hyperplanes with

7. = (1, 0).

The front form of relativistic dynamics, however,
is also a (limiting) case of the hyperplane formalism.
In the front form dynamical variables are described
on a two-dimensional plane surface, or front, moving
with the velocity of light in the direction of the
normal to the surface. The space-time points lying
on such a moving front comprise a limit for space-
like hyperplanes with timelike normal unit vectors
approaching the limit,

T = (770: “) — [(1 + )‘2)51 Nﬁ/]r

A=

(6.1)

for a front moving in the direction of the spatial
unit vector 7. The point form of dynamics deseribed
by Dirae has no simple relation to the hyperplane
formalism.

Dirac showed how the structure of the ten funda-
mental quantities, the Poincaré generators, varied
in complexity with the choice of a form of dynamical
description. Thus in the instant form the ‘‘spatial
translators” P; and “rotators’” J; are simple combi-
nations of the basic variables of the system, whether
or not interactions are present. The “time translator”
P, and the ‘“accelerators” M, become complicated
in the presence of interactions and describe the
dynamical evolution of the system. In the front form
with the front moving along the positive 3-axis,
the simple generators are

P, t=1,2, P,—P;, M,
My — My, =1,2), My;
and the complicated ones are
Py+P;, My+ My (@=1,2).

The fact that there are seven simple generators
and only three complicated ones in the front form
as opposed to the instant form in which there are
six and four, respectively, reflects the singular limit-
ing nature of the front form. Had the front been
moving with a speed greater than that of light, it
would have connected space—time points on a bona
fide spacelike hyperplane with finite 5, and M,
would then also be complicated. The invariance of
the speed of light simplifies M3, for Dirac’s front
form.

Now in both forms of dynamics, those generators
which leave the hyperplanes of interest invariant
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are simple while those generators which change the
hyperplane become complicated in the presence of
interactions. One may ask whether a similar separa-
tion into simple and complicated generators of the
Poincaré group may be carried out for the arbitrary
spacelike hyperplanes of the hyperplane formalism.
If such can be done, then the construction of the
generators for specific systems should be simplified,
as should the problem of solving the dynamical
equations once the construction is carried out.
I begin by giving a name to the quantity

7P, = H. 6.2)

This operator is an invariant for a given hyperplane,
and it reduces to P, for the reference frame in which
the hyperplane (7, 7) appears instantaneous. It
occurs frequently in the subsequent discussion and
plays a role analogous to both the mass and the
Hamiltonian of nonrelativistic quantum mechanics.
On the basis of this analogy and the relativistic
relation

E =M

for energies defined at a definite time, I call H/c
the ¢nvariant hyperplane mass of the system or
simply the mass. It is, of course, to be distin-
guished from the rest mass ¢~ (P*P,)}, to which it is
equal only for instantaneous hyperplanes in the
rest frame. It is clear from the definition of H that
it acts as the generator of translations in the direc-
tion of 5,, normal to the hyperplane on which it is
defined. Consequently, H does not leave the hyper-
plane invariant and can be expected to be compli-
cated in the presence of interactions.

The translators which leave the hyperplanes (7, 7)
invariant and therefore are not modified by inter-
actions are the

K, =P, — qH. (6.3)

The constraint

7K, =0 (6.4)
satisfied by K, is an expression of the fact that K,
leaves the hyperplane invariant and also maintains
the number of independent translators at four.

The generators of homogeneous transformations
M,, may be separated into simple and complicated
parts by noting that the simple parts must reduce
to the rotators J, in those frames where 7, = (1, 0).
Such generators are provided by the constrained
four-vector

—_ 1 B
JI‘ = —Zeap, M7,

(6.5)
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7J. =0, 6.6)

which leaves the hyperplane, on which it is defined,
invariant. The remaining generators are suggested
by the identity

Mpy = fpvmﬁ‘]aﬂp + Mn)\nxnr - Mr)\ﬂ)‘m&y
and I define

6.7)

N, = M,q", (6.8)

where again
7N, = 0. 6.9)

It is to be expected that N, does not leave the hyper-
plane invariant but reorients it (changes 4,) and is
therefore complicated by interactions.

The conventional generators P,, M,, satisfy the
familiar commutation relations

P, P} =0, [M,,P] =1ih{gaP, — gaP.},
and
(Mo, M) = ihignd, — grlr,
+ gy, — gal,,}.

From these relations and the definitions (6.2, 3, 5, 8),
it is straightforward to derive the equations

K., K,] = 0, (6.10)
[K,, H] = 0, 6.11)
[/ H} =0 6.12)
(Jur K, = the,asKn', (6.13)
i J,] = theuapd “o°, (6.14)
[Ju N1 = theyasN o', (6.15)
[Nw Nl = —theuasd o', (6.16)
[Ky, N,] = th(gw — nan)H, (6.17)
V,, H] = kK, (6.18)

The formal similarity between these relations and
those for the instant form generators P, H = Py, ],
and N is striking. It is not, however, surprising since
these hyperplane generators reduce to the instant
generators on instantaneous hyperplanes.

By taking the commutators of the hyperplane
generators with arbitrary hyperplane operators, one
verifies that the desired separation into simple and
complicated generators has indeed been effected.
Applying the definitions of the hyperplane gen-
erators to (5.18) and (5.23) yields

[H, A = h{T)m — 04./07},  (6.19)
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K. A.] = ih(gw — nam)T, (6.20)
[Ju Aul = theunyCa™ Agn”, (6.21)
and
[N*, 4.] = h{(C™ ~ C.*)n, 4,4
+ (¢ — n*n) 9d./an"}. (6.22)

The way A, behaves under small translations (deter-
mined by the 7,"), and the way A, behaves under
“rotations” (determined by the C.**) is not depend-
ent on the presence or nature of interactions. Con-
sequently, (6.20) and (6.21) express the kinematical
properties of 4, alone while the dynamical evolution
of the system is accounted for by (6.19) and (6.22).

The derivatives d4 ./dy,, which appear frequently
in the preceding discussion, have not been unam-
biguously defined. The difficulty is a consequence of
the interdependence of the #, by virtue of the con-
straint equation (4.10) or (5.21). Thus, the defining
equation for hyperplane derivatives is

= (aAa/aT) ér + (aAa/anr) 677') (6'23)

and from (5.21) it is clear that any term proportional
to " may be added to dA./99, without influencing
(6.23). To determine this derivative uniquely, I
impose the constraint

1,(84./97,) = 0.

The recipe for calculating the derivative is then:

(6.24)

(i) calculate the derivative as though all the »,
were independent;

(ii) project out, via the tensor (g,, —
part of the derivative orthogonal to »,.

741,), the

The consistency of (i) and (ii) is guaranteed by

the idempotent property of the tensor (g., — 7.7,)-
Thus
@ = 1) — m) = g — mmy. (6.25)

The hyperplane translators provide a simple ex-
ample of the difficulty one may encounter if the
n, are regarded as independent when taking the
derivative. If such were the case then

8H/8m, = P = K" + 7'H,
and
0K,/0n, = —g/H — 7.(K" + 7'H).
Consequently,

0 = aﬂ)‘Kx/th = K’ + nk(aK)\/anv)
=K —7H - K —7H = -2¢H,
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which is absurd. Employing the recipe yields

an,/9n, = (gu' — n0), (626)
oH /o, = K’ 6.27)
0K,/on, = ~(g." — nan)H — ﬂuK,y (6.28)
and
A
K ¥ y
a—%—)= (@ — 7Ky
N>
- 7gy — n"nyH — K" = 0. (6.29)

Finally, notice that the constraint (6.24) enables
one to simplify (6.22) slightly to

V¥, A.]

= R{(C.™ — C A5 + 04./0m).  (6.30)

(7) The Center of Mass and Interactions

In the previous section a transformation of the
conventional Poincaré generators was found leading
to the hyperplane generators. These latter effect a
clean separation between those commutation rela-
tions which display the purely kinematical behavior
of dynamical variables under Poincaré transforma-
tions, which leave the hyperplane parameters un-
changed, and those which include contributions from
the dynamical evolution of the system. It is phys-
ically clear that the dynamical problems posed by
the derivatives 84 ,/dr and 8A4./dn, appearing in
(6.19) and (6.30), respectively, cannot be entirely
unrelated. In the first place, if they were unrelated,
the hyperplane formalism would contain much more
physical structure than conventional relativistic
quantum mechanics. The hyperplane formalism,
however, is nothing more than a reformulation of the
general principles of relativistic quantum mechanics
which has the merit of being manifestly covariant.
In the second place, a small change in the hyperplane
parameter 5, has a much greater effect on those
portions of the hyperplane far removed from the
point z,” = 7,7 than it does on those portions near
the point (see Fig. 1). Consequently, the observables
associated with a physical system more or less con-
fined to a region far removed from z,” = 7,7
suffer a comparatively large change from the small
variation &7,. This change can, to some extent, be
counterbalanced by a corresponding change in §7.
This change is clearly larger the greater the distance
of the system from z,“’. It would be very desirable
to have a precise statement of this relationship
between dependence on 4, and 7, and it is obvious
that some description of the ‘“position’ of the system
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worid tube of center of mass

\ “wave packet"

Fia. 1. Space—time diagram displaying the geometrical
relation between &7,, 67, and @u(n, 7). As @, gets smaller, so
does or for fixed 87,.

relative to z,'” is needed to obtain the desired rela-
tionship. In this connection it proves convenient
to introduce the notion of the center of the mass, or,
more precisely, the center of the invariant hyper-
plane mass H/c.

Consider the manifold of state vectors describing
the possible states of a single massive stable particle.
This vector space is an irreducible representation
space for the Poincaré group,” i.e., every vector in
the space can be reached from any given vector in
the space (up to a numerical factor) via a Poincaré
transformation. From this property it follows that
any single particle observable defined in the space
must be expressible in terms of the Poincaré gen-
erators and multiples of the identity operator. Con-
sequently, the possibility of introducing the concept
of a center-of-mass position observable depends on
the possibility of constructing a Hermitian operator
function @,(n, 7) of the Poincaré generators which
satisfies all the requirements one may legitimately
impose on a center-of-mass position operator. Once
the expression for @, as a function of the generators
has been obtained for a single stable particle, the
same expression is used for an arbitrary closed
system. This is required since the center-of-mass
operator, which describes the system as a whole,
must always have the same commutators with the
generators for the entire system.
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Let |®,) and |®,) denote arbitrary state vectors
from the state spaces of two single particle systems.
If these states are normalizable then the incoming
direct product state,

I‘I’x, q)z Hl) = I@z} é I@2): (7.1)

is well defined.** This state describes a system which
in the asymptotically infinite past consists of two
noninteracting particles in the single particle states
|®,) and |®,). The asymptotically free nature of the
system requires that, for any Poinecaré transforma-
tion corresponding to the unitary operator U,

U |8, & in) = (U o)) @ (U 83} (7.2)

holds.*® This equation in turn demands that the
generators satisfy

P, |3, & in) = (P, |&)] © |&)

-+ {¢1> 1®n {P,. f@z;} (7.3)

and

Mw lq;‘l’ @, in) = {Muv !q>1>} é:) 1192)

+ @) ® (M, |8)}. (7.4

In other words, the hyperplane generators H, K,,, J,,
and N, are additive for noninteracting composite
systems. The physical interpretation of H, K,, and
J, as hyperplane mass, momentum, and angular
momentum leads one to expect this additive prop-
erty for these operators. These considerations are
important since the first condition to be demanded
of the center-of-mass position operator is that the
product of H and @, also be additive on the state
(7.1). Specifically, using the notation

A:B = L{(AB + BA4),
the additive property is

(7.5

HQ, |8, & in) = (HQ, |8] ® |2)

+ o) ® (HQ, 23}, (7.0

It follows immediately from (7.6) that H:Q, must
be a linear function of the hyperplane generators

HQ, = aH + b'K, + CJJ, +dN,. @0

The additive postulate (7.6) contains the essence of

% R. Haag, Kgl. Danske. Videnskab. Selskab, Mat. fys.
Medd. 29, No. 12 (1955); Nuovo Cimento Suppl. 14, 131
1959). )
( @ S)ee, for example, R. F, Streater and A, 8. Wightman
(Ref. 1, pp. 24-27).
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the concept of a center-of-mass position operator
and is an obvious generalization of the nonrela-
tivistic relation in which H is replaced by the total
mass of the system.

Under an arbitrary translation of the coordinate
system along the hyperplane, the operator ¢J, changes
by the addition of the translation vector. Thus
exp [~ (@/BK* 5a,]Q, exp [(i/HK> dau]

= Q.+ (g»x - Wa’?h) ay. (7.8
Hence,
[K;n Qv] = zh(glﬂ - 77;477')' (7'9)

Taking the commutator of K, with (7.7) and sub-
stituting (6.10), (6.11), (6.13), (6.17), and (7.9) into
the resulting equation yields

H(g;u — Hule) = Cguev)«aﬁKan‘e + d:(gm - ﬂxﬂ.)H.

The operators appearing in the foregoing equation
are independent, except for the constraint (6.4),
and therefore the coefficients must satisfy

(@) = dN(g» — mm) =0
and
C:‘e,k,gnﬂ = 0.
The general solution of these equations are
duk = gu)‘ + hu"?l (7-10)
and
=12, (7.11)
where h, and 1, are arbitrary. Substituting (7.10)
and (7.11) back into (7.7) yields
HQ, =aH+b'K,+ N, (7.12)

Under rotations of the coordinate system within
the hyperplane, @, must behave as a hyperplane four-
vector, i.e.,

[Jn Qn] = ihevuaﬂQaﬂﬁ- (7.13)

Taking the commutator of (7.12) with J, and again

making the appropriate substitutions yields first
enasH Q%1 = b enasK 0’ + €uasN0°,  (7.14)

and then, from substitution of (7.12) into the left-
hand side of (7.14),

enas@ T H + 6,0 ’Ky = blenagn’ K. (7.15)

By virtue of the constraint (6.4) no generality is
lost in choosing b, to satisfy by, = 0. With this
choice (7.15) yields

emaﬁaanﬁ =0
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and
é;raﬁ’?pfg'nbax - b7 =0.
The solution of the first equation is
(7.16)

but the second one is more involved. Employing
identities similar to the pair (6.5) and (6.7) for
antisymmetric tensors, yields

= gbamn® — mn"bS — 9,4°b"

ac — kna’

— g%bhmn” 4+ M b, -+ nun’b
Contracting on r and g, one obtains
40% — g%b + 5" — b5
= 27"b"\m, — ma®b -+ mb,"n” + b,
where

Hence,
265 + 5% = (g% — 2"m)b
+ 29%9,0% + 20’05 (7.17)
To go further in the determination of @, and
5., it is necessary to invoke the constraint
'@ = 0, (7.18)

which is a consequence of the physical interpretation
-of Q, as describing the position of the center of mass
relative to the point z,'” = #,r. The space-time
interval being described lies in the hyperplane, and
therefore (7.18) must hold. Applying this to (7.12)
yields

7'a, = 0 and 7'b” = 0.
"These results in turn reduce (7.18) to

and (7.17) to

bu’ = (%b)(gu’ — ) = (gss’ — n.7)o.
The expression (7.12), then, can now be replaced
by
HQ, =¢K,+ N,. (7.19
Finally, ¢ can be determined up to an additive
-constant by the requirement that the total hyper-

plane momentum K, be contained in the center-of-
‘mass motion, i.e.,

H:0Q,/0r = K,. (7.20)
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Since H, K,, and N, are independent of 7, this yields
¢ = 1 -+ o0.

The constant ¢, cannot be determined. 1t can be
changed by a unitary transformation

e(t'/’k)HAo'a’

which corresponds on the one hand to a change in the
origin of the r parameter, and on the other hand to
the fact that the physical interpretation of N, has
not yet been fixed. The choice ¢, = 0 determines N,
as the moment of the hyperplane mass at the “hy-
perplane time” r = 0. Therefore,

HQ,= K, + N,. (7.21)
From (7.9), (7.20) and (6.19), (6.20), it follows that
[Q., H] = kK, /H. (7.22)

This last commutator can be used to solve (7.21)
for @,, the result being,

Q. = {rK, + N.}:H™. (7.23)

The postulates (7.6), (7.9), (7.13), (7.18), and
(7.20) along with the choice ¢, = 0 have uniquely
determined the center-of-mass position operator.
If there are other, independent postulates that must
be imposed on physical grounds, it is unlikely that
(7.23) will satisfy them. In such a case one would
have to conclude that a physieally acceptable center-
of-mass position operator does not exist. Further
on in this section I discuss some of the alternative
postulates that have been adopted by other authors
writing about relativistic position operators. For
the moment, however, I return to the original
motivation for introducing the center-of-mass posi-
tion operator; the desire to find relations between
the hyperplane derivatives of arbitrary dynamical
variables.

Taking the commutator of (7.21) with 4, and
using (6.19), (6.20), and (6.30) yields

A, H
a'rl“‘ = ;;’i:[ ] Aa] + (anpﬁ - Oam‘a)'ﬂ’Ap
’ ’ 34,
- T(gﬁ' - npﬂv)Ta + Q“:{Tn By ar }' (7.24)

It appears, then, that the kinematical transformation
properties of 4, and the commutator of 4, and Q,
completely determine the derivatives 94 ,/dn* once
the derivative 94./dr is given. Note, in passing,
that (7.24) is consistent with

7" 94./07" = 0.

If interaction terms are added to the hyperplane
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generators H and N,, then the demand that the
free generators and the total generators satisfy the
same commutator algebra among themselves leads
to commutation relations between the interaction
terms and the free generators.’® In the conventional
formulations of relativistic quantum mechanics, the
physical interpretation of those commutation rela-
tions which are linear in the interaction terms has
been clear. Accordingly, they have been the com-
mutation relations which were easy to satisfy when
constructing interaction terms. The physical inter-
pretation of the nonlinear relations, however, has
been obscure and the relations difficult to satisfy.*®
The center-of-mass position operator seems to pro-
vide easy access to a natural physical interpretation
of the nonlinear relations, as will now be demon-
strated.

The relationship between the full- and free-hy-
perplane generators is assumed to be

K, = K., (7.25)
J,=J,°, (7.26)
H=H"+17, (7.27)
and
N,=N,+U, (7.28)

where the superscript (0) denotes the free generators.
Since (6.10)-(6.18) must hold for both the free and
full generators, it follows that the ‘“‘potentials” V
and U, must satisfy

K, @, V] =0, (7.29)

/., v1 =0, (7.30)

K., U, = igu — )V, (7.31)

[J.7, U] = thenasUn", (7.32)

N, VI+ U, H®] + [U,, V] =0, (7.33)
N, U]+ U, N1+ [U, U] =0. (7.34)

From (7.25), (7.26), Eqgs. (7.29)—(7.32) are simply
statements of the hyperplane translational and rota-
tional properties of V and U,. V is invariant under
such transformations while U, is a vector which
under translation is modified by

exp [—(@/MK U, exp (/DK a]
= U, + (g — nn)anV.  (7.35)
As they stand, the meaning of the remaining rela-
# 1, L. Foldy [Phys. Rev. 122, 275 (1961)] has analyzed a
perturbative solution of these nonlinear relations for a

relativistic system of a fixed number of particles in the
conventional “‘instant’’ formalism.
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tions (7.33), (7.34) is not so clear. From (7.21),
however,

N = HY:Q® — 1K,  (1.36)
and
U,=H:Q,—H?:Q, =V:Q,+H":AQ,, (71.37)
where
49, =@, — Q.. (7.39)

Substituting these equations into (7.33) yields after
several algebraic manipulations

[H:Q., Hl — [H?:Q,,H"] =0. (7.39

Therefore if (7.22) is given for the free system,
(7.39), in conjunction with (7.25), demands that
(7.22) also hold for the interacting system. In other
words, (7.33) is the requirement, albeit in disguised
form, that the center-of-mass motion continue to carry
the total linear momentum when the interactions are
turned on. If (7.34) is rewritten as

[Nm Nv] - [NM(O):N'(O)] =0

and (7.21), (7.36) substituted into the left-hand
operator of each commutator, then use of (7.31)
yields

[H:Qu N,] — [H?:Q,”, N,
= 'Lh(gnr - nunv)V' (7'40)

This equation describes the change in the behavior
of the center-of-mass motion, or the moment of the
hyperplane mass distribution, under pure Lorentz
transformations when the interaction is turned on.
A closer analogy to the interpretation of (7.39), how-
ever, is provided by looking at the hyperplane
derivatives. Thus (7.39) may be written

g, [a700]7 gy
while (7.40) becomes
OH:Q, _ [aH“” :Q,,‘°’]‘°’
an” an”
— (g — )V — nU,. (742

Finally, it is interesting to use the center-of-mass
position operator to effect a partition of the hyper-
plane angular momentum J, into an ‘‘orbital”’ con-
tribution from the center-of-mass motion and the
remainder term representing the internal angular
momentum relative to the center of mass. The
partition is effected by

Ju = _euaﬂ‘yQa:Kp"lv + Z, (7.43)
in close analogy with the nonrelativistic expression.
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The internal angular momentum =, is translationally
invariant,

(K., 2,] = [H, 2] =0, (749
and the further partition
z, = 8+ (Mc/H)S,*, (7 .45)
where
Mc = |(P*P ), (7.46)
S, = KK'=(K°K,)™", (7.47)
and
St = H/MJ)[z, — KK Z\(K°K,)™"] (7.48)

yields the translationally invariant spin vector S,
satisfying*
[S., 8,] = hepansS o (7.49)

Many people have studied position variables for
relativistic systems in the past. Although the position
variables treated have often been called the “center
of mass” of the physical system, they have rarely
satisfied the additive postulate (7.6) or any simple
generalization of it. On the other hand, the analogus
of (7.9), (7.13), and (7.20) have been almost univer-
sally invoked. Since the properties assumed here
uniquely determine the center of mass, it is necessary
to justify the exclusion of the more conventional
assumptions which have replaced the additive postu-
late in other works.

By far the most frequent assumption is that of

locality,*** i.e.,

[Qm Qv] = 0. (7.50)

This assumption can be formulated in classical
physics via Poisson brackets, and it shares there,
with quantum mechanics, the advantage of great
mathematical convenience. Its physical significance
in quantum mechanics is, however, much greater
than in classical physics owing to the quantum
theory of measurement. Thus in classical physics
(7.50) permits the use of the @, as generalized co-
ordinates, while in quantum mechanics it permits
the @, to possess a complete set of simultaneous
eigenstates. In quantum mechanics the existence of
a complete set of simultaneous eigenstates for Hermi-
tian operators means that the operators can all
be measured precisely on the same hyperplane,
whereas such measurability is assumed in classical
physics regardless of whether (7.50) is satisfied.

# The Casimir operators of the Poincaré group are
H? + K, K# and (H? 4 K ,K*) 8,8 and for a massive irreduc-
ible representation of “spin” s, 8,8 = — A s(s + 1). In
general S, does not exist for massless representations.

3% G. N. Fleming (see Refs. 4 and 8) contains further
references on this topic.
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The center-of-mass position operator is not local.
A straightforward but tedious calculation based
on (7.23) yields

[Q., @]
= —@h/Heas[S* + (Me/H)S* 9%, (7.51)

This result does not prohibit one, categorically, from
performing precise measurements of all the compo-
nents of the center of mass on a given hyperplane.
It does, however, restrict such results to measure-
ments performed on a class of states which, for a
spinning particle, contains contributions from arbi-
trarily high hyperplane mass or energy. On the
other hand, (7.51) does demand that the statistical
distributions of eigenvalues of any two components
of @, in a state of finite expectation value for H are
constrained by a lower limit on the product of their
rms deviations in the usual way. The lower limit,
furthermore, depends on the expectation value of H.

It seems to me that none of these considerations
clash with the essentzal characteristics of a quantum
mechanical position operator. The essential char-
acteristics being certain transformation properties
under translations and rotations and the description
of the average motion of the system by the expecta-~
tion value of the operator.

If one does employ the locality postulate instead
of the additive property in the search for a position
operator, then it is well known that the result is
unique for elementary systems.'* In the hyperplane
formalism the physical interpretation of the local
position operator §, is most strongly suggested by
the equation

Jy = —eup, Q5K + 8, (7.52)

The local operator @, however, does not possess
any simple combinatorial property even for non-
interacting composite systems.

More recently, a postulate concerning the behavior
under pure Lorentz transformations has been in-
voked as an essential characteristic of a relativistic
position variable.**** This postulate, which has

% D. G. Currie, J. Math. Phys. 4, 1470 (1963); “A New
Class of Invariance Transformations in Classical Hamiltonian
Particle Dynamics,” Northeastern University preprint (1965);
Phys. Rev. 142, 817 (1966); D. G. Currie and E. J. Saletan,
J. Math. Phys. 7, 967 (1966). I wish to thank Professor
Currie for sending me copies of his papers prior to publication.

37 P, Havas and J. Plebanski, Bull. Am. Phys. Soc. 5, 433
(1961); H. Van Dam and E. P. Wigner, Phys. Rev. 138, B1576
(1965); 142, 138 (1966). These papers have pioneered a
reinvestigation of the notion that particle interactions must
proceed via “signals’ with speeds not exceeding that of light.

# E. H. Kener, J. Math. Phys. 6, 1218 (1965); R. N. Hill,
“Instantaneous Action-at-a-Distance In Classical Relativ-
istic Mechanics,” University of Delaware preprint (1966). 1
wish to thank Professor Hill for sending me a copy of his
paper prior to publication.
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been discussed most carefully by Currie and called
by him the strong world-line condition, is the require-
ment that the position vectors x(t) and x'(t'), de-
seribing the position from two inertial frames, trace
out the same absclute world line. In quantum
mechanics the demand is made on the expectation
values of the position operator. Neither the center-
of-mass operator nor the local operator @, satisfy
the strong world-line condition.

In the instant form of relativistic mechanics the
strong world-line condition can only be formulated
as a comparison of instantaneous position coordi-
nates determined in two inertial frames. The exist-
ence of frame dependent world lines, as such, seems
very unnatural, and in this circumstance the strong
world-line condition is very compelling. The hyper-
plane formalism, however, provides an alternative
interpretation. The distinet world lines for instan-
taneous positions tn various frames are identical to
the distinct world lines for hyperplane position vari-
ables on variously orienied (i.e., different 5, values)
hyperplanes in one frame of reference. Such a mani-
fold of distinct world lines in one frame indicates
that the physical system in question has a finite
extension. Since, in classical physics the position
vectors associated with extended systems are the
result of some averaging process carried out over
the system, it should not be surprising that the
world line traced out by the position vector should
depend on the orientation of the hyperplanes over
which the averaging process is carried out. There-
fore, it is only when one can regard the physical
system as consisting of a point particle with no spatial
extension that the strong world-line condition can
be justified a priori.

That is, of course, precisely the kind of system
that Currie and others have been addressing them-
selves to in the classical case and their conclusions
can hardly be challenged there. The application of
the world-line condition to quantum mechanical
particles, however, can not be so easily justified.
Material particles are defined in fundamentally dif-
ferent ways in relativistic classical and quantum
physics. In the classical case they are defined as
systems without spatial extension, this being the
primary property distinguishing them from fields,
the other basic ingrediant of classical physical sys-
tems. As such, a theorem of Moller prevents classical
point particles from having any spin.** The elemen-
tary particles of quantum mechanics, on the other

3% C, Moller, Commun. Dublin Inst. Adv. Studies A No. 5
(1949); see, also, The Theory of Relativity (Clarendon Press,
Oxford, England, 1952), p. 173.
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hand, are defined in terms of a rather abstract prop-
erty of the linear manifold of their physical
states,'*'*®'*° and this definition accomodates the
notion of spinning particles very naturally. Hence,
the spatial extension of elementary particles in rela-
tivistic quantum mechanics is a problem to be in-
vestigated and not decided via a priori assumptions.

I have discussed elsewhere, in more detail, the
case for the concept of the spatially extended ele-
mentary particle.®

(8) The Poincaré Invariance of the Scattering
Operator and Conservation Laws

It is very problematical at present whether the
same dynamical variables that are convenient to
use in a complete description of systems of free par-
ticles are useful or even meaningful in the description
of a relativistic quantum mechanical system under-
going interactions.** A strong comviction among
many physicists that this is not the case has resulted
in the so-called scattering operator assuming a prom-
inent position in the theoretical analysis of rela-
tivistic particle interactions.”” Without dwelling on
the justification of the conviction or the present
status of S-matrix theory compared to field theory,
I would like to describe briefly here the manner
in which the scattering operator enters into the
hyperplane formalism and the relation between the
Poincaré invariance of the scattering operator and
conservation laws in the formalism,

Let the symbol a stand for a complete description
of an instantaneous state of a system of free particles
in the conventional formulation of relativistic quan-
tum mechanics. The Heisenberg picture state vector

ler, 2)

then describes a system which at the time £ s tn the
instantaneous state «. Thus, although a Heisenberg
state vector refers to the entire evolution of a phys-
ical system, the characterization of that evolution
in terms referring to a complete set of instantaneous
dynamical variables requires the specification of

4 T'wo interesting discussions of the physical meaning and
mathematical definition of single particle states in relativistic
quantum mechanics is given by B. Schroer, Aeta Phys.
Austriaca 17, 72 (1963); H. Ekstein, Commun. Math. Phys.
1, 6 (1965). I find it hard to evaluate Ekstein’s no-interaction
theorem because the physical interpretation of his basic

ostulate (see p. 10) is not nearly as clear as the strong world-
Fine condition. Nevertheless, although direct-interaction par-
ticle theories are not my primary concern here, it seems
to me that Ekstein’s postulate is at variance with the notions
that have been advanced here. Thus Ekstein seems to deny
the possibility of dynamical content in the derivative
A(n, 7)/o7" .

(3, F. Chew, Physics 1, 77 (1964).

# The literature is voluminous. See, for example, Phys.
Rev. 140, TAB, Sec. 65, AB28 (1965).
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the time at which the characterization applies. Now,
since an arbitrary spacelike hyperplane appears in-
stantaneous in some frame, the descriptions « can
easily be generalized to refer to arbitrary hyper-
planes, and I use the same symbol to denote the
generalized description. Thus the meaning of the
symbol

la; 7 T)
as a Heisenberg state vector for a free system is
clear.

In order to characterize Heisenberg state vectors
for fully interacting systems, it is customary to make
the dynamical assumption that in the asymptotically
infinite future and past timelike directions the system
approaches free behavior.*® Making the assumption
here one can write

[a; 7, T(ln))
a8 the symbol for that Heisenberg state which, in
the infinite past timelike directions, approaches a
free state which if there were no interactions would
assume the hyperplane state @ on the hyperplane
(n, 7). Similarly,

'0(; 7, T(Out))

denotes the Heisenberg state that approaches, in
the infinite timelike future, a free state which in the
absence of interactions would assume the hyperplane
state « on the hyperplane (9, 7).

The superposition principle applied to the free
hyperplane states @ then tells one that the (in) and
(out) states are related by a linear transformation
S(m, 75; m, 71}, independent, of e, such that

{a; N2, TZ(in)>
8.1)

On the other hand, relativistic invariance demands
that if, under the proper inhomogeneous transforma-
tion 1,

= S(n2y 725 m, 7) |a; mri{out)).

U lo; n, r(im)) = |o'; o', #/()),  (8.2)

then
UQD) le; m, v(out)y = |o; o', 7'(out)),  (8.3)

where the primes denote the description of the
hyperplane state from the transformed frame. From
the preceding equation it follows that

U(l)_l's("lz’y "5 n', n)UQ)

= S(ﬂz, 1'2; M, Tl). (8.4)

This equation cannot immediately lead to commuta-
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tion relations with the hyperplane generators be-
cause the hyperplane generators require a single
value of 7, for their definition. To get around this,
note that (8.2), (8.3) lead to

th(3/9nw) |a; 0, 7(in, out))

= N, la; 0, 7(in, out)),  (8.5)
so that
lot; 14, 7(in, out)) = P{exp (= [" M dn")}
X |a: M, T(inr out)), (8-6)

where the P symbol plays the role of an ordering
operator in the multiple integrals of the expansion
of the exponent. The ordering is somewhat more
involved here than in the conventional time ordering
of the Dyson P-symbol since the ordering parameter
is a four-vector. The problem can, of course, be
reduced to the usual one by introducing a continuous
one-parameter family 9#*(p) of timelike unit four-
vectors such that

70 = 7" 2" = ="
The ordering operator then refers to p in the usual

way. Writing the ordered exponential operator in
(8.6) as

T(nz; n)

and ignoring here the mathematical problem of the
path independence in 5" space of T(n,; 7.), yields
with (8.1)

@®.7

From (8.4) it follows that the commutation rela-
tions of the hyperplane generators with

S("lzy Tay M, T1) = T(le; 7108 (1, 725 MTL).

S(ny, 725 m, 71) = S(m; 72, 71) 8.8

are
K., 8] = 0, 8.9
[/, 8] =0, (8.10)
(H, 8] = —ik{(88/07.) + (88/07s)}, (8.11)
[N, 8] = th(88/37v"). 8.12)

The first two equations assert the asymptotic con-
servation of hyperplane momentum and angular
momentum, a consequence of the translational and
rotational invariance of S. The third equation can
be simplified by using (8.2), (8.3) again in the form

—1h(3/97) |e; 1, 7(in, out))

= H |a; 7, #(in, out)}, 8.13)
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which eventually leads to

8(n; 72, 7)) = e“PIOTV(y; 0)

= g METTIQ(), (8.14)
Substituting (8.14) into (8.11) yields
[H(n), S(n)] = 0, (8.15)
and in (8.12) leads to
Wu(n), 8(m] = ik 3S8(n)/o7", (8.16)

where
[N e(i,’t)H(r;—r,)] = ih(a/aﬂn)e(i/fr)llir,—h}
By

/Y H (13—
. “(12 — n)e(z/ (ry—71}

has been used. Equation (8.15) asserts the asymp-
totic conservation of the hyperplane mass, and its
derivation demonstrates the dependence of this re-
sult on the r-translational invariance of S(y; 1o, ).

If (7.21) is used to rewrite N, in (8.16), then
(8.9), (8.10), (8.15) allow (8.16) to be replaced by

H:{Q,, 8] = th(38/31"), (8.17)

and the asymptotic conservation of the center-of-
mass motion is related to the hyperplane orienta-
tion independence of S. The proof of this independ-
ence involves the assumption that any (in) or (out)
state may be described in terms of free hyperplane
states on any hyperplane. In other words, if

la; n, 7(in, out)) = [¢),
then for any (y’, 7') there exists 8 such that

18; n", 7'(in, out)) = [¥).

This postulate is related to the aspect of relativistic
invariance which demands that if one observer can
describe a system in terms of (», 7) hyperplane states
than a second observer, whose (4, 7) hyperplanes
are (v, ') hyperplanes for the first observer, must
also be able to employ that mode of description. This
plus the translatability of a given description yields
the postulate. The postulate in turn yields

lee; m, 7(in)) = |6; ', 7’(in))
and
lee; n, 7(out)) = [B; #’, v’ (out)).
But since
S(n) la; m, v(out)) = |a; 9, 7(in))
= |8; »', 7'(in)) = S(x) 18; ', ='(out)),
it must be that

S(n) = 8() (8.18)
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and
[@., 8] = 0. (8.19)

Finally, since the norm of a free hyperplane state
does not depend on when that state is approached,
it must be true that

{@; m, v(in) le; 9, 7(in)) = (@; 0, r(out) [e; , r(out))
for arbitrary «. Hence
S§*8 =1 = 88"

and the scaftering operator S is unitary.

(8.20)

(9) Hyperplane Field Theory of Spinless Particles

In this section I would like to discuss a field-theo-
retic mode of description which appears quite natural
in the hyperplane formalism. The deseription differs
in several respects from what is to be called con-
ventional local quantum field theory or cl.g.ft.’
Whether the differences can be significant for the
formulation of dynamical theories is a question
that is not pursued at length here. Accordingly,
I restrict the discussion to the hyperplane field-
theoretic description of free spinless particles. Within
that limited domain the major difference is that the
hyperplane field operators do not satisfy the micro-
causality condition which is a basic property of
c..q.f.t.® Nevertheless, the physical content of the
description of free spinless particles is identical with
that provided by cl.g.f.t.

To ensure the truth of the last statement, I begin
by considering the creation and destruction op-
erators for momentum eigenstates of such particles

3*(p, 1); ¥, 1),

where the time dependence (frivial in the case of
free particles) is included to emphasize the essentially
noncovariant character of these operators. Whether
interactions are present or not, these operators sat-
isfy the commutation relations*

and
[H, 8(p, ] = —ik(3/8)3(p, 1), 9.2)

where P and H are the conventional total momentum
and energy operators. In the absence of interactions,
(9.2) is equivalent to

[H, &@, )] = —c@* + m*)&@, 5, 9.3

4 If interactions are present, of course, then the mass
gpectrum of the state ®¥(p, ) {0>_is not that of a single
stable particle. See H. Lehmann, Nuovo Cimento 11, 342
(1954); P, J. Peebles, Phys. Rev. 128, 1412 (1962).
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so that

¥(p, t) = 3(p) exp [~ (/W@ + m’ei]. 9.4

In accordance with the philosophy behind the
hyperplane formalism, the instantaneous destruction
operator ®(p, t) must be replaced by a destruction
operator associated with a given hyperplane (1, 7).
Furthermore, the description of the momentum p
that is removed from the state by the action of
&(p, ) must be replaced by a four-vector variable
k, denoting the hyperplane momentum removed
from the state. The resulting hyperplane destruction
operator may be written

&(k; 1, 7).

The fact that the hyperplane momentum operator
satisfies the constraint equation (6.4) places an
awkward limitation on the domain of definition of
the variable k,. It is more convenient for calculations
to enlarge the domain of definition to the entire
four-dimensional k-space and impose the constraint
equation

7"(8/0K")&(k; 1, 7) = 0 (9.5)

on the destruction operator. The ambiguity thereby
introduced into the result of applying ® to a state
vector is removed by the commutation relations
[K., ®(k; 0, ] = —q.8(k; 9, 7),  (9.6)
(H, &(k; n, )] = —ih(3/37)3(k; 7, 7)
= —(m’¢ — MNE;n, 7, 9.7
where
g = ku - "1»("7]‘3)- (98)
The limit

lim &(k; 4, 7) = &k, &)
o1
Tt

9.9

is consistent with these definitions.

In c.l.qf.t. the space-time field operators would
now be introduced via the three-dimensional in-
stantaneous Fourier transform

3
B(x, £) = (2rh)7} f (2—1;)20 (&(p, et/™Px

+ &, e, (9.10)

and relativistic invariance of the theory is guaranteed
by the requirement that ®(x, t) transform like a
scalar

(', V) = B(x, §). (9.11)
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This requirement (9.11) then implicitly determines
the transformation properties of &(p, ). In partic-
ular, when no interactions are present, the invari-
ance of the differential element d’p/2p, plus (9.4)
yields the scalar transformation rule

@) = *@),

which usually provokes the manifestly covariant
notation,

&) = ¥@); po = @ + M),

In the hyperplane formalism, ®(k; 4, ) is defined

at the outset to satisfy
@, ) = 3k, 1), (9.12)

and the transformation to a space—time field operator
can be effected via the generalization (from non-
relativistic quantum field theory)

d’p — d*k 8(nk) (9.13)
rather than
d’p — (me/po) d°p

as in ¢.l.qf.t. Using (9.13) one obtains
aa; 1, 1) = @ery [ d'% (o)

X {B(k; n, e 4 BT (k; m, DY, (9.14)
and the resulting constraint
7'(0/0x")®(x; 9, 1) = 0 (9.15)

keeps the number of independent variables from pro-
liferating unjustifiably.

Combining (9.6), (9.7), and (9.14) yields the
Heisenberg equations of motion

(K, &(x; 9, )] = —ih(8/02")®(z; n, 1),
[H, &(z; 7, 1] = —ik(3/07)®(z; n, 7).

(9.16)

9.17)

Furthermore, the scalar transformation property
@0, 1) = ®(x; 0, 1), (9.18)

which follows from (9.12) and (9.14), yields the
commutators

[JIH cI)(x’ 1, 7))

= —the,ap,2°(3/320)2(25 1, D" (9.19)
and
[N., ®(z; 9, 7)]
= h{(2)(3/02") + (8/97")}@(z;m, 7).  (9.20)
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Assuming the equal hyperplane commutation rela-
tions, for free fields,**

(3K, 7), $(k; m, )] = 0, (9.21)
3(nke — nk)[BF'5 9, 1), & (k; 0, ]
=o'k —k) (922
yield
7@ ;0 ), 8@, 0] =0, (9.23)
[#7@ 5, ), @ (z; n, 7]
=Cxz—2,r— 151, (9.24)
where
7 (z; 9, 7)
= (2rh)~} f d'k 3(nk)B(k; m, e P*, (9.25)
V(s n, 1) = {87 @ 0, D}, (9.26)
and
Ce—2';7—1;79
= (2xh)™ f A% 8(nk)el/® hr=r ) ¥hie=aD]
h = (m’c — k)%, 9.27)

The function C is the space—time propagator for
the free field in the sense that

f d'z’ s(n")C(z — ', 7 — 75 )@@ ; 9, )

= & (z; 9, 7). (9.28)

This function displays the nonlocality of the field
since

Ca@,r;m) =0 (9.29)
for
7 + [z — 2(m)]" < 0. (9.30)
In fact, the state
& (z; m, 1) [0) = |z; 7, 7) (9.31)

# This set of fundamental commutation relations is
equivalent to the canonical quantization scheme only in the
case of free fields. Furthermore, even for free fields the
space-time field, ®(z; 5, r), does not satisfy canonical com-
mutation relations such as é(nx — nz’) [®(z’; », 7), (8/97)
®(z; 9, 7)] = ik 8(x — z'). This is probably the greatest
drawback to the use of such fields in the description of
interacting systems, since one does not have a canonical scheme
for equal hyperplane commutation relations to invoke, On
the other hand, such canonical schemes have almost dropped
out, of the picture in the modern approach to quantum field
theory. Their residue, in the form of the microcausality
postulate, would be replaced here by the equal hyperplane
commutation relation [®#(z’; 9, 1), ®z; 9, 7)] = 0 for
Ty = 7u(nz) = 3y — (nz).
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is a Newton—Wigner position eigenstate generalized
to the hyperplane (5, 7), and the nonlocal behavior
of these states is well known.'* The position operator
appearing in (7.51) satisfies

Quln, 0 ;1) = [ — n(m@)] Jz59, 7). (9.32)

Thus the field ®(x; 5, 7) has a more direct physical
interpretation than the e.l.q.f.t. operator ®#(x) since
the former is a linear combination of creation and
annihilation operators for position eigenstates.

The commutation relations (9.16), (9.17), and
(9.19) are easily “solved” by choosing*’

K, = [ ¢z stmm im0, 0.39)
J, = f 4% S(m)enssa* Ko; 1, 07, (9.34)
and
H= fd‘z s(nx)3e(z; 1, 1), (9.35)
where
Rz 0, 1) = 3502 (z; 9, 7)
X (87/92")8 7 (z; n, D) (9.36)
and
H(x;q, 1) = %’lﬁh@“’(x; 7,7
X (8°/81)8 7 (x; 0, 7). 9.37)

These hyperplane generator densities satisfy, as a
consequence of the field equation,

& 9 8 , m’c
[672 * 5% oz, T
the analog of the local conservation equation for

the stress—energy—-momentum tensor of c.l.q.f.t.

:l@(x; 7 =0, (9.38)

%e/dr = —axK,/ox,. (9.39)
Accordingly, it is tempting to write
N, = [ dz o0 (290025 1, 7
- T"K'u(x; R T>}t (9‘40)

pursuing the analogy further. The justification of
this last equation (which is valid) would take me too
far afield of my desire to present a short survey of
the elements of the hyperplane field theory of free
spinless particles. Suffice it to say that the recon-

% Equations (9.33)~(9.35) also “solve” the commutation
relations (6.10)-(6.14).
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ciliation of (9.40) with (9.20) involves the applica-
tion of (7.24) to the hyperplane field operator

3P

ot (9.41)

H 0P ad
= %:[Qm ¢ — 7 —a_:;u - Qu:;'

The fact that this section began with the gen-
eralization to arbitrary hyperplanes of the familiar
momentum space creation and destruction operators
for spinless particles guarantees that the resulting
hyperplane field theory has the same physical con-
tent as c.l.q.f.t. of free particles. If interactions are
introduced, however, the choice of a local function
of the field operators for the current operator j
appearing in

o 9 m202> L

(Fo+ 2+ 25 )on ) = iwn ) 042
does not yield dynamical results equivalent to
those obtained from assuming local interactions in

c.l.q.f.£.*° In short, for a scalar field, the dynamies of

i@;m, 1) = A¥(x; 9, 7) (943

may be expected to be very different from that of
(@) = 22’(2)

in e.l.q.f.t. Such differences are to be studied else-
where.

SUMMARY AND CONCLUSION

I have presented a formulation of some of the
basic concepts and principles of conventional rela-
tivistic quantum mechanics in a manifestly covariant
manner. The underlying physical idea of the entire
development is that only by treating observables or
dynamical variables on arbitrary spacelike hyper-
planes equivalently can one achieve full consistency
with the requirements of special relativity. The
resulting hyperplane formalism is a minimal gen-

46 The nonlocal character of the hyperplane field operators
gshould not be taken as an implication that the theories
obtained from (9.42), (9.43) say, would be more convergent
than conventional field theories. The free field propagator
(9.27) still has singularities on the light cone, and the absence
of the (1/po) factor in the definition (9.14) of &(z; », 7) gives
the space—time field an even larger contribution from the
high energy region than in ¢.l.q.f.t.

1981

eralization of the conventional “instant’’ formalism,
since the class of spacelike hyperplanes has no
proper subclass which is invariant under the Poincaré
group. The introduction of the hyperplane genera-
tors clarifies the relation between the dynamical and
kinematical properties of dynamical variables in
the relativistic domain. The axiomatic study of the
center-of-mass position operator ecrystalizes the
physical interpretation of the generator N, as well
as shedding light on some of the commutation rela-
tions between the free and interacting parts of the
generators. The asymptotic conservation laws as-
sociated with the Poincaré invariance of the scat-
tering operator was considered and led to the relation
between the law of center-of-mass motion and the
independence of S on #,. Finally, a nonlocal hyper-
plane-dependent field theory of free spinless particles
was displayed which suggests interesting avenues of
research in the study of dynamical models of in-
teracting particles.

In the near future I hope to present a thorough
treatment of the hyperplane field theory of free
particles of arbitrary spin as well as considering
some very perplexing problems in the (really non-
existent) relativistic quantum theory of measure-
ment. More distant are studies of a fully covariant
model field theory with persistent single-particle
states,”” covariant helicity amplitudes,*® and the
formulation of “phenomenological’” causality® and
the proof of dispersion relations within the frame-
work of hyperplane field theory.
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Recently developed methods of asymptotic analysis are applied to the problem of Cerenkov radi-
ation. The mathematical description of this physical phenomenon is given by the integro-differential
system of equations for the electromagnetic field in a dispersive medium. The parameter A is introduced
into these equations, where A is a characteristic frequency of the medium. It is for large X that the
asymptotic expansion of the electromsagnetic field is sought. Isotropie, uniaxial crystalline and gy-
rotropic media are treated in detailed. The source function which appears in the field equations is
taken to be quite general, e.g., it may be used to represent the current associated with any moving
“multipole” source. By applying the method of stationary phase to an integral representation of the
solution, the leading term of the asymptotic expansion of the electromagnetic field is obtained. More
precisely, a parametric representation of the expansion is found in which certain space-time curves
called “rays’” play a key role. An expression for the total energy of the radiation is then determined.

INTRODUCTION

N some of the previously published works on
Cerenkov radiation, including the original work
of Frank and Tamm,' asymptotic methods have
been used to obtain results. These methods, how-
ever, have not been employed in a systematic way.
For the most part, they involve the use of known
asymptotic expansions of special functions that ap-
pear in the analysis. In this paper, we present
a complete and systematic asymptotic theory which
enables us to obtain approximate solutions to a
wide variety of problems that arise in the study of
Cerenkov radiation.

In this paper, the problem of Cerenkov radiation
in infinite homogeneous media is considered. Iso-
tropic, uniaxial crystalline, and gyrotropic media are
treated in detail. In future papers inhomogeneous
media and interface problems are to be treated. It is
found that the results of the present paper are es-
sential in the asymptotic analysis of these more
difficult problems.

Our mathematical description of Cerenkov radia-
tion is based on the time-dependent form of Max-
well’s equations for “dispersive media.” In this case,
the constituitive equation takes the form of a con-
volution integral. Thus, we are led to consider the
asymptotic solution of an integro-differential system
of equations. The methods to be employed have been

* This research was supported by the Office of Naval
Research under Contract NONR 285(48). Reproduction in
whole or in part is permitted for any purpose of the United
States Government.

t This paper is based on part of R. Handelsman’s Doctoral
thesis, The Asymptotic Theory of Cerenkov Radiation, sub-
mitted to New York University, (1965).

1 Present address: Division of Applied Mathematics, Brown
University, Providence, Rhode Island.

17, M. Frank and Ig. Tamm, Compt. rend. acad. sci.
U.R.8.S. 14, 109 (1937).

developed® for a more general system of equations.
What distinguishes Cerenkov radiation from other
electromagnetic phenomena is the type of source
function that appears in the field equations. As is
well known, Cerenkov radiation can only occur when
the source is moving. It is shown in Sec. 2 that the
type of source function considered in this paper is
quite general. In fact, we find that it may be used
to represent the current associated with any multi-
pole source moving along an arbitrary trajectory.
Moreover, the source function is allowed to have an
“oscillatory factor” so that the Cerenkov—Doppler
effect may be treated.

As is pointed out in Sec. 2, the large expansion
parameter \ is a characteristic frequency of the
medium. The true meaning of our asymptotic ex-
pansion is better understood when an equivalent
dimensionless parameter ), is found. If dimensionless
variables are introduced throughout, we find that
X = Aa/c, where “‘a” is a characteristic dimension
of the problem and ¢ is the speed of light in free
space. We can conclude that the correct interpreta-
tion of our expansion is that it is valid for 1 < A,.
Since, in this paper, we deal with infinite homogene-
ous media, “a’ can be taken to be the distance from
the source trajectory to the point in space at which
the solution is to be obtained.

From results given in Ref. 2, an integral repre-
sentation of the Fourier type is obtained for the
electromagnetic field which is valid for both iso-
tropic and anisotropic media. By applying the
method of stationary phase in several dimensions
to this integral, parametric representations for the
leading terms of the asymptotic expansions of the
fields are found. In these representations, certain

2 R. M. Lewis, Arch. Ratl. Mech. Anal. 20, 3 (1965).
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straight lines called “rays’ play a central role. Once
the fields have been determined, an expression for
what we call the ‘“‘average asymptotic energy”’ is
obtained. We emphasize the fact that all our results
are valid for a wide class of moving sources. When-
ever possible, we specialize these results to sources
which have been treated by other authors for the
purpose of comparison. In all cases, the comparison
yields perfect agreement.

CERENKOV RADIATION IN INFINITE
HOMOGENEOUS MEDIA

1. The Electromagnetic Equations for Dispersive Media
and the Fourier Integral Representation of the Solution

In Gaussian units, Maxwell’s equations take the
form

D, —¢VxH = —4r], B, +c¢VxE =0, (1.1
V:D = 4xp, V-B =0. (1.2)

Here, D, B, E, H, and J are {-dependent 3-vectors
and X = (x,, z,, 5). The source functions p(t, X)
and J(¢, X) must satisfy the continuity equation

pe + V-] =0. (1.3)
It follows from (1) and (3) that
0/ (V+D — 47rp) =0 and 8/0{(V-B) =0. (1.4)

Therefore, if Eqs. (2) are satisfied at any time ¢, they
are satisfied for all time.

We assume that the source and fields are identi-
cally zero for t < 0, i.e.,

o(t, X) = J(¢, X) = H(¢, X) = E(?, X)

= B(;,X) = D(, X) = 0; t <0, 1.5)
Eq. (1.5) implies that Eqs. (1.2) are satisfied for
t < 0 and hence are satisfied for all ¢.

Dispersive media are characterized by the fact
that D(¢, X) does not depend on the value of E(z, X)
at time ¢ alone as in nondispersive media, but rather
depends on the values of E(¢, X) at earlier times as
well (see p. 248 of Ref. 3). There is a similar depend-

ence of B({, X) on H{{, X). These relationships are
most simply expressed by the constituitive equation

v(t, X) = f “s(ult — 7, Xy dr.  (1.6)

In (1.6), we have introduced the column vectors
u and v having 6 components defined by

u = [Ea H] = (EUEZ’ES;Hh H21 H3)’

V= [DvB] = (Dlr D?y DayBl;B2sB3)°

3L. D. Landau and E. M. Lifshitz, Electrodynamics of
Continuous Media (Pergamon Press, Inc., New York, 1960).
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[In what follows other column vectors a with 6
components are defined by an ordered pair of two 3-
vectors. Thus a = [A, B] = (4,, 4., 4s, By, B,, Bs).]
F(f) is a 6 X 6 matrix which is a real function of
time. In matrix block notation F(f) takes the form

0 F.(

Here, F.(f) and F.(f) are real 3 X 3 matrices.
Furthermore, we assume that the causality condition

FH =0 for t<0 (1.9

1.8

is satisfied.

We now define the matrix £(¢) to be the Fourier
transform of (). That is,

F(8) = —2—1; f_ _ e C8(0) do. (1.10)

In Gaussian units, £(¢) is dimensionless and there-
fore must be a function of the dimensionless variable
w = &/\, where A is a characteristic frequency of
the medium. (For example, in an isotropic plasma
we may take A to be the plasma frequency.) As a
result, we may write

80 = &w). (1.11)
Then, setting & = Aw in (1.10), we obtain
x ® —fAot
50) = 5= [ e do.  W12)

We assume that the matrix &(w) is Hermitian for
real w and independent of A. Physically, this implies
we are neglecting the dissipative effects of the
medium. The effects of ‘“weak dissipation” is to be
treated in a subsequent paper.

It is convenient to write (1.1) in matrix form.
We introduce the antisymmetric matrix (Z) cor-
responding to any 3-vector Z, given by

) = (1.13)

Then, if W is an arbitrary 3-vector, (Z)W = ZxW.
We also define the three 6 X 6 matrices, 4*, 4%, 4°

by
0 -C(K)J
L(K) 04
where K = (ki, ks, ks). The matrix A" is obtained

by setting k; = 1 and k, = k; = 0in (1.14). A® and
A? are determined in a similar manner. We note

3
kA =

Pl

(1.14)
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that the matrices 4” are real and symmetric. Using
(1.14), (1.1) can be written in the compact form

av/ot + A’(ou/ox,) = f. (1.15)

(The summation convention with respect to re-
peated indices from 1 to 3 is used.) Here, f is the
column vector with components, —4x(J,, J., Ja,
0, 0, 0). Equation (1.5), when written in terms of
u(t, X) and v(t, X) implies the “initial conditions,”

wi, ) =v(,X) =0 for <O, (1.16)

An integral representation for the solution of
the integro-differential system (1.6), (1.15) with
“initial conditions” (1.16), can be obtained using
Fourier transform techniques. This has been done
in Ref. 2. In order to describe the result obtained
there, it is necessary to give some preliminary defini-
tions. We define the inner product of any two column
vectors x and ¥ having 6 components by

x,y = :Z_l-’”iﬂh (117

where the bar denotes complex conjugate. Further-
more, we introduce the Hermitian matrix

G, K) = k4" — »8w) (1.18)
and the corresponding dispersion relation,
det G, X) = 0. (1.19)

‘We denote the real solutions of the dispersion relation
by w = h(K) [We should index the functions A{(K).
However, not doing so simplifies the notation and
need not cause any confusion.] and the linearly
independent null eigenvectors of G(h, K) by r'(K);
j=1,---,q. Thatis,

GrKY =0; j=1,2--,¢ (120
Thus, ¢ is the “nullity” of the singular matrix
G(h, K). (We see that for isotropic media ¢ = 2,
while for anisotropic media ¢ = 1.) The vectors
1’(K), which of course depend on the root w = A(K)
of (1.19), are orthonormalized by the condition

@, ALl = 8,;; 4,i=1,---,4q. (1.21)
Here, 8;; is the Kronecker delta. The Hermitian
matrix A%w] = d/dw{ws(w)] is assumed to be positive
definite and therefore it is always possible to ac-
complish the orthonormalization.

An integral representation of the solution u is
given by Eq. (4.3.8) of Ref. 2, which yields

R. HANDELSMAN AND R. M. LEWIS

u(t, X) = (%r)sf_:czxf_:dz f:dr

X Z exp {'Z?\UG,(&?, - Z,) - w(f‘ - f)]}

weh

]
X Z‘; (lr, Z),tNr'; > 0. (1.22)
=
Equation (1.22) is the exact integral representation
of u only if all the roots of (1.19) are real. If any
roots lie in the lower half of the » plane, (1.22) is
an asymptotic equation for A — o, It is assumed
that no roots lie in the upper half-plane or, that if
any do, their contributions to the solution can be
neglected,

Until now we have said nothing about the nature
of the source function £f({, X). Our concern here is
with the moving sources. The current J{t, X) cor-
responding to a particle with charge e moving along
the trajectory X = Y(i) is given by

It X) = X 31X — Y()]
= ¥(t) 8[z, — w(t)] 8wz — :(D]
X 8lzs — ya(B)]. (1'23)

For greater generality, we consider source functions
of the form

(6, X0 = Mgt X - YOl (1.29)

Here d is a real number and g{¢, X) is taken to be
real and to have, for each value of ¢, compact sup-
port in X. [f(X) has “compact support” if it vanishes
outside a bounded region called the “support’ of f.]
We note that for large N\ the support of £(3, X; A)
shrinks to the point X = Y(f). Therefore, (1.24)
can be used to represent a source which is nonzero
only in a small neighborhood of the moving point
X = Y{(¢). Remembering that J{¢, X) represents the
first three components of £(t, X), it is easy to see
that (1.23) is a special case of (1.24). In faect, using
the relation A§(Az) = &(z), (1.23) becomes

J(t, X) = YN 8{A[z, — (D]}
X 8Nz — y.(01} 8{Nzs — y(D]}. (1.25)

In a similar manner, we can show that (1.24) in-
cludes all moving “multipole” sources. That is, all
sources whose corresponding current terms J are
given by linear combinations of partial derivatives
of the three-dimensional §-function.

A further generalization of the moving source
is obtained by introducing an oscillatory factor
cos [Ag(f)]. Then, f has the form

£(2, X500 = Mg, MX — YO cos \g(5)].  (1.26)
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Such a source describes an oscillatory current non-
zero only in a small neighborhood of the moving
point X = Y(¢). Equation (1.26) can also be used
to express the current associated with a particle of
fixed charge, moving with a small oscillation super-
imposed on a smooth trajectory. For such a source,
(1.23) holds with

Y() = Yo(9) + [M()/N] sin [Ag(9)],

] _ a.2n
Y() = Yo(&) + M(5)g(?) cos [Aq($)] + O(1/N).
Since
3 — Y(9) = 8[X — Yo(®) + 01/N),  (1.28)
(1.23) becomes
J(t, X5 0) = e{¥o(t) + M(8)g(®) cos M()]}
X 8[X — Yo(0)] + 0(1/n).  (1.29)

Equation (1.29) shows that the current is asymptotic

to a sum of two terms, one of which has an oscil-

latory factor, as in (1.26), while the other does not.
If in Eq. (1.22), we take f to be given by (1.26)

and make the change of variables, ¢, = Az, —

y,(7)], we obtain

u(t, X) = (2) dKf dr

X ;_; exp {irlk,(z, — ¥,) — (t — D]}

X X @lr, K], )’ cos (g(f)],

=1

(1.30)

where

8.8 = [ e (~ikg)elr, Q) dQ;
- (1.31)
Q= (g1, & ¢a)-
It is important to note that the function g(r, K) is
independent of A\. We use this fact when the asymp-
totic expansion of (1.30) for large X is obtained.

2. The Asymptotic Expansion for Isotropic Media

Isotropic media are characterized by the fact that
the matrix &(w) has the form

Bw) = |:e(w)I 0 J
0 uwl

Here e(w) and u(w) are scalars and I is the 3 X 3
unit matrix. It is readily seen from Egs. (2.1) and
(1.18) that the dispersion relation (1.19) implies

k = m), 2.2

2.1
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where
= (k.k) = [K],
mw) = le/C[e(w)u(w)]* lo|/cln@)].  (2.3)

In (2.3), n(w) = [e(w)u(w)]! is the index of refraction
of the medium. We let w = h(k) represent those
real-valued functions for which

k = mh(k)]. 2.4)

We now introduce A = (a,, @, ), the unit vector
in the direction of K. Thus,

K = FkA. 2.5)

Furthermore, we let N and B be any two real unit
vectors such that N, B and sgn [»/]A form a right—
handed orthonormal set. The null vectors r’; j =
1, ---, g, defined by Eqgs. (1.20) and (1.21) can be
easily determined. We find that ¢ equals two, and
that

' = [(¢/oB, (¢t/wiN], (2.6)
= [(¢/*N, ~(¢/u)'B]. 2.7)

(N and B are determined up to a rotation which
leaves all our results invariant.) The function {(w)
appearing in (6) and (7) is determined by the ortho-
normality condition (1.21), which yields

e(w)ulw) )
e(d/dw)(wp) + p(d/dw)(we)

It can be seen from the definition of §(w) given in
Sec. 1 that &(—w) = 8&(w). Therefore, e¢(w) and
p(w) are even functions of w. Equation (2.3) then
shows that m(w) is even in w. Thus, if v = h(k) is a
root of the dispersion relation, w = —h(k) is also a
root. We now define the functions u,(f, X) and
u_(t, X) by the right side of (1.30), except that for
u.(t, X) we sum only over the (positive/negative)
roots w = h(k). Then, assuming we may neglect
the contribution from the zero root (see Ref. 2,
Sec. 7.1),

$lw) = 2.8)

u(t, X) = u,(t, X) + u_(¢, X). (2.9)
Equation (1.18) shows that G(—h, —K) =
—G(h, K). Since g is a real quantity, it follows from
(1.31) that g(r, —K) = g(r,K). Using these two
facts, it can be shown [by replacing K by —K and
h(k) by —h(k) in the representation of u.({, X)]
that u.(¢, X) = u_(¢, X). It therefore follows from
(2.9) that u(¢, X) is real and is given by

u(t, X) = u, + 4, = 2 Re [u.(¢, X)]. (2.10)
As aresult, we may replace cos [A\g(7)] by exp {irg(r)}
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in (1.30), if the real part of the integral is taken. That
s,

)\d

(211')3 Re {./‘_: dK
X 3 @lr, K], r"[K])r"[K]} , @)

i=1

u(t, X) = fo Cdr T exp 4]

where
¢ =klz, — (0] — (¢ — Dh(k) + ¢(x). (2.12)

We point out that when representation (2.11) is
used Eq. (2.10) holds only if ¢(r) = 0.

‘We now apply the method of stationary phase
in several dimensions (see Appendix II of Ref. 4
for a description of the method of stationary phase
in several dimensions) to obtain the asymptotic
expansion {(for A\ — o) of the integral (2.11). The
“phase function” ¢, corresponding to a particular
root w = h(k), is given by Eq. (2.12). ¢ is stationary
at those points (r, K), such that
a¢/0k, = x, — y.(r) — (¢t — 7) 9h/dk, = 0;

»y=1,2,3 (2.13)
and

d¢/dr = —k,y,(7) + h(k) + g(r) = 0.  (2.19)

We introduce G = (g5, g», gz), the group velocity
vector and g = (g,9,)! the group speed, where

g, = oh/ok, = W (k)(k./k) = h'(K)a;
v=1,2,3. (2.15)
Then, if T is the unit vector in the direction of G,
G = ¢T, (2.16)
where
g = [A'(k)] and T = sgn [A'(k)]A. 2.17)

We see from (2.17) that G is either in the direction
of K or —K. The ambiguity is resolved by the sign
of k'(k). Equations (2.13), (2.14), and (2.15) show
that, at the stationary points,

X=Y(+ (¢ — nG; t>r (2.18)

and
K-Y(n] = hk) + (7). (2.19)
If o(r) = [Y(r)] is the source speed and 6 is the
angle between G and Y(r), Eqgs. (2.17) and (2.19)
yield
cos § = sgn [A'(K)]{[rk) + ¢(n]/ko(n)}.  (2.20)
When ¢(r) = 0, (2.20) becomes the well-known
“Cerenkov condition’ and # becomes the *“Cerenkov

*R. M. Lewis, Asymptotic Methods for the Solution of
Dispersive Hyperbolic Equations, Research Rept. EM-197
New York University, (1964).
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angle.” When ¢(r) # 0, (2.20) is usually referred
to as the “Cerenkov—-Doppler condition.”

For fixed (¢, X), the stationary points (r, K) must
be obtained by solving (2.18) and (2.19) which are,
in general, transcendental equations. To avoid this
difficulty, we take a different but equivalent point
of view. We consider Eq. (2.18) as defining, for
fixed (r, K), a locus in (¢, X) space. This locus is a
straight line which we call a ray. In (2.18), the
quantity 7 represents the time of emission of the
ray from the source trajectory. Since Eq. (2.19) is
a relation between the four quantities =, k,, only
three of them are independent. Therefore, as = and
K vary, Eq. (2.18) represents a three-parameter
family of rays. Zero, one, or more rays may pass
through a given point (!, X). The asymptotic ex-
pansion of u at this point, as determined by the
method of stationary phase, is obtained by summing
the contributions corresponding to those rays.

The value s of the phase at the stationary point is
determined by Eags. (2.12), (2.15), and (2.18). They
yield

s = [kh'(k) — h(E)] + a(7). (2.21)
Then, using formula (12) in Appendix II of Ref. 4,

we obtain
a—2

X Re| X 33 (et 6,07

u(t, X) ~
X (&, r')r exp {ix[(t - 7)

X (b — o) + o] + Lo (m)}] , @2

as the asymptotic expansion of (2.11). For each ray
(2.18) which passes through (¢, X), the appropriate
term in the sum (2.22) represents the corresponding
contribution to the expansion. In (2.22), (¢,s) is the
matrix of second derivatives of ¢ with respect to
r and k,, and sig (¢,5) denotes the signature of this
matrix. By choosing a coordinate system in which
A = (0, 0, 1), the elements of (¢,s) simplify greatly.
In this system

(¢vﬂ)
[=@=nr" 0 0 (W=u)]
0 —e-9% o -y
0 0 —u-n% -y
L -9 - —g (k).
2.23)
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The fact that A = (1, 0, 0) implies

() = (Y-A) = sgn (W (K)o(r) cos 6,
75 + y3 = v*’(r) sin® 8

(2.24)

and
hi(r) = (YA)
Using (2.24) and (2.25), we obtain

det (4,0) = [(t — ) %::r{(t — Dk -8) — g

(2.25)

124
— Ek—v2 sin® § — [|&’] — v cos 0]2}- (2.26)
We note that (2.26) has been expressed in a form
independent of our special choice of the coordinate
system.

Equations (2.18), (2.20), (2.22), and (2.26) yield
a parametric representation of the first term of the
asymptotic expansion of u(t, X), which is valid
only when det (¢,5) # 0. Those points (¢, X), cor-
responding to parameter values for which det (¢,5) =
0, form a locus (called a ‘“‘caustic”’) in (¢, X) space.
To obtain the asymptotic expansion of u(¢, X) valid
at caustic points, a more detailed analysis is re-
quired. An interesting effect may occur when
Y = ¢(t) = 0. In this case, there may be a caustic
surface similar to a “Mach cone’ along which the
solution u is more intense. This cone proceeds into
the medium with the source. The reader is referred to
Appendix II for an analysis of this effect.

It was pointed out above that only three of the
four quantities k,, = are independent. Actually,
three functions of k, and = may be selected as in-
dependent parameters. To determine the most con-
venient set of independent parameters, we introduce
along the trajectory X = Y(r), the orthonormal set
T*, N*, B* consisting of the tangent, principal normal,
and binormal vectors. If the trajectory is a straight
line, N* and B* can be any two unit vectors such
that T, N* B* form an orthonormal set and B* =
T*.N*. We now define v to be the angle which the
projection of T into the N*, B* plane makes with
N* as measured in a counterclockwise direction
from N*. Then, we have

T = sgn [ (k)]A = cos OT*
+ sin 8 cos yN* + sin 0 sin yB*. (2.27)

Equations (2.5) and (2.27) show that K depends on
8, 7, k, and v. We see from (2.20) that 6 can be elim-
inated in favor of £ and 7. Equation (2.3) shows
that & in turn may be eliminated in favor of w. (It
is advantageous to make this replacement because
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m(w) is a single-valued function, whereas its inverse
is, in general, multiple-valued.) We see therefore
that r, », and ¥ may always be selected as independ-
ent parameters.

For any root w = h(k), we have o = h[m(w)].
Implicit differentiation of this relation with respect
to w yields
1 =m"(w)
m () [m’()]*
Inserting Eqs. (2.2) and (2.28) into (2.20), we obtain

cos 6 = sgn [W(@)[%]- (2.29)

The ray equations (2.18) are now given by
X =Y+ [t = /Im 1T, 0,7, (2.30)

where T is expressed in terms of 7, », and v through
(2.27) and (2.29).

The parameters P = (7, w, ¥) lie in a certain
parameter space & which is determined below. For
any fixed value of ¢, Eq. (2.30) defines a transforma-
tion from P-space to X-space. The Jacobian j(¢; P)
of this ray transformation is defined by

](tl P) = a(xly T, x3)/a(7': w, 'Y)' (231)
Equation (AI22) in Appendix I yields the relation

(6P | _ me) Im'@)]
det () oD

where, as seen from Eqs. (2.26) and (2.28),

et .0 = (=) e = oct-mm - 0 255

mm’
m vm

+1- (559
(2.33)

Furthermore, (2.28) and (2.32) show that Eq. (2.22)
can be written in the form

u ~ Re [z(t; P) exp [irs(t; P)]]

h k) = and Rk} = (2.28)

(2.32)

matl (& -2}

= Re [Tz%ll?)—l‘ exp [iNs(E; p)]] . (2.34)
where
s(t; P) = (t — ny(m/m’ — w) + q(7) (2.35)
and
a-2 (13
a® = lits B 2 ) = 5 [ L]
X exp [iﬁ sig (d’vﬂ):l ; &', (2.36)
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In (2.36), §(r, K) and r'(K) are expressed in terms
of P through Egs. (2.2), (2.5), (2.27), and (2.29).
We note that no sum over the roots of the dispersion
relation appears in (2.34). This simplification is a
direct consequence of the single-valuedness of m{w).

It remains to determine the domain of the inde-
pendent parameters P in our parametric representa-
tion (2.30), (2.34). We claim that this domain is
defined by the inequalities

0L 7 (2.37)
1 £ fo(mm)/le + @1}, (2.38)
0<vy <2 (2.39)

Condition {2.37) is obvious. The requirement that,
for real K, Eq. (2.19) be satisfied implies that ¢
is a real angle. Therefore, condition (2.38) follows
immediately from (2.29). If we restrict ¢ to lie be-
tween 0 and 7, we can allow v to vary between 0
and 2. For fixed r > 0, each value of w satisfying
(2.38), defines a hyper-cone of rays in space-time.
The hyper-cone is generated as v varies from 0 to 2r.

In the special case g(r) = 0, we make use of
relation (2.10). Equation (2.34) still holds except
now we take

T i :/l //[ /7

o} 1

Tl ¥

Xy

X3
X2

X3

(b}

Fig. 1(a). A space—time diagram of the rays. For each of
the three times of emission r;, r;, and ry, those rays which lie
in the z;, zs plane are depicted. (b). The projection into
space of the hyper-cone of rays in space-time corresponding
to the values r = 7 and & = w,. [Note that Figs. 1(a) and 1(b)
are not drawn to the same scale.]
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a-2

4P = 2 (m |m |}

ko

X exp [ff sig (m)} 2 @ (240

and add the restriction 0 < w to the definition of
the domain of P, If we set 8(r) = v(r)/c and note
Eq. (2.3), condition (2.38) becomes

F(m’w 2 1. (241)

It follows from (2.41) that, for given values of 7 and
w, the source speed v(r) must be greater than the
corresponding phase speed ¢/n{w), for Cerenkov
radiation to occur.

To conclude this section, we discuss two ray
diagrams. We consider first a space-time picture of
the rays. For simplicity we assume that ¢{r) = 0
and that the source velocity is uniform in the di-
rection of the positive z, axis. Because of the azi-
muthal symmetry of the problem, only those rays
which lie in one plane passing through the source
trajectory need be considered. Let that plane be
the z,, z; plane. (That is, we consider only those
rays which correspond either toy = irortoy = §.)

In Fig. 1(a) the vertical axis is the time axis. The
source trajectory is a straight line in the (z, ?)
plane passing through the origin and making an
angle ¢ with the z; axis. It is easy to see that ¢ =
cot™», where v is the source speed. In general, for
fixed time of emission r, there is a conoidal surface
of rays generated as w varies in the range fn(w) > 1.
A similar surface is produced at each point along
the source trajectory. Of course the actual con-
figuration in any given problem depends on the
function m(w) associated with that problem. Here,
for definiteness, we set u(w) = 1 and take e(w) to
be of the form

ew) = 1+ p°/0° — o°). (2.42)

[Theoretical derivations of the dielectric permea-
bility for isotropic media with a single ‘‘resonance
frequency” given in Ref. 5 lead to functions e(w)
of this form.] Then, if 8°p° < (1 — §°)r°, Cerenkov
radiation can occur only in the range

P —-p8/1 - <e<r. (243

Using the functions e(w) and u{w) defined above, we
have depicted in Fig. 1(a) three ray surfaces cor-
responding to three distinet times of emission. For
each time of emission 7, these surfaces are depicted
for + < t < t,. (The reader is referred to Appendix

8 A, Sommerfeld, “Optics’” in Lectures on Theoretical
Physics (Academic Press ne., New York, 1964), Vol. IV.
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II for a discussion of the significance of the »-shaped
figure appearing in this diagram.)

The projection into X-space of the hyper-cone of
rays in space-time, which corresponds to the values
7, and @ = w,, is represented in Fig. 1(b).
Actually, only that portion of the projection defined
by 7, < ¢t £ {, is shown. The two rays which lie
in the (z,, ;) plane in this diagram also appear in
Fig. 1(a). These rays are represented by dashed
lines in both diagrams. The vertex angle ©, of the
cone in Fig. 1(b) is defined by

0, = 2 cos™* [Bn(w)]™". (2.44)

The length ! of the generators of the cone is deter-
mined from the ray Egs. (2.30). We see that

L= (t — m)/m'(w). (2.45)

Associated with each w lying in the range (2.43),
there is an analogous cone defined by Egs. (2.44)
and (2.45) with w, replaced by w. Moreover, it can
be shown that, as w varies throughout this range,
these cones fill out a 3-dimensional region in X-space.

3. The Energy of Cerenkov Radiation for Isotropic Media

T =

We define the “average asymptotic energy den-
sity” w(t, X) by

w(t, X) = [16x |j(¢; P)[I7'@[P], 4°d[PD,  (3.1)

where |j(t; P)| is obtained from Egs. (2.32) and
(2.33), and d[P] is given by (2.36). In (3.1), the
following convention is used. The right side of (1)
is summed over all rays which pass through the
point (¢, X); [i.e., over all values of P = (r, o, v)
which, for fixed (¢, X), satisfy (2.30)]. It is shown
in Ref. 2, Appendix B that

w, + V'<S> =0, (3'2)

where (8) is the average over a small time interval
of the “Poynting vector,” S = (c/4r) E-H. Equa-
tion (3.2) is the well-known equation of energy
conservation and justifies the designation of w(t, X)
as the average asymptotic energy density.

Let W(r,, t) be the total energy, measured at time
t > 7, radiated from the source as it traverses the
portion of trajectory defined by 0 < » < 7,. Then,

0
Wi, = [, % dx = -1 [ @AD gy g5
16w l11
The integrand in the last term of (3.3) is to be sum-
med over all values of P such that the corresponding
ray passes through (¢, X) and 0 < » < 7,. Alter-
natively, this sum can be replaced by a single integral
over an appropriate domain in a “multiple X-space,”
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consisting of « replicas of physical X-space. Here
x is the maximum number of rays that pass through
any point X at time {. The ray-transformation (2.30)
maps the parameter space ® in a 1-1 manner on this
multiple X space (whereas the transformation is
multiple valued for physical X space). The change of
variables from X to P leads to the simple result,

Wr, ) = Wr) = 1 fy @, 4°%) dP.  (3.4)
Here, dP = drdwdy and @, is the domain in param-
eter space defined by the inequalities (2.37)—(2.39)
with the additional restriction + < r,. We note that
(3.4) is independent of ¢, an expression of the fact
that energy is conserved.

From Eq. (2.36) and the orthonormality condition
(1.21), we obtain

2(d 2)
- @l 5+ 16 e,

By inserting (3.5) into (3.4) and noting the definition
of ®, given above, we have
kz(d—Z)

2r Ty
——‘6411-3./; d'yf dr

x do MM @] S~ 16 e

((w+d)/am)1<1 v(r) i=1

In the case g(r) = 0, @, is defined by inequalities
(2.37)—(2.39) with the additional restrictions r < =,
and 0 < w. Equations (1.21), (2.40), and (3.4)

show that
2x
f dy f dr
[+

2(d 2)
‘m(w) m (w)
X

165°
ﬁ’(r)n'(u)>l U(T)
w>0

d, A%d) =

(3.5)

W(r,) =

(3.6)

W(Tl) =

;} i@ . 3.7

We observe that j(t; P) does not appear in the
integrals (3.6) and (3.7), whereas it does appear in
the expression for the fields. Equations (2.32) and
(2.33) show that j(; P) is a very complicated expres-
sion. Therefore, we can conclude that the degree
of computational difficulty required to obtain the
energy results is significantly less than that required
to obtain the fields.

4. Examples for Isotropic Media

In this section we consider separately the Cerenkov
radiation due to a uniformly moving charged par-
ticle and due to a uniformly moving dipole. In
both cases the function ¢(r) is taken to be zero.
Since the source velocity vector is constant in
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these problems, we are free to select our spatial
axes so that the positive z, axis coincides with the
trajectory. Thus, if X, is the unit vector in the
direction of the positive z, axis {r = 1, 2, 3), we
may set

Y(r) = vk, X,, and B* = X,. @.n

Furthermore, we may choose B to be perpendicular
to X, as well as to T. Then, Eqgs. (4.1) and (2.27)
show that we may take

N* =

A = sgn [m/{w)](cos 8,sin @ cosvy,sin fsiny), (4-2)
= (0, siny, —cos %), 4.3
and
= (sin 6, —cos # cosy, —cos @siny), 4.4
where
cos 8 = sgn [m’(w))/B("nw), w>0. 4.5)

The null vectors r' and r° are determined by in-
gerting (4.3) and (4.4) into Egs. (2.6) and (2.7)
respectively.

A. Uniformly Moving Charged Particle

For this source, the first three components of
‘g{t, \[X — Y(@)]}, aside from a factor of —4r,

are given by Eq. (1.25). We see that d = 3 and
g(r, Q) = —dwev 8(q:) 8(g2) 8(g)[X,, 0. (4.6)

Equation (1.31) then yields
g(r, K) = —4rev[X,, 0] %))

and therefore
@€ 1) =0 and (& 1) = —4rew({/etsin 6. (4.8)

The asymptotic expansion of u is given paramet-
rically by (2.34), (2.40), and (2.30). These equations
along with (4.8) yield

u(t, X) = [E, H] ~ (—-46).)1:”{(‘”)"2(“) im'(“’)‘:r

(@ i¢; P)
X sin 6 cos As + 1r sig (@) (4.9)
and
X =Y() + [(¢ — n/m'W)]A. (4.10)

In (4.9), j(¢; P) and s are obtained by setting ¢(r) =
0 in (2.33) and (2.35) respectively. The signature of
the matrix (¢,s) can be determined from (2.23).

We define 2(X) to be the plane which passes
through the z, axis and the point (X). For any ray
through (X), the vector N lies in @(X) and the vector
B is normal to Q(X). Thus, Eqgs. (2.7) and (4.9)
show that whenever the fields are nonzero at (X},
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E(t, X) lies in Q(X) and H{¢, X) is normal to 2(X).
The energy W(r,) is given by Eq. (3.7). It can be
shown from (2.3) and (2.8) that, for @ > 0,

mw) (}’:’:’)&"gw” ) = @ {u(w}{

We recall that « is related to the frequency & by

= &/\. Then, inserting Eqs. (4.8) and (4.11) into
(3.7) and using (1.11), we obtain, after performing
the 7 and ¥ integrations,

] 0 b0l (1= ) ae

w>0

(4.11)

W(r) = (4.12)

If a(d) = 1, (4.12) agrees with the result obtained
by Tamm®. We point out here that Tamm’s result
is exact whereas (4.12) is asymptotic. The agreement
can be explained by the following argument. We note
that (4.12) holds for all time ¢ > 7,, and in particular
for t = «, Equation (4.10) shows that at { = o,
22 4 22 = o, Therefore, in A\ = Aa/¢, @ = o and,
in that ease, we expect our asymptotic expansion to
be exact.

B. Uniformly Moving Dipole
For this source the current J{{, X) is given by

J(t, X) = —[cV xM(2, X) + (3/0)F(, X)].  (4.13)

Here, M is the magnetic moment vector and F is
the electric moment vector. We consider the special
case of a4 moving magnetic dipole, where

M(z, X) = moX, 8(z, — vb) 8(x,) 8(xs).  (4.14)

The magnetic moment induces an electric moment
as seen in the rest frame of the observer, given by

F(t, X) = (mo/0Y xX, 5[X — Y(2)]

= moBX, 8(z, — vi) 8(x) 8(xs).  (4.15)
(See Ginzburg and Eidman” for a discussion of this
source.) It can be shown from Eqs. (4.13)-(4.15)
that, in the representation of the source by the

function Ag{t, A[X — Y(#)]}, we should set d =
and

g(r, Q) = dmemo{ () 8(gs) $(g)(1 — B)[Xs, 0]

— &(gs) &q1) 5(92)Ii1» 0l}. (4.16)
Equation (1.31) then yields
g(r, K) = 4mimec
X {1 - 85[Ks, 0] — k[X,, 0]}, (4.17)

s Ig, Tamm, Zh. Teor. Fiz. 8.8.8.R. 1, 439 (1939).

V. L. Ginzburg and V. Ia. Eldman Zh. Ekslif“m i
Teor. Fiz. 35, 1508 (1958) [English transl.: Soviet hys.—
JETP 8, 1055 {1959)}.
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The quantities &, and k; are expressed in terms of

7, w, ¥ through Eqgs. (2.3), (4.2), and (4.5). We obtain
ko =wfv and k; = [wn(w)/c]siny

X (1 — 1/8n%) sgn [m'()].  (4.18)

The null vectors r* and r* are as in Sec. 4.A and
therefore

@, 1) = drim(3/}B — 1/P) cosy
and

& 1) = dmimeo(¢/H(1/n — )
X sin v sgn [m'(@)].

(4.19)

Thus, we obtain

of m@) Im'W)] @) P
uti, X) ”4’”"*[ @ 1it; P)| v ]"’
X {(8 — 1/8) cosy ' + sgn [m’(w)]
X (1/n ~ n) sin v} sin [\s + 1r sig (@,0)]. (4.20)

The rays are given by Eq. (4.10).

The energy W(r,) is obtained by inserting Eqs.
(4.11) and (4.19) into (3.6). After setting w = &/\
and performing the r and v integrations, the result is

[ 8]

&>0

2 1 2]
<[l + -]
If we set p(®) = 1, (4.21) agrees with the result
obtained by Ginzburg and Eidman in Ref. 8.

mg T1
2%

W(r) =

oy

(4.21)

5. The Asymptotic Expansion for Crystalline Media

In this section we assume that the medium is a
uniaxial crystal. The crystal axis is taken to be the
zz axis. If we set the magnetic permeability u{w)
equal to 1, the matrix §(w) takes the form

aw 0 O
&w) = !:gl(w) 0} ;&= 0 al@ 0 |- (B.D
0 I 0 0 oW

In this case, the dispersion relation (1.19) yields
the two equations

ko = mo(w) = (lol/d]a@)]?,
k, = m,(w, ks) = [“{—Zﬁ + k§,(1 - ‘—)]}

€

(5.2

(5.3)

The subscripts o and ¢ are used because the solutions
corresponding to k, and %, are commonly referred to
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as “ordinary” and “extraordinary” respectively. In
(5.3), kg. = k,ag.

If |as] # 1, there exists one null-eigenvector of
the dispersion matrix G corresponding to each of
the quantities k, and k,. We denote these vectors by

rO = [Rlﬂs R2D] a'nd ro = {Rln R20]° (5'4)

If we set no,, = ¢ko../|w], it can be shown that the
3-vectors R,,, R,, take the form

R = 3AxX;, Ry = A x(AxXy); (5.5
R, = 5'3(”?'«/51) [Ax(A xia)

+ (1 — a/e)(l — ap)&s],

R,, = %X, xA. (5.6)

The quantities {, and {, are determined by condition
{1.21) which yields
(1 - aﬁ)[a% (wer) + el:l,

G =

5.7)
=~ ai){l + n["f 2w

ri594w] o

If |as| = 1, the expressions for r, and r, given above
are not valid. In this case k, == k, and there exist
two linearly independent null-vectors of G in the
forms

r' =[N, B], ©*=[B, -N], (5.9

where N-B = N.X, = B.X, = 0. The vectors
N and B are determined only up to an arbitrary
rotation about the z{ axis. When |as| = 1, we are
not able to carry out the stationary phase evaluation
of the integral representation of u. Therefore, when
we obtain the asymptotic expansion of u, we must
exclude this case from consideration. Thus, all rays
corresponding to parameter values for which A =
(0, 0, 3= 1) will be omitted. The energy results,
however, will not be affected because, at any time
¢, the solutions corresponding to the omitted rays
confribute negligibly to the radiated energy.

The integral representation of the solution is given
by Eq. (1.30) when the source function f is given
by (1.26). Arguments similar to those used for iso-
tropic media show that the solution is real. Let w =
ho(k) represent those real functions for which k =
motho], and let w = h,(k, k;) represent those real
functions for which k = m,[h,, ks]. Then, it can be
shown that the integral representation takes the
form

u(?, X) = u,¢, X) + u.(Z, X}, (5.10)
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where

=Z§:‘:)~3Re[‘/:dK/:dr

X 2 exp [i>\¢o.,](§,ro,.)ro.,]- (5.11)

wwho,o

uD,c

Here, the functions ¢,,, are given by
¢0.c = kv[xv - yV(T)] - (t - T)h‘ﬂ,' + Q(T)-

In the special case ¢(r) = 0, the relation u =
2 Re [u,] holds, u, is obtained by restricting w to
be positive in (5.11),

The computational difficulty involved in carrying
out the stationary phase evaluation of (5.11) is
significantly reduced if we take the source trajectory
to be a straight line. Thus, we set

Y(7) = y()T*,

(5.12)

(5.13)
where

T* = (,0,8); EGE+&) =1 (514

There is no loss of generality in the assumption
Y(r) lies in the z,, z; plane. This can always be
accomplished by a rotation of the spatial axes about
the erystal axis. Our results are invariant under such
a rotation.

Let us consider first the asymptotic expansion of
the integral representation of u,(¢, X). The stationary
phase analysis of this term is essentially the same as
the analysis given in Sec. 2 for isotropic media.
Therefore, only the results will be given here. For
anisotropic media, it is more convenient to define
6 to be the angle between the vectors A and T*,
rather than, as in the case of isotropic media, the
angle between T and T*. We have

K, = mew)A,. (5.15)

We may select,
N* = (£,0, —§) and B* =

©, 1, 0). (5.16)

Then, if v is the angle formed by the projection of
A, into the (N*, B*) plane and N* (as measured in a
counterclockwise direction from N¥*), we obtain

A, = cos §,T* + sin 6, cos yYN*

+ sin 6, sin yB*. (6.17)
The Cerenkov—Doppler relation yields
cos o = [[w + ¢(n)]/mo(w)r(n)],
o(r) = [¥(D|. (5.18)

The parametric representation of the first term
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of the asymptotic expansion of u,(¢,X) is given by

u, ~ Re [E%;(%)T‘ exp [ihso(t; P)]} ;

i (5.19)
4o(®) = L= (mo /0
X exp [4ri sig (400)](&, 10)T0
and
X =Y() + [t — /miAy; t2>r. (5.20)

In (5.19), s.(t; P) is given by Eq. (2.35) and j,(t; P),
the Jacobian of the ray transformation (5.20), is
obtained from Eqgs. (2.32) and (2.33). Of course
m(w) is to be replaced by my(w) in these equations.
The matrix (¢05) is the matrix of second derivatives
of the phase function ¢, with respect to k, and .
Sig (¢vs) denotes the signature of this matrix.

We denote by @, the domain of the independent
parameters P = (7, w, 7). It is defined by inequalities
(2.37)—(2.39) with m(w) replaced by m(w). When
g() = 0, we make use of the relation u, = 2 Re [u,.].
In this case, (5.19) holds with d, multiplied by a
factor of 2, and the restriction 0 < w is added to the
definition of ®,.

We now consider the asymptotic analysis of u,.
We set

K, = m.(w, ko)A, (5.21)
where
A, = cos 0,T* + sin 6, cos yYN*
-+ sin 4, sin yB*. (5.22)

The stationary condition d¢,/dr = 0, yields the
Cerenkov—Doppler relation

+ ¢(n) ] 7(7, )
8, = et = L ;
eos [U(T)me(("’) ka) m,(w, k3) (5 .23)
_ ot 4@,
77(7'; “’) = 1)(1')
The stationary conditions d¢,/9k, = 0;» = 1, 2, 3,

yield the equations for the rays, which, noting the

relations
oh, _ (@11)‘ and 2P _ _(91&)(@_)'
ok dw ok, ks /\ 0w
_ (em™ (e_z _ >
= ( aw) as, . 1), (5.24)
become

X, — Y = (t — 9)G,
_¢t=1 [A. +a3,(€—2 - 1>28] s t>1. (5.25)

(ma) w €
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Equation (5.25) shows that, in this case, the group
veloeity vector G, is not in the direction of the wave
vector K,. This is a characteristic of anisotropic
media.

Before completing the stationary-phase evalua-
tion, we show how to express the vector A, in terms
of P = (r, w, v). It follows from (5.22) that, to
accomplish this, we need only express 4, in terms of
P. Equations (5.16) and (5.22) yield

ay, = & €os 6, — £, sin 6, cos vy. (5.26)

Equations (5.3), (5.23), and (5.26) can be used to
determine tan 4,. The result is

tan 8, = [1 — (1 — e/e)}; cos’ 4]

X ((e_z_ - 1)5152 Cos vy
€1
+ {[1 - <1 — :—2)5’1’ cos’ 7]
wzez 2 €2
x [ -1ee(-2)]

+ zfsz(l - -:-) cos’ 7})

In the treatment of isotropic media, we restricted
6 to lie between 0 and = and allowed ¥ to vary be-
tween 0 and 2. It is more convenient here to re-
strict ¥ to lie between 0 and = and allow 6, to lie
between 0 and 2x. For a given value of P, Eq.
(5.27) yields two values of tan 6,. We see from (5.23)
that sgn {cos 8,] = sgn [w + ¢(r)]. Thus, for a given
value of P, two angles which we call 6% are defined.
We introduce the following notation. Whenever the
symbol [ ], appears, the quantity within the brackets
is to be evaluated with 6, set equal to 6%, The
symbol { ] is defined in a similar way.

Once 8, is determined m, is expressed in terms of
P through Eq. (5.23). We see from (5.23) and (5.27)
that = is introduced into m, only through the quan-
tity 5. Therefore, we may write

(5.27)

mw, ks) = mi.(n, @,9). (5.28)
Equation (AI.37) of Appendix I shows that

ja(t; P) _ My, Kmle)w{,

det @9l = o (5.29)

Here, (¢;5) is the matrix of second derivatives of
¢, with respect to %k, and =, and 7.(; P) =
det (dX,/dP) is the Jacobian of the ray transforma-
tion (5.25). The stationary-phase formula yields
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d.(P
w(t, X) ~ 2 Re [-[7—(5—:(}%!—; :

X exp [#rs,(t; P)]] R (5.30)

where
d.(P) = 521; [.”“_I_K;MJ]‘
X exp [jrisig @)@, r)r.  (5.31)
and
R S,
X@E—n+q0x. (632

The computations required to determine j,(¢; P) are
difficult and the resulting expression is complicated.
Because the Jacobian itself is not needed for the
energy results, we omit its calculation here.

We denote by @, the domain of the independent
parameters P. This domain is defined by the in-
equalities

0L (5.33)
0Ly <m, (5.34)
0 < {581 — &/a)’ cos®y
4 [1 — & cos® v(1 — e/e)]
X [o'er’ /P + @ — 1 + 81 — e/e)]}.  (5.35)

The requirement that the angles 6* be real is ex-
pressed by condition (5.35). When ¢(r) = 0, we
make use of the relation u, = 2 Re [u,,]. Equation
(5.30) holds with d, multiplied by a factor of 2 and
the restriction 0 < w is added to the definition of @,.

We remind the reader that we must exclude from
consideration all rays corresponding to values of
P for which A,,, = (0, 0, = 1). Equation (5.26)
shows that |as,| = 1 only when v = 0, sin 8, =
:i:E)l, cos 8, = F&. (y = w does not lie in the domain
®,.

6. The Energy of Cerenkov Radiation for
Crystalline Media

In this section an expression for W(r,), the energy
radiated from the source as it traverses the portion
of trajectory defined by 0 < 7 < r,, is obtained. The
derivation of this expression is similar to the deriva-
tion of the energy results given in Sec. 3 for isotropie
media and therefore most of the computations are
omitted here. It can be shown that

W(Tl) = Wo("'l) + Wn("'l); (6-1)
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where
Welr) = 76 [ @A) (62
and
W) = 160 X f@ @, ). dP. (63)

Here, the domains of integration ®,, and @, are
respectively the domains @, and @, defined in Sec.
5, with the added restriction r < ..

When the expression for d,(P) given by (5.19) is
inserted into Eq. (6.2), we obtain

22 mo(w) [mh(w)] |, A .
64 Jo.. o(n) |€, 7o) |” dP. (6.4)

Similarly, inserting (5.31) into (6.3), we have

Wolr) =

)\2(d—2)

Wlr) =g
x 2 [ [melmddigor] @ s

If ¢(+) = 0, the domains ®,, and @,, are further
restricted by the condition w > 0 and the right sides
of Egs. (6.4) and (6.5) are multiplied by a factor
of4.

7. Example for Crystalline Media

In this section we apply the results of the previous
two sections to the case of a moving charged particle.
For such a source ¢(r) = 0, d = 3, and the function
g(r, K) is given by
g(r, K) = —4mer()[T*, 0}; T* = (5,0,%&). (7.1)
From Egs. (7.1), (5.5), and (5.6) we obtain

€, 1) = —47rev§'g£1a2°
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and

@, r) = —hwytn.{"‘"“‘“ &+ (0 62" 1) 52]- (7.3)

€

Equations (5.14) and (5.16) show that, for both
Ao and A”

a, = § cos § 4+ £ sin 0 cos vy, (7.4)

a; = sin 6sin v, (7.5

ag = £, cos § — &, sin 6§ cos v. (7.6)
Equations (5.2) and (5.18) yield

cos b = {BDa@P™; «>0. 7.7

The values of tan 6% are obtained by setting ¢(r)
equal to zero in (5.27).

The asymptotic expansions of the fields u, and
u, are determined by inserting Eqs. (7.2) and (7.3)
into (5.19) and (5.31), respectively. The energies
W, and W, are given by (6.4) and (6.5) respectively.
It can be shown that

my |mi] o = w/26(1 — o) (7.8)

and

My [(mau) £, = 6260 — Q2]

X leall + cos v, (1 — ex/e;)(cot 0.8 — & cos )] ™.
7.9

Inserting (7.2) and (7.3) into Egs. (6.4) and (6.5)
and noting relations (7.8) and (7.9), we obtain

The expressions for W, and W, simplify when the
particle’s motion is uniform and is either parallel
or perpendicular to the crystal axis.

_NEE [ el
Wo(ﬁ) = 2027r . (1 — ago) dP (710)
(7.2) and
N [ W, Jeo| [(on /)by + (Bo/en)(he — DY’ ]
W) = 5o ; f v LA — a3 |1 4+ (1 — ex/er)ty cos y(cot 0.8 — & cos )| L. db. (.11
It can be shown that
WE("':)
o7 2
= 51 — 1/8%|do. (7.
¢ ‘/;%031)(;?’2:—1)20(0 ! /B] db 7.14)

A. Parallel Motion (&, = 0)

We denote the energies of the radiation in this
case by Wi and W!. Equation (7.10) yields

Wr) = 0. (7.12)
From Eq. (5.27), we obtain
tan 0F = +[(e/e)(Fer — DIE (7.13)

In (7.14), we have reintroduced the frequency &
through the relation & = w.

B. Perpendicular Motion (¢, = 1)

Here, we denote the energies by W+ and W<,
Inserting Eqs. (7.5), (7.6), and (7.7) into (7.10), we
obtain
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2 2%
15(7'1) = 021_:;2 _/; dy
A ‘?’(6231 - 1)SiI127 .
X ﬂ:ixozl do (cos® v + B¢, sin® v) (7.15)
o>
Equation (5.27) yields
= a8’ — 1) ]*
tan 0, = :l:[el Sin? Y+ & COSz'y . (7,]_6)

It can then be shown that

ety
e

WJ;(TI) =

% f j & cos’ y (8%, — D[ dd dy
B® [sin® v&, + & cos® v [¢,8” sin® v +_cos” 7|

7.17)
The domain of integration in (7.17) is defined by
2 —
a6 -1 . g<y<r 0<o

= g sin®y + & cos’ v

In this section, we have obtained an expression
for the energy of the Cerenkov radiation which
occurs when a charged particle moves along a straight
line trajectory in a uniaxial crystal. We have seen
that this energy depends on the angle that the source
trajectory makes with the crystal axis. In the special
cases of uniform parallel and perpendicular motion,
the results are given by Eqs. (7.12), (7.14), (7.15),
and (7.17). These results agree with those given in
Ref. 8. (The azimuthal angle ¢ in Ref. 8 ig the com-
plement of our azimuthal angle v.)

8. The Asymptotic Expansion for Optically Active Media

In this section we assume that the matrix &(w)
has the form

€ _7:6, 0
8w) = [81(“’) 0:| i &w) =17, €& O] (8.1)
0 I 0 0 o

The fact that &(w) is Hermitian implies that the
quantity e{(w), called the ‘“‘gyration parameter,”
is real. It follows from the definition of &(w) given
in Seec. 1 that 8(—w) = &(w), and therefore ¢,(—w) =
—¢{w). A matrix &(w) of this form represents what
is called an optically active or gyrotropic medium
with the optic axis the x; axis.

The dispersion relation (1.19) yields the equation

8J, V. Jelly, Cerenkov Radiation and Its Applications
(Pergamon Press, Inc.,, New York, 1959).
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[w'e, — c”lc’][wze2 — K + czkg(l - Sa)]

€1
w'es
+ '—e‘—” [EF — k) — o’e] = 0. (8.2
1

Equation (8.2) can be solved for k*. The result is

2
0,6 —

mg.a(w; ka)

k2

- 4(:e1e3 + (&1 — &) e

53 272 2 ¥
—;c;i(Cka‘l‘wéz)]})'

We denote by 1,,, = [Ryo.s, Rso..] the null-eigen-
vectors of the dispersion matrix G corresponding to
the quantities ko,,. If we set no,, = cko../|w| and
assume |as| % 1, the vectors R,,,, take the form

Rio.o = 3.[(es — 2 )A 435, X + i, A x X,), (8.4)

(8.3)

Ry, = no..f%,-(”o,eaaA Xﬁa + te,A XA an). (8.5)
Here,
(6 _ ) —nz.c - Z
V.« =[ ‘ f:f‘i_ nﬁ,f) “|. 86

The normalization factors {,,, are determined by
condition (1.21) and are given by

g-o—.lu = (1 - ag){(wel)a[ei + (61 - nz.O)z:l
[(wea) wo3(1 — o), o5, )e”
— 2(we;) (e — mo.0) + 05,05, + ). (8.7)

When |ag] = 1, 05, = ¢ =+ ¢, and the vectors
T,,, take the forms,

1o = (2[(we)s + wle)s + &]}7 |

X (R, (6 + 6'Ra] + iR, —(e + )R]} (8.8)
and
1 = {2[(a). — ole)s + e))7

X (&, —(a — )R] + 3K, (60 — €)iR,]}. (8.9)

In this section, we take the source function (¢, X)
to be of the form (1.26), where the source trajectory
is given by Eqgs. (5.13) and (5.14). Let w = k., (k, k,)
represent those real functions for which k,, =
m(ho.., ks). It can be shown that

u(t7 X) = u.(t, X) + us(t; X), (810)
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where the integral representations of u,,, are given
by Eqgs. (5.10) and (5.11). Of course the null-vectors
1., and functions w = h,,, corresponding to gyro-
tropic media must be inserted into these equations.

The parametric representations of the first terms
of the asymptotic expansions of u, and u, are given
by

to.«(t, X) ~ Re [[ljo..(t; P)]|do..(P)

X exp [’i)\é‘o,,(t; P)]]: P= (T: W, '7'); (811)
do,c(P) = }\2; [mm.s {(mlo.c)wi/v}§
X exp [{risig (¢::)]& To.J00..,  (8.12)

and

X, = Y(@) =~ G, =t — 1)/(mo.)).,

X (Ao, ~ (mo, )i Xs], t=7. (8.13)
In (8.11),
. . Mo e — (mo.u)h —
80"61 P) - [(mo,s)w ('mo.a w 30,4 w]
X (@ — 7+ ¢fs), 8.14)

jo.. = det (dX,,./dP) and (¢3") is the matrix of
second derivatives of ¢, . [defined by Eq. (5.12)]
with respect to k, and r.

We may write

KO,: = mn,cAO,c; AO,G =
+ sin 6,,, cos YN* 4 sin 6, , sin yB¥, (8.15)

where T*, N* and B* are defined by Eqs. (5.14)
and (5.16). The Cerenkov-Doppler relation yields

€08 05,0 = n/Mo.e; (7, @) = [0+ ¢(n]/o(r). (8.16)

It can be shown that r is introduced into m,,, only
through the function 5(r, w), and therefore we may
set Mo, (w, ks) = Mao,«(n, @, ¥). This defines the
square-root term in Eq. (8.12).

All quantities that appear in Eqgs. (8.11)-(8.14)
must be expressed in terms of the independent
parameters P. To accomplish this, we need only
obtain the functions my,,,. Once this is done, cos 6,,,
is determined through the Cerenkov-Doppler rela-
tion, and hence K,,, can be expressed in terms of
P. From Eqgs. (8.15), (5.14), and (5.16), we obtain

@30., = €08 8y, £ — sin 6, cos &;. (8.17)

Equations (8.2), (8.16), and (8.17) can, in principle,
be used to determine the quantities my,,,. This,
however, necessitates the solving of an algebraic
equation of fourth degree. In the special cases of

cos 8, T*
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parallel motion (£, = 0) and perpendicular motion
(&, = 1), the equation reduces to a biquadratic
which can be easily solved. We therefore restrict
our considerations to these two cases.

A. Parallel Motion

It follows from Egs. (8.16) and (8.17) that in
this case ks,, = 7(r, w). By inserting this relation
into Eq. (8.3), the quantities m,,,, are immediately
obtained. The Cerenkov—Doppler relation (8.16)
then yields the values of cos 6} ,. (Here, the super-
seript || denotes parallel motion.) If
(8.3) yields the simple result,

2 4 2 2 i‘
My, = i? [28 —-&x e,,(e;‘; + ‘Z;’) . (8.18)

We restrict 8} , to lie between 0 and =, and allow
v to vary between 0 and 2x. The domains ®} , of
the independent parameters are defined by the in-
equalities

Eégzé,

0< 7, (8.19)
0<Lcstl, <1, (8.20)
0 <y < 2r. 8.21)

B. Perpendicular Motion

Here, it is more convenient to solve for tan®6,.
It can be shown that tan’d;, are the roots of the
biquadratic equation

(sin2 v + ? cos’ 7) tan* 6
1

wze: sin® y
+ 2 2z -
CNe

2
- (wzeé — 1)(ssin2 v + 2 cod? 'y):l tan® ¢
N €
w’eg we o
we J(we e =
+ [(cznz' 1)(027}2 51027]2 1)} 0. (8.22)
When e, = ¢, = ¢ (8.22) yields
b3 22 5.2
2 g o (e _ ) _olgsin’y | we
tan” 6. <cgn2 1) 2ec’y’ 2cne
232 2 4 2 E
x |25 4 4fo ety [ 62)
¢’y &

The domains @5, are defined by inequalities (8.19)~
(8.21) with 6} , replaced by 65 ,.

If g(+) = 0, it can be shown that the relations
o, = 2 Re [u,,..] hold, where u,,,, are obtained
by restricting » to be positive. Therefore, in this
case, we add the restriction 0 <  to the definitions
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of ®, and ®;,, and multiply the corresponding
quantities d, , by a factor of 2.

9. The Energy of Cerenkov Radiation for Optically
Active Media

It can be shown that W(r,), the energy radiated
from the source as it traverses the portion of tra-
jectory defined by 0 < 7 < 7y, is given by

W(r)) = Wo(r)) + W.(r), 9.1
where
— )\2“—2) mlo.e (mlo.c)w
WO.J(TI) Y ‘/:p"’. v

X |@ 1) dP. (9.2

Here, ®,,,, are the domains of the independent
parameters with the added restriction » < 7,.
Furthermore, the relation

mlO.z l(mlo.e)ml ;‘0.-

_ola =M, Fnel0.) 0 = a/a)]l g4
20°¢,[1 — (@30.) 10,0
holds, where
L. = {& + & — n5..(0,)"
X A = a/e) ~ 2m,, — /e
+ & cosy[(1 — e/e)(e — m5..) — €/e]
X (¢ cot 65, — & cosy)}. 9.4

We now apply the results given above to obtain
the energy of the Cerenkov radiation which occurs
when a charged particle moves uniformly through
a gyrotropic medium, We restrict our considerations
to the cases £, = 0 and £, = 1. Moreover, we assume
that ¢, = e, = e. For the source under consideration
g(r) = 0,d = 3 and § is given by Eq. (7.1). The
inner products (g, r,,) are obtained from Egs.
(7.1), (8.4), and (8.5). Then, by using (9.3) and (9.4),
it can be shown that

2
' _€erny _ _1_>
WO-‘(TI) B 202 ‘/D;Siol' 8:..51 a !(1 Bzé
<w
B2, 8% + 1| }l .
x[1e el lle 0o
and
2
L _ 61)1'1 N _ i_)
0.(m) = 4mc? j;s‘}_n-' 6e 051 © <1 B

0<w

B¢, sin” vy }
cos’ ¥ + A% sin* 4]?

X%*ww-n ab d.

(9.6)
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In this section we have obtained a general expres-
sion for the energy of the radiation which occurs
in a gyrotropic medium. The results given by Egs.
(9.5) and (9.6) for the special case treated above
agree with those given in Ref. 8.

APPENDIX I. DETERMINATION OF |j(t P)/det (¢,5)]

In this section, we compare the two functions
j(¢; P) and det (¢,5) for both isotropic and anisotropic
media. Here, j(¢; P) is the Jacobian of the ray trans-
formation, and (¢,s) is the matrix of second deriva-
tives of the phase function

¢ =kle, — (D] — (¢ — DEK) + o(n (ALY

with respect to the k,’s and r. The elements of (¢,5)
are

K

d’h
ok, oks —¢= g, ok’
i)

_PL_-]
ok, ar _ Lok, 7}’

2= &Y - 4.

(A1.2)

The ray equations and the “Cerenkov condition”
are obtained by setting d¢/9k, = 0 and 8¢/3r = 0,
respectively. Thus

z, = y(r) + @ — 1) oh/ok,, v=1,2,3

and

(A13)

kg, = h + 4. (AL4)

Differentiating Eqs. (A1.3) and (AI.4) with respect
to ks, we obtain

¥, _ . *h .8k lor

ok, = ¢ Dok ok, T [y - ak,] ok, (ALD)
and

) oh/aks — 1,

ot _ [0h/dks — 4] (K-¥) — ] = 0. (ALS)

ks [(K-¥) — gV
Equations (AI2), (AL5), and (AI6) show that

ox, _ Yo [o%
dky — ok, 0k, © ok, or 9k 07/ a2 ALD
We may write j(¢; P) as the product
i(t; P) = 5:(t; P)jx(P), (ALS8)
where
sy 8(z1, 73, 23)
¢ = D, F2, L3)
P = s b
and (A1.9)
jK(P) = a(kly k27 k3)_

6(71 w, 'Y)
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It can be easily shown from (A7) that simple deter-
minant operations yield

7t P) = —(3°/a77) " det (¢,5).  (ALI0)
Therefore, to obtain the ratio of j(t; P) to det (¢.s),
we need only determine jz(P).

A. Isotropic Media
In this case k = m{w) and Egs. (2.5) and (2.27)

yield
K = m{w)A = sgn [m'{w)]mw)(cos 6T*

-+ gin 8 cos YN* -+ sin # sin yB*), (AI.11)

where

cos 0 = sgn [m'(w)j[‘;—(%;%(;;l]. (AL12)

The Jacobian jx(P) can be expanded as a scalar
triple product. That is,

i=(P) = K, (K, xK)). (AL.13)
Equation (AI.11) yields
K, = mwA, = m@)(T*xA), (ALl4)
K, = m'(wA + mwA,, (AI.15)
K, = mwA,. (A1.16)

Inserting (AL14) into (AL.13), we obtain
jK = m(“"){(’r* XA) .(K’f x Kw)}
= m)[(T*-K,)(A-K,) — (T*-K.)(A-K)]. (AL17)

To obtain (T*-K,), we differentiate (AI.4) with
respect to 7. This yields

(T*.K,) = ~[(K-Y¥) — glv. (AL1S)

It is easily seen from Eq. (AI.11) that (A-A,) = 0.
Furthermore, if we make use of the Frénet formulas
(see Ref. 2, p. 87), we find that A-A, = 0. Thus,

(A-K,) = (AL.19)
(A-K)) = 0. (AT.20)

Inserting Egs. (AL.18)-(AI.20) into (AL.17), we
obtain

m'(w),

in(P) = —w,}(’jf‘)i(“’—’((x-i*) ~ g

Finally, from Eqgs. (AL8), (AL.10), and (AL.21) we
have

(Al21)

i(t; P)
det (‘};tﬁ)

_ m@) |m)|

- v{7)

(AL.22)
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B. Anisotropic Media

We assume here that the source trajectory is
a straight line so that T*, N*, and B* may be taken
independent of 7. In anisotropic media k = m(r, w, 7).
Furthermore, it is convenient to define 8 as the angle
between A and T*. Therefore, Egs. (AL.11) and
(AI12) hold with m(w) replaced by m(r, w, v) and
sgn [m’(w)] set equal to 1. We then have

K, = m,A 4+ mA, = m,A + m(T* xA), (Al.23)
K, = mA 4+ mA,, (Al.24)
K, = m,A + mA,. (AI.25)

Inserting (AI.23) into (AL13), we obtain

ix = m,A-(K, xK,)
-+ m(T* xA)-(K, xX,). (AI.26)

Because T*, N*, and B* are independent of +, A,
and A, are in the same direction. Equations (AI1.24)
and (AI.25) then show that A-(K, X K,) = 0
and therefore (AI.17) holds with m(w) replaced by
m(r, w, v). Furthermore, Egs. (AI.11), (AL.24), and
(A1.25) vield the relations

(A-K) = m,, (AL2D)
(A-K,) = m,, (A1.28)
(T*.K,) = (m cos 8).,, (AI.29)
(T*-K,) = (m cos 6),. (A1.30)

We define the quantity 5(r, w) = m cos # = [(w +
g)/v]. Using (AL.12), Egs. (A1.29) and (AI.30) be-

come
(T*K,) =4, = 1y (AL3D)
and
(T*K) = 7. = [§ — ¥-K)]pb. (AL32)

We note that = is introduced into m{r, «, ¥)
through the quantity 5(r, w). Therefore, we may
write

m('r: @, 'Y) = ml(’?) w, 7). (AI°33)

From (A1.33), we have

mw = (ml)nﬂw + (ml)a = (ml)ﬂ/v + (ml)u (AI'34)

and
m, = (m)yn. = (m),[¢g — ¥-K)]'.  (AL35)

Inserting (AL.27), (AI1.28), (AI.31), and (AI.32) into
(AL.17), we obtain

ix = [my(m) 07§ — (¥-K)].  (AL36)
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Finally, Egs. (ALS), (AL10), and (AIL.36) yield

i(t; P)
dEt (¢vﬂ)
APPENDIX II. CAUSTICS IN ISOTROPIC MEDIA

Those points (f, X), corresponding [through Eq.
(2.30)] to parameter values P = (r, w, v) for which
j(t; P) (the Jacobian of the ray transformation)
vanishes, form a locus in space—time called a caustic.
It is of interest to discuss the geometry of these
caustics, because, as we shall see, the fields at caustic
points are more intense (higher order in A) than the
fields at ordinary points.

We assume that q() = 0 and that Y(r) = vrX,,
where v is a constant. Equations (1.32) and (2.32)

yield
(t = [mm 2(1 - _‘*’__)
vmm’ | (m')?? mo®?

-3

We see that j({; P) vanishes when t = 7, an expres-
sion of the fact that the source trajectory itself is
a caustic line. Our concern here is with caustics
away from the trajectory. The factor within the
brackets in Eq. (AIL1) is a function of » only. Sup-
pose there exists a value of w, say w,, for which this
factor vanishes, and such that n(w,) = 1. Then,
any ray corresponding to parameter values P =
(7, wo, ) lies on a caustic surface for all time ¢ > 7.

To investigate the geometry of this caustic sur-
face, we must consider the space-time picture of
the rays. Figure 1(a) is a typical space—time diagram
restricted to two spatial dimensions. We see from
this diagram that there is a »-shaped envelope of
the ray surfaces formed whose vertex lies on the
source trajectory. It can be shown that this envelope
is generated by precisely those rays which correspond
to w = w, and is therefore the caustic under con-
sideration.

To obtain the space picture of the caustic at time
t;, we need only determine the intersection of the
plane ¢t = t, and the envelope. It is easy to see that
the intersection is the boundary of the v-shaped
figure which appears in Fig. 1(a). The third spatial
dimension of the caustic is obtained by rotating
this v-shaped boundary about the z, axis. The result
is the surface of the cone depicted in Fig. 2. This

= T I(ml)ul
v

(AL.37)

it; P) =

(AIL.1)

1999

X3

Fi1a. 2. Space picture of caustic surface at time ¢ = .

cone proceeds into the medium in the z, direction
and with the source speed ». It can be shown that
the vertex angle ® is given by

® = 2tan"" {[¥m’(wo)/wi — 117}

X [1 — o*mlwo)m’(w)/w]}.  (AIL2)

To obtain the asymptotic expansion valid at
the caustic, a more detailed stationary phase anal-
ysis than that given in Sec. 2 is required. The result
is given parametrically by

)\d—ll/ﬁr(%_)m(ml)S/z
(21“)3/2(’: _ T)5/6(3 ,mu,)l/z(]d,)lﬁ

X 22 &, )1’ cos [A(% - w)

i=1

u(t, X) ~

X (¢t — 1)+ {r(sgn m’” — 2)] (AIL3)
and

X=Y() 4+t — nDA/m’, (AIl4)
where

o (we _ \[mm (Y
d = m'’ ( m 1>[b(m")2< m 1)

(- 25| ans

In Egs. (AIL.3)-(AIL5), w is to be set equal to w,.

Comparison of (AIl.3) with Eq. (2.36) shows that
the solution at the caustic is indeed of higher order
in A than the solution away from the caustic. In
fact, we see that at caustic points the solution be-
haves like A*7'/°, whereas at ordinary points the
solution behaves like A%,
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_ The thermodynamic limit is considered for complex temperatures, and a picture of a phase transi-
tion, similar to the Yang-Lee picture, is proposed. For certain cases a representation of the partition
function as an infinite product is obtained. Some simple models are considered.

L INTRODUCTION

N this paper we wish to propose a picture of

phase transitions, which is similar to the Yang-
Lee''? picture except that we deal with complex
temperatures rather than with complex fugacity.
The reasons one might want to consider complex
temperatures are analogous to those for complex
fugacity. One expects the free energy of a thermo-
dynamic system to be a nonanalytic function of the
temperature in the neighborhood of a point of phase
transition. This is particularly noticeable in what
is apparently a logarithmic singularity in the specific
heat of fluids as a function of temperature in the
neighborhood of the critical point.” Since the free
energy is an analytic function of the temperature
for finite systems, this singularity must be connected
with the thermodynamic limit. The hope is that
one can form & simple picture of the way that the
singularities occur, and more optimistically, some-
thing about their analytic properties, by considering
the thermodynamic limit for complex temperatures.
To this end we have essentially duplicated part of
the Yang-Lee theory for complex temperatures.
In Sec. II we prove, for a general class of systems,
a theorem analogous to the second Yang-Lee the-
orem.! We treat both the canonical and the grand
canonical ensemble, and in the grand canonical
case both the temperature and the fugacity are
complex numbers. Although we do not consider
quantum systems, these results may follow by sim-
ilar arguments for such systems, provided one makes
allowances for the singular behavior of the free-
particle partition function for bosons. In Sec. III
we consider some applications to simple systems.

The results of this paper will also be used in a
following paper, where the thermodynamic equiv-
alence of a rather general class of ensembles is con-
sidered.

* This work was supported in part by the DUnited States
Atormc Energy Comrmssxon
C. N. Yang and T. D. Lee, Phys. Rev. 87, 404 51952)
*T D. Lee and C. N. Yan Phys. Rev. 87 410 (1952)
# M. E. Fisher, Phys. Rev. 136 A1599 (1964)

II. SOME GENERAL RESULTS

We consider classical N-particle systems with
Hamiltonian

H = Zf.x pf/zm -+ uN(rx v rN)- (1)
Define, for any complex z in the open left half-plane,

’aN(z)f N g

where we assume uy bounded from below so that
the integrand is finite for Re z < 0.

AQ) = (—2h’/2xm)}; €)

@ is the spatial domain over which each r; varies.
‘We want to put sufficient restrictions on the system
g0 that the thermodynamic limit exists for z real
and negative. This problem has been treated recently
and comprehensively by Ruelle* and Fisher.” One
goes to the thermodynamic limit by choosing a
sequence of numbers N; and a sufficiently regular
sequence of domains @; with volume V; such that
N;— o, V; = o, N;V;' — 1/v. With sufficient
conditions on uy(r; --- ry) and on the sequence
of domains one can show that

lim N7'In Z(z, N;, @) = f(z, v)

i

Z@, N, Q) = - dry, (2)

@

for z real and negative. Since v will be fixed in this
paper, we omif it from now on. It is also known
that f(2) is a continuous convex downward function
on the negative real axis. This ensures that the
specific heat is positive whenever it exists.

For the exact conditions on the ux{r, --- ry)
and on the sequence Q;, we refer to Refs. 4 and 5.
We state, however, one condition on u, which we
need. There exists a K > 0 such that

uy(r; -+ 1y) 2 —NK 6))

forallr, - -- ry and all N. Such potentials are ealled
stable. In addition we need sufficient continuity
on the part of uy(r, + -+ ry) to ensure that (2) is an

+ D. Ruelle, Helv. Phys. Acta 36, 183 (1963).
8 M. E. Fisher, Arch. Ratl. Mech. Anal. 17, 410 (1964).
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COMPLEX TEMPERATURES

analytic function of 2z in the open left half-plane.
A sufficient condition, although not the most gen-
eral, which seems to include most uy of interest
is that ux be of the form <

un(r, -+ 1y) -+ Sxlr,

where

RN(rx .. rN} — {+ o if (rl

0 otherwise,

<-- 1) = Ba(r, ceery),  (6)

e I E Ay,

where Ay is some measurable subset of R*Y (the
space of r; --- ry). We require Sy(r; -+ ry) to be
continuous, but not necessarily finite. Roughly, Ry
contains the hard-core parts of the interaction and
Sy contains everything else. We prove in Appendix I
that, under this assumption, Z;(z) = Z{z, N;, Q)
is analytic in 2z for Re z < 0. Clearly, Z;(z) > 0
for z real and negative, hence N7' In Z;(z) is analytic
in some neighborhood of the negative real axis, and
therefore the free energy per particle is an analytic
function of the (real) temperature for any finite
system. The main results of this section are theorems
which are analogous to the second Yang-Lee the-
orem.'

Theorem I: Let B be any bounded region of
the open left-half z plane, and suppose E contains
a segment of the real axis and no zeros of Z,;(z)
for any j. Then lim, .. N;' In Z,(z) = f(2) exists
everywhere in E and f(z) is analytic.

Proof: The proof of this theorem depends, as
usual, on an application of the Vitali convergence
theorem which, in one of its forms, asserts that, if a
uniformly bounded sequence of functions, each of
which is analytic in a region, converges to a limit
on a set of points which has an accumulation point
in the region, then the sequence converges uniformly
everywhere in the region and the limit funetion is
analytic.®

We first consider the upper bound on Z;(z) gen-
erated by the stability condition (5). If Re z < 0

we have
A —aNi ZuN(r, sy
20| = BELZN [ greveweoem g,
i i

—~3N3
< [A(f;‘& ‘ f lemn(n"'rﬂf); dr, «-- dr
i Q4

N

{—3Ny

= IA(ZA)'T% f e(Res)uN(n"'tN) drx PR drH
H aj
~3N¢

< A(j\)” Ve (ReONIE, @

¢ C. Carathéodory, Theory of Functions (Chelses Publishing
Company, New York, 1954), Vol. 1.
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Now, to get a uniformly bounded sequence, we define
Ti@) = (&N V™. ®)

Since Z;(2) s 0 in the region R by assumption,
T;(2) can be chosen to be analytic everywhere in
R for all §. From (7) we get a uniform upper bound
on T'(z) of

ITi@)| < 1@, )

which is finite for any bounded region of the open
left-half z plane. We now show that T';(z) converges
when 2 is real and negative. For any z in R, we can
take the logarithm of (8), since T;(2) # 0; hence

N,!
v

T,z = N'InZ) + N;'In (10)

By Stirling’s approximation,
N! = A(NN" %™, where ¢V < A(N) <e
for all ¥. Hence,
N7 'In NWV;¥ = N7'In A(N))
+ @GN InN; — 1+ I N, V7
Then
lim N7* In N,1V;
o —l() —1=—Iv—1. (1)
Therefore, if the limits in (10) exist, we must have

l‘im InTi¢) = limN;"InZ,z) — Inv — 1. (12)
But the limit on the right is known to exist for 2
real and negative, hence, so must the limit on the
left. By the continuity of the exponential function,
then lim,... T;(2) exists for z real and negative.
If weset 2= —8,0<8< «, and put lim;_., T;(—8) =
t(~p), then from (12) and (4) we have

i(—B) = v~/ P1, (13)
Now, by the Vitali theorem,
Iim T,(z) = t(z) (19
§ro

everywhere in R and t(z) is analytic in R. Further-
more, by a theorem due to Hurwitz,® since T;(2) 5 0
in R for all j, we must have either (z) = 0 for
any z in R or i(z) identically zero in R. Hence, by
continuity of the logarithm lim; ... In T;(2) = In #(2)
everywhere in R. From (12)

Im N 'InZ,(z) = f&) =Inte) + Iny +1

g

(15)

for all z in R. The convergence is uniform and the
limit f(2) is analytic in R.
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The zeros of Z,(z) must be a set of isolated points,
otherwise Z,(z) would vanish everywhere. The hope
is, of course, that these zeros lie on definite curves
in the z plane, and become more dense on these
curves as § — . One hopes these curves cross the
negative real axis at only a few points, or not at all,
depending on the specific volume and the nature
of the system. If this is the case, then f(z) is analytic
on the negative real axis, except at the points of
crossing which are then the points of phase transi-
tion. We mean by a phase transition here a sin-
gularity in the temperature behavior of the free
energy rather than a singularity in the density
behavior of the free energy. Since the specific heat
is proportional to the second temperature derivative
of the free energy, there can be no singularity in the
specific heat except the neighborhood of the zeros
of Z;(z). This is certainly a possible picture of the
way things happen, however, it is not proven in
general. The above theorem in itself does not pre-
clude the possibility of the zeros of Z;(z) becoming
everywhere dense in the open left-hand plane, in
which case it would be impossible to say anything
about the analytic properties of f(z) from the the-
orem. It seems difficult to deduce anything in gen-
eral about the zeros of Z;(z) from general properties
of uy(t; --+ ry) and barring this one is reduced to
examining particular systems which may be simple.
We take this up in the next section.

We now examine what can be said for the grand
canonical ensemble. Set

Qiz, W) = 270 Z(e,n, QYAQu],  (16)

where z and w are complex and Re z < 0. We want
to prove that the series represents a function, which
is separately analytic in 2z and w for all w and for
all z such that Re z < 0. Let us look at the seqeuence
of partial sums (for fixed j7)

Sula, w) = Dm0 Z(z, n, Q)[A°@w])”. (A7)

We show that this sequence converges uniformly
in any bounded region of the four-dimensional (z, w)
space for which Re z < 0. Let A be such a region
and take any ¢ > 0. Then from the upper bound (7)
we have

lsm+p(z) w) - Sm(z’ ’U))l
= IZ;"Z,'QH Z(z,n, Q’.)[A?’(z)fw]ﬂ
map V;‘" n_ —(Re z)nK
< S WL g
Let
o« = max |w| Ve ®OF

(z,w)EA

L. JONES

Clearly @ < o if A is a bounded region. Now
choose m so large that

Domimita®/nl <e forall p.

This can be done because series Y o, o"/n! con-
verges. Then, for all (z, w) € 4, and for all p

lSm-l-v(z) w) - S,,,(Z, w)l <e (19)

By the Cauchy ecriterion S,(z2, w) converges uni-
formly in both variables, in the region A. But,
holding either variable fixed, S,.(z, w) is analytic
in the other; hence, the limit Q;(z, w) is analytic
in each variable separately so long as Rez < 0.
By Hartog’s theorem, Q;(z, w) is analytic in both
variables. It is clear from (18) that

Qi w)| < exp [V, [w] ™™ 7%, (20)

Theorem II: Let w be a fixed real positive num-
ber and let B be any bounded region of the open
left-half z plane, containing a segment of the real
axis and no zeros of Q,;(z, w) for any j. Then
lim;n. V;!1n Q;(2, w) = w(z, w) exists everywhere
in R and the limit is an analytic function of z in R.

Proof: Set Ti(z, w) = [Q;(z, w)]"'"". Ti(z, w)
is a nonzero analytic function of z in R for all j.
By (20) the sequence is uniformly bounded,

|T;(z, w)| < exp [Jw] e~ ***"]. @D

Furthermore,

lim In T;(z, w) = lim V3" In Q,(z, w) = =(e, w) (22)

i i

whenever either of these limits exist. But it is
proven in Refs. 1, 4, and 5 that the limit on the
right exists when z is real and negative. Now, using
the Vitali theorem, and using an argument entirely
analogous to the one used for the canonical ensemble,
we extend the convergence to all of B and obtain
the analyticity of the limit function.

The second Yang-Lee Theorem® states that, if
z is real and negative and R’ is a bounded region
of the complex w plane containing a segment of the
positive real axis and no zeros of @;(z, w) for any j,
then lim;_. V;' In Q,(2, w) = =(z, w) exists every-
where in R’, and the limit is an analytic function of
w in B’. We could give a proof of this theorem by
exactly the same method used in the previous the-
orem. It should be pointed out that the method
used in these proofs does not depend on representing
the partition function as a finite or infinite product.
The last two theorems can be combined to give
the following.
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Theorem III: Let R be a bounded region of the
space of two complex variables (2, w), such that
Rez < 0in R. Suppose R contains no zeros of @;(z, w)
for any j, and that B contains a region of the two-
dimensional subspace, z real and negative, w real
and positive. Then lim;.. V;'ln @,(z, w) = (2, w)
exists everywhere in R and #(z, w) is analytic in
each variable separately in R.

One might now hope the following picture of a
phase transition is valid. The set of zeros of @;(z, w)
is a set of two-dimensional surfaces in the four-
dimensional space. As j — o« the surfaces coalesce
to form a three-dimensional surface which may
intersect the plane, z real, w real, in a curve. This
curve then gives the values of z and w for which
the phase transitions occur (of course we must
restrict Re z < 0 as always). Again it seems difficult
to prove this kind of behavior in general.

We close this section with some results for a
more restricted class of potentials. Let us associate
with each potential of the form (6) another potential
obtained by changing the sign of the nonhard core
part,

’I'ZN(I'I e rN) = RN(rl L rN) - SN(rl L rN). (23)

We now restrict ourselves to those sets of potentials
such that both uy and %, satisfy sufficient condi-
tions for the existence of a thermodynamic limit.
In particular, there exists a K > 0 such that for
al Nandr, ---

Ty,
---1y) 2 —NK,
... 1y) > —NK.

un(r: (24)

(T

For example, any uy which is a sum of two-body
potentials with hard cores and bounded, finite-
range tails will fall into this class. It is convenient
to deal only with the configuration integral so we
define

W, N, @) = Z(, N, QAR

— 1/N! f ¢ dry - dry,  (25)
Q

We, N, 9 = N1 [ ™ dr, -+ dry.
o

Now, on the set Ay, By(r, +++ 1y) = 4 o, and for

Rez < 0, the integrands in (25) are zero, hence

we can integrate only over A, the set of points

(r; - - - ry) such that eachr, € Qbut (r, - - - ry) E 4n.

We can write

2003

W@, N, Q) = 1/N! fA T dr - dry,
(26)

We, N, 9) = N1 [ 6" dr, - dr.
A
Both of these integrals are analytic functions
of z for Re 2z < 0. Since

W(z, N: Q) = W(—Z, N7 Q): (27)

it is clear that both W and W are entire functions,

one of which is, in fact, just the reflection of the

other through the origin. For such potentials, then

we have W(z, N, Q) analytic everywhere. From (7)
and (27) we get the upper bound.
Q N

We, N, 9 < LAL gmesve (o)

for all z. This bound implies that the order of the

entire function W(z, N, Q) is at most one and hence
the following factorization.®

W, N, Q) = ¢t I;Il: (1 —2/2)e*  (29)
or
We N, 0 = 10Tk, 60

depending on whether the order is one or less than
one. A similar discussion does not hold for the grand
canonical ensemble. From (16),

Qe w, Q) = Xom, Wi, n, Qu*,

@)
QG,w, Q) = > v, Wi, n, Qu'.
From (27)
Q(z) w, Q) = Q(—Z, w, Q)- (32)
From (20) and (32)
1QG, w, Q)] < exp V; jw| &'™ 1%, (33)

Now (32) implies @ is an entire function of 2, but
the bound (33) is not strong enough to give any
information about the order of Q.

III. EXAMPLES

Since one cannot, at the present time, verify the
proposed picture of a phase transition, it would be
of some interest to verify it for at least some model.
The natural thing to try is the two-dimensional
Ising (lattice-gas) model, since it has been solved
exactly in the thermodynamic limit and is known to
exhibit a phase transition. Unfortunately, it seems
difficult to find the zeros of the partition function
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for this model, and it has not yet been accomplished.
As a start in this direction, we can consider the one-
dimensional Ising model. The theorems we have
proven do not apply to an Ising model but one can
carry through corresponding proofs for this model.
The exact solution of the one-dimensional model,
with nearest-neighbor interactions is known to be
of the form’

Q@ H,N) = N{@, H) + N6, H),  (39)

where 2 is the complex temperature (z = —1/kT
for z real and negative) and H is the external
magnetic field

. (2, H) = e ¥’ cosh (mHz)

=+ [¢™* sinh® (mHz) + '), (35)
The energy of the system is of the form
E=—-3J E pip; — mH Z.’ Ui, (36)

(4.4)
where the sum (Z, j) goes over nearest neighbors
and u; takes on the values &=1. If we are to look
for zeros of Q(z, H, N) we must set A, = (—=1)""\_.
Using (35) we obtain the following transcendental
equation:

ele
cosh® (mHz)
= —tan’ »(k + %)/N, 37

wherek = 0,1 --- N — 1. It is clear that the left
side of (37) is greater than zero for all real 2z and H,
hence there will never be any roots near the real
axis and therefore no phase transition. For real H
and complex z, there are roots of (37) and they
become dense on rather complicated curves in the
complex z plane. For the case H = 0, the curves
are easy to find. We have

¢’* = —tan® [v(k + 3)/N]

tanh (mHz) +

or

2= @)™ In tan’ [n(h + B)/N) i TEPEL)

where m is any integer. The zeros become dense
on lines parallel to the real z axis and displaced by
w(2m + 1)/3J. For H # 0 Eq. (37) can, in general,
only be solved approximately.

Two other systems which have simple analytic
structure in the z plane are the free gas and the
gas of hard spheres. For both of these systems, the

7 H. A. Kramers and G. H. Wannier, Phys. Rev. 60, 252
(1941).

L. JONES

configuration integral is independent of 2z, hence,
all of the z dependence of the partition function is
in A(z), and these systems can exhibit no singular
behavior as a function of temperature.

Note added in proof: The use of complex tempera-~
tures has been previously proposed by M. E. Fisher.®
In this article Fisher finds the zeros of the two-
dimensional Ising model and verifies the proposed
picture of the phase transition.

ACKNOWLEDGMENT

The author would like to thank Dr. W. McGlinn
for a useful suggestion on the proof of the theorems.

APPENDIX

We want to show, under assumption (6), that
Ck) = fe"‘”('""'”’ dr, -+ dry
Q
is an analytic function of z for Re z < 0. We set

z = B -+ ia, where 8 < 0. Referring to (6), let A
be the set of points (r, - - - ry) such that eachr, €& @

but (r; -+ ry) & Ay. Using the decomposition
(6) and the fact that e™* = 0 on Ay, we can write
C(z) = Cr(ﬂ: a) + ":C.'(ﬁ, a)) (Al)
where
C, , = f BIN(x, oo N)
Bo) = [
X cos aSy(r, -+ - 1y) dry -+ drx,
. = BIN(ryeeery)
Cu, @) = [ e
X Sl'.naSN(rl e rlv) dtl v drN

when we have split C into its real and imaginary
parts. We want to show the o and 8 derivatives
of C, and C, exist, and satisfy the Cauchy—Reimann
conditions. To do this we need a standard theorem
on differentiating under an integral sign. We state
it in a form suitable for this problem.’

Let z be a point in the n-dimensional Euclidian
space R", and let y belong to R'. Let B be a closed
region of B" and I a closed interval in R'. Let
f(z, y) be defined for x € B and y € I and such
that (9f/dy)(x, y) exists there, and that this de-

8 M. E. Fisher, in Lectures tn Theoretical Physics (Uri-
%(}rlssiéy of Colorado Press, Boulder, Colorado, 1965), Vol.

' R. Courant, Differential and Integral Calculus (Inter-
science Publishers, Inc., New York, 1949).



COMPLEX TEMPERATURES AND PHASE TRANSITIONS

rivative is continuous function of the n + 1 variables
(z,y) in B X I. Then

:—yj;f(x,y)dx=flg%(x,y)dx

forally € I.
Let us apply this theorem to C,(8, «) and con-

sider the 8 derivative. Theny = 8,z = (r; --- ty)

and

vIN(z)

flx,y) =e cos aSy (z).

We take I to be any closed interval on the negative
real axis which does not include the origin. Now if
z is such that Sy(x) # + « then

’(x y =

If Sy(z) = + o« then (8f/dy)(z,y) = Oforally € I.
Now using the continuity of Sy(z) in z, it is easy
to show that (9f/dy)(x, y) is continuous in z for
any fixed y € I, including points for which Sy(x) =
+ ., For any fixed z, it is clear that (3f/9y)(z, v)
is continuous everywhere in I. However, continuity
in z and y separately does not imply continuity
in (z, y). For this we need the following theorem.

Sx(x)e’® ¥ cos aSy(z).

Theorem: Let g(z, y) be continuous in y at
(%o, ¥o), and continuous in x at z, uniformly in y,
for all ¥ in some neighborhood of y,. Then g(z, ¥)
is continuous at (2, ¥o).

Proof: Given ¢ > 0 we find § > 0 such that
ly — yo| < & implies |f(zo, ¥) — f(xo, ¥o)| < %€ and
also |y — y| < & and |z — =z, < & implies
If(z, y) —f(zo, y)| <e. Now, let |(z0, y0)— (=, ¥)| <8.
Then |z — 2] < §and |y — yo] < & hence
[f, v) — f(zo, yo)| < f(z, y) — f(xo, V)]

+ |f(z07 y) — f(zo, ?/o)' <e.
We apply this theorem to (8f/dy)(z, y). Let
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(%o, o) be an interior point of B X I. Suppose first
Sx(xy) # + <. By the continuity of Sy, we can
find a neighborhood of x,, in B, such that Sy(z) #
+ . Using the fact that

(3f/ay)(=z, y) = Sy(@)e"** ™ cos aSy(z)

for y & I and z in this neighborhood, it is easy to
show that the continuity in 2 is uniform with respect
to y. Now, if x, is such that Sy(z,) = + «, then
by the continuity of Sy, given M > 0, we can find
§ > 0 such that | — z,| < & implies Sy(z) > M.
Forany y & I:

<x »-2I L @ )

= ISN(x)e”“"’ cos Sy(z) — 0] < Me*™

if we choose M so large that —My > 1 for all
y & I. The right-hand side can be made arbitrarily
small for all y € I by choosing M large enough,
hence the continuity at z, is uniform in y.

Then

aC.(8, ¥
——‘(;%—@ = j; Sye’*" cos aSy dr, - - - dry.
Similar arguments show that
9C:6,a) _ f Sxe®" sin a8y dr, -+ - drw,
a8 A
€80 _ _f Sxe*" sin aSy dr, - -+ dry,
da a
9C.8,a) _ +f SwéS" cos aSy dr, - - dry.
O A
It is clear that
8C, _ aC, oC. _ _aC;
% = e = B so that

C is an analytic function of z for Re z < 0.
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Simple proofs are given for two properties of a Bose field discovered recently in the quantum-
theoretic description of optical coherence. The first is the theorem of Glauber and Titulaer that
first-order coherence means that only one mode is excited. The second is the theorem of Aharanov,
Falkoff, Lerner, and Pendleton that eigenstates of the annihilation operators are characterized by
their ability to factor when the system is divided into two channels. The restriction of the latter to

the case of a single excited mode is removed.

'WO simple properties of a Bose field have been

discovered recently in the quantum-theoretic
description of optical coherence. The two theorems
proved in this paper are intended to provide ele-
mentary demonstrations of these properties. They
are obtained by considering states of the field with
respect to different sets of modes. Let a; and their
adjoints a, be annihilation and creation operators
satisfying the commutation relations,

t t
a;a, — a;a; = 0, it — G = ;1

for a set of independent (or *“‘orthogonal’’) modes j.
For each unitary matrix «

b, = Zuriai
i
and
t +
b, = Zu?iai
i

are annihilation and creation operators for another
set of modes r.

First-order coherence for a state of the radiation
field' means that there are complex numbers z; such
that

<a‘:ak) = 2%,
Then
®b) = 2 b @iy = (20 urite)*(20 ua)
ik i

go the definition of first-order coherence is the same
with respect to a set of modes defined by any unitary
matrix « if all the sums

Z Uyri%i
i

* Supported by the U. S. Army Research Office, Durham,
North Carolina.

+ Alfred P. Sloan Research Fellow.

1 R. J. Glauber, Phys. Rev. 130, 2529 (1963); R. J. Glauber
and U. M. Titulaer, tbid. 140, B676 (1965); T. F. Jordan,
Helv. Phys. Acta 37, 697 (1964); N. Mukunda and T. F.
Jordan, J. Math. Phys. 7, 849 (1966).

are finite, as is the case when
2
Z l2;]

-

is finite, which means that the total number of
photons represented by the operator

Z a:ai
i

has a finite expectation value. Glauber and Titulaer®
have discovered and proved the following.

Theorem: A state for which (O_; aja;) is finite
has the property of first-order coherence if and only
if there is a set of modes (with annihilation and crea-
tion operators b, and b} defined by a unitary matrix
u as above) of which only one mode is excited.

Proof: If only the single mode r =
then

1 is excited,

(®lb) = 8,1 8., (BIb),

which satisfies the definition of first-order coherence.
To establish the converse, suppose that the state
has first-order coherence and let

Uy = z":-(kZ lzk|2)—*
assuming that
Z |zk|2 = (Z al:ak)
k k
is finite. Then

Z us[* = 1.

2 R. J. Glauber and U. M. Titulaer, Phys. Rev. 145, 1041
1966). At the Physics of Quantum Electronics Conference in
an Juan, Puerto Rico, June 1965, I learned, from Glauber and

Titulaer, the statement but not the proof of this theorem. That
is why I happen to have made a proof which seems to me to be
sufficiently different from the original proof to be of some inter-
est. I want to leave no doubt, however, that credit for the orig-
inal statement and proof of this theorem is due to Glauber
and Titulaer.
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We can find a unitary matrix u such that u,; = w;
for r = 1. Then

Zurizi = (kE A Euriufi = (kz A
and thus
<b;{bs> = arl 631 ; Izk|2'

In particular,
(blb,) = 0

for r % 1, which means that only the single mode
r = 1 is excited. This completes the proof of the
theorem.

Let [2) be a normalized eigenvector of the an-
nihilation operators a;

a; o) = 2 |2),
l2) =1,

with z denoting the set of complex eigenvalues z;.*
Then

br IZ) = ’Zuriai |2> = (’Zurizi) lz>v

so |z) is an eigenvector also of the annihilation
operators b, for a set of modes defined by any
unitary matrix » if all the sums

Z UsiR5
7
are finite, as is the case when

E lzi[2 = {¢| ’Z a:af [2)

is finite. Consider a division of such a set of modes
into two subsets. Any product of the annihilation
operators b, and the creation operators b: factors
uniquely into two products of operators for the two
subsets. For a pure state represented by the vector
2), the expectation value of such a product factors
into the expectation values of the two products for
the two subsets of modes. We may think of this
division as an analysis of the field with respect to
two channels. For any such division, the state
represented by the vector |z) factors into two in-
dependent states for the two channel subsystems.
The converse statement that this property is char-
acteristic of the eigenvectors of the annihilation op-
erators was discovered by Aharanov, Falkoff, Lerner,
and Pendleton,* was developed by Glauber and

3 R. J. Glauber, Phys. Rev. 131, 2766 (1963).

1Y, Aharanov, D. Falkoff, E. Lerner, and H. Pendleton
(to be published) prove this theorem for a pure state with only
one excited mode using the complete factoring of the state.
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Titulaer,” and is demonstrated by the following.

Theorem: A state for which (3_; aja;) is finite
is a pure state represented by an eigenvector of the
annihilation operators if it has the property that

(b7bs) = (b.) (b2)

for r # s for every set of modes r defined by a
unitary matrix « for which u,; is nonzero for at
most two values of j for each r.

Proof: Taking u to be the identity matrix and
considering any two modes, say modes 1 and 2,
we have

(@1as) = (a1} (as),
(@) = (az) {a).

Then, taking 4 to be the identity matrix except
forr,j = 1, 2, we get

0 = (bibs) — (bi) (bs)

= wlun((@ia:) — (@) (@)

+ uhuan((a:0:) — (a2 (a2)).
Since unitarity requires that
ufitn + ulug = 0,
we conclude that
(@a) — (@) (@) = (a:02) — {az) (s).
In general, we can conclude that
(@ja;) — (i) (@)

is the same for all j. Since this number is nonnegative,
it must be zero for (3, a}a,—) to be finite. Thus we
have

{(a; — (ai»f(ai —{a)) = <a;ai> - (ab {a;) =0

for all j. Let the density matrix representing the
state be

p= Z Wy ) (bl

with ¢, being orthonormal vectors and w, being
positive numbers that sum to one. We have

22 willa; — )l lo; — (a)ln)
= ((a; — (@) (& — (@) = 0
for all j. For each n, either w, = 0 or
(@; — (@N¢. =0

5 Ref, 2; Glauber and Titulaer prove this theorem for any
state with only one excited mode.
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for all j. The latter means that ¢, is an eigenvector
of each a; with eigenvalue {(g;). Since there are no
two linearly independent eigenvectors for the same
set of eigenvalues, the only possibility is that w,
is nonzero for only one n, and the state is a pure
state represented by an eigenvector of the annihila-
tion operators a;. This completes the proof of the
theorem.

This theorem requires only factoring of the ex-
pectation values of operators bilinear in the crea-
tion and annihilation operators for various divisions

THOMAS F. JORDAN

of particular sets of modes into two subsets. Thus,
it follows as a corollary to this theorem that the
complete factoring of the state for divisions into
two subsets of the more general sets of modes dis-
cussed earlier is implied by the factoring of the
expectation values of the bilinear operators for these
particular sets of modes,
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We consider the discontinuities of the triangle-graph amplitude as a function of an internal mass
variable. These discontinuities are important, since they form the kernel of the Aitchison—Anisovich
integral equation, which is derived from the Khuri-Treiman three-body final-state-interaction dis-
persion relation. We evaluate the discontinuities by explicitly performing the Feynman « integrations.
We also discuss their analytic continuations. Finally we consider the applicability of the Cutkosky
rules to such an internal mass variable discontinuity. It is argued that these rules must be modified in
two ways. One of these is straightforward, having to do with the appearance of spacelike masses. The
other is more involved and is a consequence of the results of homology theory. We apply the modified
Cutkosky rules to the triangle-graph discontinuities and obtain the same results as found by the
direct method, so confirming the modifications which we have made.

1. PREAMBLE

NE approach to the problem of three-body

production and decay processes is to use a
dispersion relation of the Khuri-Treiman type.’
Aitchison®'® has shown how this can be transformed
into a single-variable integral equation, using a
method first applied by Anisovich® in the non-
relativistic problem. This equation lends itself to
numerical solution on a computer, and work is

* This work was supported in gart by the National Science
Foundation under Grant NSF GP-3221.

1N, N. Khuri and S. B. Treiman, Phys. Rev. 119, 1115
(1960)

2 1. J. R. Aitchison, Nuovo Cimento 35, 434 (1965).
sT.J. R. Aitchison, Phys. Rev. 137, B1070 (1965); also
Erratum (to be published). Note that the f and A; of that
aper differ in normalization from those of the present paper.
IS)PeCiﬁC&uY: Saizen = —27YRams Biaiton = 7 Agge. NOte that
Bpigon = H(r) W farap(M — 1) = fanen(M F i)l We
apologize for the confusion in conventions. {See also Ref. 8.)
4 V. V. Anisovich, Zh. Eksperim. i Teor. Fiz. 44, 1593
(1963) [English transl.: Soviet Phys.—JETP 17, 1072 (1963)].

being actively carried out on this.>® The kernel of
this integral equation is identical with the sum of the
discontinuities of the triangle graph taken with
respect to an iniernal mass. It is therefore of im-
portance to study these discontinuities.

In Ref. 3 these discontinuities were evaluated by
using Cutkosky’s rules.” These discontinuities con-
sist of three terms, A,, A,, and A;, corresponding to
three different branch points. The application of
Cutkosky’s rules for these discontinuities runs into
difficulties associated with spacelike “masses”, which
were not treated fully in Ref. 3. Furthermore,
Aitchison’s evaluation of 4A; actually contains several
errors. Aitchison did correctly note that Cutkosky’s
rules do not provide a complete specification of

8 1. J. R. Aitchison (to be published).

¢1. Duek and F. C. Khanna, Nucl Phys. 77, 609 (1966).
' R. E. Cutkosky, J. Math. Phys. 1, 4%,9 (1960). See also

W. B. Rolnick, Phys. Rev. Letters 16, 544 (1966).
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the discontinuity; and that they had to be supple-
mented by using the prescriptions of homology
theory.?

In a further paper by Aitchison and the present
author,’ the physical significance of the discon-
tinuities was discussed, and A, was in fact evaluated
by using well-known properties of the triangle graph.
However, A, and A; were not discussed there, and
in fact the error in A; was not noted.

The purpose of the present paper is to evaluate
all three discontinuities, A,, A,, and A;, by using
a direct method that totally avoids the use of
Cutkosky’s rules. (Furthermore we treat the most
general unequal mass case, while both Refs. 3 and
9 considered a somewhat degenerate case.) Once
we know A,, A,, and A; as evaluated by first princi-
ples, we return to a reconsideration of their evalua-
tion by means of Cutkosky’s rules. We state a new
generalization of Cutkosky’s rules for the case of
spacelike masses; and we reemphasize the necessity
of following the modified prescription which arises
from homology theory. Finally, we apply these
modified Cutkosky rules to the evaluation of A_, A,,
and A;. We find confirmation of our modified pre-
scription by obtaining the same results in each case
as we obtained by the direct method.

The detailed structure of the paper is as follows.
In Sec. 2 we define the problem more carefully in
terms of the Feynman integral for the triangle
graph. In Secs. 3-6 we evaluate A}, A,, and A,
explicitly by performing the Feynman « integrations.
This evaluation is initially performed for the case
that the external two-particle mass variable s is
not yet on its cut, so that the A; are real. In Sec. 7
we then consider the analytie continuation in s,
following the method of Ref. 3.

There are also three appendices. In Appendix A
we reconsider the analytic continuation in s by
using the known analytic properties of the triangle-
graph amplitude. In Appendix B we turn to the
question of the Cutkosky rules. We first discuss why
they need to be modified when applied to internal
mass discontinuities, and then explicitly evaluate
A,, A,, and, in particular A;, using these rules. The
results agree with those of the direct method. Finally,
in Appendix C we evaluate A; using the method

8 D. Fotiadi, M. Froissart, J. Lascoux, and F. Pham
Ecole Polytechnique preprint (unpublished), and related
works; also Topology 4, 159 (1965).

9 I. J. R. Aitchison and C. Kacser [Nuovo Cimento 40, 576
(1965)] use the same definition of f and the A; as we do here,
However (owing to confusion engendered by the remarks of
Ref. 3 of the present paper), a factor of = has been dropped
in their Egs. (6), (7), (9), (10), (12), and in the final equation;
that is, the right-hand sides of each of those equations should
be multiplied by «. Further, the symbol L is used for our R.

TRIANGLE GRAPH.

IX

F1a. 1. The basic triangle
graph.

of Aitchison,® corrected where necessary, and once
again we obtain the same final expression for A,.

2. STATEMENT OF PROBLEM

We consider the Feynman graph of Fig. 1, and
are in fact interested in the fully physical decay
region specified by m > X + vy, A > u + M,
(m — M)> > s > (v + p)®. Here, for a real decay
m— N+ v— M <+ v + u, A corresponds to an inter-
mediate resonance mass, with a negative imaginary
part.’® However, in the integral equation one must
consider all real A’ in the range — o < )\’ <
M — p).

We define the “triangle graph” f as™

_ L a'
f= i f I(m: — ¢ — e
1 1 1
- f dot, f dag f dots 8(1 — oy — ay — ag)/D (1)
0 [i] 4]

with
D = o)\ + ap® + ag’ — a0 M°

2 .
- Q03S — aza;M — €.

)
Then, using standard methods,’*** but working in
s and A\’ as variables, one readily generalizes the
results of Bronzan and Kacser'® to find the following
sets of singularities:

(1) The leading Landau singularity surface,'’
= s\(s + ) — s\(m® + M? + o° +5°)
+ N (m® — M) — i) + s(m® — ) (M — )
+ m4“2 + 4V2 + “4m2 + V4M2

- M'm*(’ + W) — pv'(m’ + M) = 0, &)

10 The use of this “isobar’’ approximation has been dis-

cussed fully by I. J. R. Aitchison and C. Kacser, Phys. Rev.
133, B1239 (1964).

11 R, Karplus, C. M. Sommerfield, and E. H. Wichmann,
Phys. Rev. 111, 1187 (1958).

21, D. Landau, Nucl. Phys. 13, 181 (1959).

B R, J. Eden, “Lectures on the Use of Perturbation
Methods in Dispersion Theorf',” University of Maryland,
Physics Department, Technical Report No. 211 (1961).

4 R, J. Eden and G. C. Polkinghorne, Brandeis Summer
Sgﬁg{;l Lecture Notes, 1961 (W. A. Benjamin, Inc., New York,
1 .

% J, Tarski, J. Math. Phys. 1, 149 (1960).
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17 Thig is given by the expression 1 —z? —3y? —22 —2zryz =0
with z = (s—1? —u?)/(2w), ¥y = (M2 —»? —)\’)/(21')3, and
z = (M2 —N\ —p2)/(2:zu). It is identical with the Kibble
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process u + » — m + M, with s the direct channel invariant
and A? the crossed m 4+ » —» M + u channel invariant.
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S (m-2)?
T N
bQ
v r (M+p)?
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\((ﬂ)): (m-M)? (M)

Fig. 2. The various singularity surfaces in the real (s,A?)
plane, for m > M + v + u; throughout this paper we take
the specific case M > uand » > uto determine the asymptotic
behavior at s = 0 and A2 = 0. The singularities are the heavy
lines, and the arcs PQ, ZX and pg, and the complex surfaces
homlllng these arcs. The second-type singularity is shown

ashe

(2) @, = 0 end point: s = (u + »)%,

(3) @, = 0 end point: \* = (m — »)?,

(4) a; = 0 end point: \* = (M — n)*,

(5) double end point: o = oz = 0: \* =

(6) second-type'® or non-Landau singularity
= (m — M)’

Using the standard asymptote and tangency con-
ditions,'® one finds that I' is as shown in Fig. 2, in
which the various singularities are also indicated.
(We take M > u for definiteness.) For s < (u + »)?,
the only singularities in A are at (m — »)*, (M — u)?,
and 0. Further, for s < (u + »)* and \* > m® + »%,
D can mnever vanish and f is real, so that the \®
cuts must go towards minus infinity, and hence we

can write
fo, 3 = 2 [T e A XD
1 (M—p)? d)\’z AZ(S)\ )\-IZ .
fﬁ”%ﬂﬁu'

—o <5< (w+». @
18 See Ref. 16.
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Here, the minus signs are inserted so that, even
though the physical limit is taken in the sense
N — e, yet

Im f(s, X*)
= A,6[(m — »)* = N 4+ 8,0[(M — p)* — \*]
+ A8(—2N); s < (u+ ) ®

Our purpose here is to evaluate A;, A,;, and A,
tnitially for s < (u + »)°, but by analytic continua-
tion for s < (m — M)®. The method is based on
Eqgs. (5) and (1), and is modeled on the work of
Barton and Kacser."

3. GEOMETRICAL DESCRIPTION OF THE
CURVE D=0

From Eq. (1), Im{f can only arise from those parts
of the a-intergation region for which D = 0. Hence
we investigate the curve D = 0 in the o3 space,
using o, = 1 — a; — a;, and looking particularly
in the integration region 0 < ¢, < 1,0 < o3 < a;.
We ignore the term 7e.

We have

Dla,, @) = soj + (M* + s — mDazey + Mo
+ 0=+ N — = M)a, + 45 (6)
Then D = 0 is a hyperbola for s < (m — M)*. Also

D(1, 0) = N, D(0, 1) = +°, and D(0, 0) = 4’
Further,
D(ay, 0) = Mo + (W — M* — Moy, + 4.

Hence D(e;, 0) = 0
M2 + ”2 _ )\2 + ]C(MZ )\2 ”'2)

for o, = Ve 2L )
Here,
K*(a®, b°, &%)

=a' + b +¢* — 20°0° — 2b°%" — 277

= [a®* — (b — ¢)*][a® — (b 4+ ¢)’] = cyclic perms
= (@® — b® — &)® — 4b%* = cyclicperms.  (8)

Unless stated otherwise, & is always to be taken as
positive if k> > 0. (Once we continue in s, in Sec. 7,
k will be specified with respect to the various branch
cuts.) Equation (7) is plotted in Fig. 3, again for
the case M > u. We see that, for A* < (M — p)*, D
has two real intercepts with the o, axis, and that

19 G. Barton and C. Kacser, Nuovo Cimento 21, 593
(1961), in particular, the Appendix. Beware of errors in
factors of 2, and also the omission of the second-type singu-
larity, cf. Ref. 13.



DISCONTINUITIES OF

they both lie in the interval 0 < o < 1 for 0 <
N < (M — )°. Similarly, one has

Dy, 1 — o) = mPal + (0 — m® — Day + 5,

which can be obtained from (7) by the substitutions
M — m, py — v (thus preserving m > »), so that D
has two real intercepts with the o, + o3 = 1 bound-
ary for N’ < (m — »)’, both lying in the interval
0 < a < 1lfor0 < XN < (m— »)°. Finally similar
analysis shows that D{0, «;) never vanishes for real
oz if (u + »)* > 8, > (u — »)°. For most of the re-
mainder of this paper, we restrict ourselves to this
range of s, (u + »)° > s > (u — »)°. For this range,
D{ey, a3) = 0 is a hyperbola, whose asymptotes
both have positive slope.”

With this information, we can locate the curve
D(ay, a5) = 0 with respect to the (o, «3) integration
region for all real A%, as shown in Fig. 4. The transi-
tion in Fig. 4 from (b) to (¢) can be investigated by
setting \*= (M —p)®, and expanding D about a,=
u/M, oz = 0; however, the need for continuity be-
tween Fig. 4 (¢) and {d) really uniquely determines(c).
In Fig. 4 the “topology” is significant, but whether
an individual arc has a tangent parallel to either the
a, or the o, axis is not necessarily correctly described.
Recall however that we are looking at one branch
of a hyperbola, whose asymptotes both have positive
slope.

The details of Fig. 4 correspond exactly to the
singularities already found by means of the Landau
analysis. Thus singularity (3) e, end point, \> =
(m — w)® is the transition from (a) to (b) in the
figure; singularity (4) is the transition from (b) to
{c); and singularity (5) is the transition from (c)
to (d). From the viewpoint of Fig. 4, the reason that
singularities are some combination of end point and
pinch is simply that the only way the “topology”

“of D can change relative to the integration bound-
ary is by an are of D either becoming tangent to
the boundary, or by slipping off at a vertex of the
boundary. The non-Landau second-type singularity

32
\l“(M +p)?

Fia. 3. The curve D(a1,0) = 0
in the real (ay,A?) plane, for
™ -)2 the case M > pu.

)2,

L |
L™
o/ /K ¢
M

20 They are given by 2s az/oy =m? —s — M23-k(8,m?,M2) > 0,
since m2 > (/8 + M)%, s > 0.
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B (m-2)">R >(M-p)?

1 B
B

@ M >0 @ 0>\

Fra. 4. The curve D{a;, as) = 0 and the integration region
0 <a <10 < a; < ay, shown for various real A% with
(s + »)* > s > (u — »)% The heavy arcs show those regions
that contribute to Im f.

s = (m — M)® corresponds to the discontinuous
transition of D in which it changes from being a
hyperbola to being an ellipse.

Finally, the “leading’’ Landau singularity of com-
plete coincident pinches corresponds to the case when
the (@, @) hyperbola degenerates to two crossing
straight lines, the point of intersection giving coin~
cident pairs of values for each of «;, a,, and a,
simultaneously. Thus, rewriting Eq. (6) in the form

Diay, as) = aaf + 2hoyes + bag

+ 2ga;, + 2fa; + ¢, (6"
this degeneracy condition is simply given by™
ahg
=(hb fl=0. (8a)
gfec

The equation A = 0 is identical with the usual
determinant equation for I'.**

For the moment, with (u + »)* > s > (u — »)°, we
disregard the leading singularities. We can then
immediately identify the discontinuity functions
A,, A, and A;. We rewrite Eq. (1) as

1 [-$1 1
= j; dat L det D(ay, aa)

so that Imf arises from those parts of the curve

2 Recall the standard form az? + 2hzy + b2 + 29z +
2fy + ¢ = 0; see for instance G. Salmon, A Treatise on Conic
Sections (Longsmans Green and Company, Inc., London,
1879), 6th ed.

22 Because, with D = Y ¢:;8:8;, with the identification
Bi=ay By =1, and 8; = ay; then if one sets 8z = a1 + a2 + a3
to obtain D=3 a;;aia;, onereadily finds det a;;=det ¢;;=A.
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D(a,, 3) = 0 which lie within the integration region.
For the interval (m — »)* > A\ > (M — p)* this cor-
responds to the complete arc AB of Fig. 4(b).
Similarly, for the interval (M — p)> > N > 0 this
corresponds to the arcs AC + DB of Fig. 4(c).
But this can be rewritten as AB — CD. Finally,
for A* < 0, we can write the contribution as AB —
CD + BD. Thus, in fact, we can write

k+»)">s>@—»"

A =Im ABdalfdasﬁ(Ell’—aa)';
(m—»"2N, (9
A, = —Im dalfdaa—l——;
o D(a, )
M —p* 2N, 10
A; = Im BDdalfdaaDTall,—Eg ;0> 2% (11)

Equations (9)-(11) solve our problem for the
specified range of s, leaving only the explicit evalua-
tion to be performed. This is straightforward, but
tedious, and we only give the main steps. Before
doing so, we remark from Fig. 4 that A, clearly
has A* = (m — »)* as a branch point, and that A,
has a branch point at A*> = (M — u)’. However,
A; is regular at \* = 0.

4. EXPLICIT EVALUATION OF A,

The arc AB of D(a;, ;) = 0 is part of the ‘“‘upper”
branch of a hyperbola both of whose asymptotes
have positive slope. Hence, any line of the form
a, + a; = const intersects AB either twice or not
at all. It is therefore convenient to rotate axes so
that we first integrate along such lines. Thus we
define

a = (1/V2)(e + o),

whence

D=aff +b8+c=all— B)B — B)
= 3m)B* + Blals — M) + (1/v2)
X G+ M —s— V] + [3°@2s + 2M* — m’)

+ @/V2)O* — 26" — M* — s+ \) + u* — ie],
(2)

g = (1/\/2)(0‘1 — as)

where we have restored the 7e¢ of Eq. (2). Then, if
we define 8, > B;, wesee that Im 3, > 0, Im 8, < 0.
Hence

C. KACSER

1/V32 ©
Im fa.,/ d | B e

- fx/VE %a ; [5#n (Im ) — sgn (Im B,)]

B2 - ﬂl
1/V2
_ . Qo
= Im21nfa° 5 = 4a0)7| ’

where «, is the larger of the two « roots of 8, = 8,.
(Recall that we are on the upper branch of the
hyperbola.) Thus we set

X =b" — 4ac = Ad’ + Ba
4+ C = Ala — a)(@ — o)
= o’k*(s, m*, M*) + aV2 {(s — M?)
X+ M —s—XN)
+ w2y -+ M 45— )\2)}

Il

4,

13)

+ 3o+ M — N —9)? — 4m%} (14)
with @, > o'. Then
1/VZ
A = 2m'f (Ae® + Ba + C) dex
2m1 ° Ve
i In {2 [(AX)}| + 24« + B} (15)

After some algebra, one finds that
X|l/\/§ = %kz(mzy ”2: >‘2)
and
(2 [(AX)}| + 24a + B} |yvs = V2 (|U*| — R), (16)
where

U.= Um?, M*;v%, )

= ks, m*, MOE*(m?,»*, N,  (17)
and
R = R(m*, M*; %, i)
= —m*4+ m’ — 208" + N+ M +5)
+ (s — MOV =)
=2m*(\ 4+ M® — )
— (M4 m? —s)(m* + N — 7). (18)
Also, one finds that™
{2(AX)* + 24a + B}|a, = |(B" — 44C)}|
=v22m TY. (19)

% That B2—4AC = 8mT is not unexpected, since this is
the & discriminant of X, which in turn is the g discriminant
of D(e, 8). Hence, we can apply Lemma 1B of Theorem 2 in
Ref. 15 to show that this repeated discriminant is propor-
tional to the determinant of the coefficients of D(«, B) taken
in the sense of Eqs. (6’) and (8a). Such a determinant is in-
variant under a rotation of axes, so that it is identical to A,
and hence related to T' (cf. Ref. 22).



DISCONTINUITIES OF

But
R’ — U = 4m’T, (20)

and, in the region * < 0, (u + »)* > s > (¢ — »)%,
we find that R < 0, R* — U > 0. Thus

P n (|U*| - R)
G, m?, 27| 2\ gm|
|U*|)

= T 3] (R 07

Here both of R == U? < 0, so that the logarithm is
real. Neither of R + U*! can change sign as \°
varies in —o < A < (m — »)® since T 5= 0, so

that finally
|U*>
= T, w30 = 0
—» <N < (m -
w4+ >2s>@w—.

We consider the analytic continuation in s of this
result in a later section.

A1=Im

@1

5. EVALUATION OF A,

This proceeds very similarly to that of A,, so
that we give only the briefest outline. The arc CD
is intersected either twice or not at all by a line a; =
const, so that we work in (o, a;) as variables. We
rewrite Eq. (6) as

D(ay, az) = Mz(al — a)(a: — @),
with
Ima, > 0,

a > a, Ima, <0.

(Do not confuse « and a.) Then

0 21t
4; = —Im f % 3 Tas — ar)
° daa 211’1:
= ‘Imf.,.. @ + gas T 1)F
O . 0
- -0 267 et @
Here

Y = poj + gas + 7 = plas — azo)(@s — of)
= ks, m*, M")ai + 2R'a, + K'(\%, 4*, M*) (23)
with
gy > af

and
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R’ = R'(m?, M*;V*, )
=M+ M@ -2 +N+m+5s
+ (s — M)W\ — )
= 2M°(\* + m® =)
- (M 4+ m' = M + N~ )
= R(M?, m*; u%, V), (24

where Eq. (24) should be compared with Eq. (18).
Then one readily finds that

[20Y) + 2pe; + q]lo = 2{|U"| + R},
where

U'= U,(mzj MZ;VZ; “2) = kz(s: mzy Mz)kz(Mgr F'zy )‘2)

(25)

= UM*, m*; i°, %) (26)
[ef. Eq. (17)]. Also
2@Y) + 2pas + gll...
= (¢ — 4} =2 |®R* - UM, @)
where™*
R? — U’ = 4M°T. (28)
Hence one readily finds
A, = T R’ — lU'iJ)
[k(s, m®, M®), + U7
—o <N (M - w
w4222 @—-9»" (29

Equation (29) is identical with Eq. (21) under the
substitutions M*> = m” and x° = »*. We note that
R' > |U% > 0.

6. EVALUATION OF A,.

We finally come to A,;, which is the discontinuity
function for which Cutkosky’s rules are no longer
a complete specification; and thus the present
evaluation is the main content of this work. Regret-
tably the algebra is heavy, but can be conquered
if one believes strongly enough in the “simplicity”
of nature.

We proceed exactly as in Sec. 4, and work with
the rotated variables « and 8.

[The use of « and B ensures that any line a =
const cuts the arc BD only once [cf. Fig. 4(d)].

% Remarks similar to those of Ref. 23 apply here. The
“factorizations’ (20) and (28) are interesting variants of the
more usual factorizations of T such as T' = s[A* — A, (s)]
A — A (s)], and can in fact be written as I' = m?(u? — x.2)
(1 — p®)and T = M2(»® — ».2) (»® — »,2), respectively.



2014 C. KACSER
il 4ac)
+|id — 7
{m-M)? L-ilk] {(m+M) i ) ap
(@ Ko m?.\2) = Imlz;—| In {|2 (4X)*| 4 24« + B} o (30)
@ N since now only 3, contributes. Here
W rlk -
K (M-)? L-ilu| (M2 K ag = 71—‘ )
@ (b) k()\Z’MZ’P_Z) 1 (31)
M2 2 — 2 2 2 2 .
+|k| I—|lk| |k| ap = \/2 2M2 [ ”' A + lk(M ) A y M )l]
(= Ll (me?) Then [cf. Eq. (16)]
2.2 2
e X%y (2 [(AX)}] + 240 + B)}yva
Fia. 5. The cuts dete;xlxlun(lg)glg?zzk(f;% , M%), (b) k(A% u2,M?), =3 (lU}I —R >0 (32)
and
If one were to use the variables (a;, ;) one would (8M*X)}., = R’
have to distinguish between the two cases + (m® 4+ M® — s |k(M?, 2%, D] > 0. (33)

dag
da,

This transition does occur for some s for suf-
ficiently negative A?, though it can be handled
by analytic continuation in A* of the result for
the case

2 0.

B

das
doy

We used the (o, a;) variables as an independent
check of our result.]

Then [cf. Eq. (11), Fig. 4(d); and Egs. (13), (15)]

<0.

B

[U)® + |U*])(m?

(This is an example of the “simplicity” of nature.)
One then finds that

V2 M*2(AX)t + 24« + Bl|.,
= [m2 + M? —s + [k(s; m27 Mz)l]

X [R' + [U%] 20 (39
(another example). Furthermore,
(m? + M® — s)® — ks, m*, M?) = 4m’M*.  (35)

Hence one can combine Egs. (30), (32), (34), and
(35), together with Egs. (20) and (28), to finally
obtain

_ T (R" +
A = 3T, m, 3] [ae' -

7. ANALYTIC CONTINUATION OF THE A;

Equations (21), (29), and (36) determine the A;
for all relevant real A%, but only for the restricted
srange (u + »)* > s > (u — »)°. In this range the
arguments of each logarithm are positive,”® and the
A, are each real. We wish to continue the A; to all
sin —o < s < (m — M)®. Here we follow the
method of Ref. 3. In Appendix A we verify our con-
clusions by an independent method.

We first define the various k functions in the whole
of the appropriate complex planes, as determined
by the cuts of Fig. 5. We may then remove all the

% Though note that both B =+ |U[2 < 0.

[UD® — U (n’

+ M — s + |k(s, m?, M”)l)] .
+ ‘M2 — 8§ — VC(S, m2) Mz)l) ’

NM<0, W+ 2Zs>@w—9.  (36)

“absolute value” signs in Eqgs. (21), (29), and (36)
if we define

U = ks, m*, MOk(m?, ¥*, \?),
U = kis, m*, MO)E(M®, p°, \').

We then observe that, provided the logarithms re-
main on their principal sheets, each of the A; are
regular at s = (m + M)®. We further see that A,
has a square root branch point at its threshold
M = (m — »)°, and similarly, A, has one at its
threshold N* = (M — w)°. However, A, is completely
regular at its threshold A\* = 0.

Let us now continue the A, in s. Then as long as

@7
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the logarithms remain on their principal sheets, the
only new singularities that can arise oceur at R® =
Uor at R”® = U’;i.e., they can only occur on the
leading singularity surface I' = 0. We must there-
fore determine, for each point on I, which of B =
4 U and B = —U? applies, and similarly which
of R’ = 4 U For definiteness, we refer to the
labeled arcs of T in Fig. 2 as

TSQ : Ni(s), TPQ :N2(s), ZXW :22(s), VW :Ai(s),
(38)

where the continuity of each of A? and A2 as dis-
tinguishable roots of T is implied, and is then in fact
assured by giving s a small positive imaginary part.
Further, the small imaginary part to be associated
with either A2(s) or \2(s) can then be read off Fig.
2 by using the sign of d\*/ds appropriate to the
are under consideration.

We observe that B = 0 is a rectangular hyperbola
in (s, \%) with asymptotes \* = »* — m® < 0, and
s = M* — m® <0, lying in the (+, +) and (—, —)
quadrants. Now, we are only concerned with those
parts of I' which bound the regions ® and III;
(hereafter called T'y, and Ty} so that, on these parts
of I', U = O only at S and at Q. Thus the hyperbola
B = 0 itersects I'y only at S and at Q, while it lies
“under” the complete are I'y;y. Hence, since B < 0
between its two branches, we immediately see that
R < 0 on Ty and on STPQ, while B > 0 on SQ.
Since U* > 0 throughout these regions, we see that

R = +U':8Q,
R = —U* :STPQ, VWXZ.

Furthermore R®> < U inside D, while outside ©
and T, R* > U.

We are now ready to perform the analytic con-
tinuation of A, in s using the technique of Appendix
B of Ref. 3. We start in the region (u — »)> < ¢ <
(r + »)?% all N* < (m — »)? in which R < 0, with
R* > U.

In this region A, must be real (since for such s,
# is real for A* not on its cut). Thus in this region we
write

(39

}rk(s, m?, MY)A,

_ . (R-TU} Ut —R
*h(ﬁ+v¥)=h(—ui—-ﬁ)

_ M]_ [ Ut — Ry ]
-In[R”~—U = s\ — AN — A%)
=2In(U'—R) —Ins
—In (A" =A%) — In (3% — A2).

(40)
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In this s region (u — »)* < s < {(u + »)°, \2(s) and
Mi(s) are complex conjugates, and, by continuity
from the definitions for s > (s + »)°, we see that
Im A}(s) > 0, Im A\3(s) < 0. Thus the appropriate
choice of branches in Eqgs. (40), which ensures that
A, is real, is given by taking each logarithm on its
principal branch, with the cuts from AZ(s) and
A3(s) each extending parallel to the real )\’ axis
to — o,

We now increase ¢ into the region sy < 8§ < sy,
where sy is the s value at the point T {in this case
sr = (u + »)°] and similarly for sg. In this continua-
tion of Eq. (40), for fixed A’, the branch points A 2(s)
come down onto the real A\ axis with

N EST, ImMNis+ i) >0,
NETP ImMN(s+ i <0.

Furthermore, B + U? passes through zero on D;
however, the form of Eq. (40) is such that the factor
In (U* — R) remains real for s < sg Hence we
readily find that, for s; < s < sy, A, isreal outside D,
and acquires an imaginary part of -+ ix/k(s, m*, M*)
inside D.

We next continue to 83 < 8 < 8p. As § moves
past 8, AI(s + %¢) moves clockwise around the
N* contour end point \* = (m — »)*, and now acquires
a small negative imaginary part. The A* contour
is undistorted by this, as is shown in Fig. 6. Hence
In (* — A}) now has an imaginary part — 4= for
M < AE and — 2ir for A2 < M < (m — »)’. How-
ever, for this Iatter region, we are above the arc 5Q,
so that the factor 2 In (U — R) must also be con-
sidered. The argument of this logarithm changes
from being positive to being negative as we cross
the arc 8Q to the right. In order to determine the
proper branch to associate with this logarithm, we
re-express Eq. (40) in a form which allows us to
continue in s across SQ with no difficulty. That is,
we transform Eq. (40) to

41

s, m*, a0,
s = A — xi)]
=k [ 0 - B
=Ins+ In(\* —2) + In(\* — A2)
— 2l (—U! - R).

(42)
)

g)\z Contour : (m,vﬁg

A2 2%
Fi1a. 6. The branch cuts associated with A, %(s) for sy < s < sp.
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@

» Contour s
: I\

%

Fia. 7. The branch cuts and A% contour for sp < s < sq.

For 8 < s inside D, we know that this expression
has an imaginary part of 4¢=. But, with the same
AZ(s) cuts as before, this implies that —2 In
(= U* — R) must have an imaginary part of +2r:
(recall —U* — R < 0 here, but changes sign on
STPQ). Hence, as s increases past ss, and \? circles
around (m — »)°, we find the imaginary part of
kA,/7 remains -¢r in the region A2 < A* < A3,
and remains zero for AI < A% For A* < \? Eq. (42)
cannot be used, since the factor —2 In (—U? — R)
changes its imaginary part; however, Eq. (40) can
be used in this region, and shows that A, is real for
A <AL

We next continue in s past sp, and consider the
arc PQ near which expression (40) is appropriate.
At P, 22 circles around (M -+ g)® and moves into
the upper half A* plane. However, since A, is part
of the spectral function of the dispersion relation
(4) for f, the contour of integration must also be
distorted upwards, (see Fig. 7) and hence remains
above \2. Hence even though Im M\?(s + i¢) > 0,
no change occurs in the effective prescription for
Ay, ie., Im (1/x)k(s, m*, M*)A, = « inside D, = 0
otherwise.*

In a precisely similar manner, and using Eq. (40),
we find that inside III, A; has an imaginary part

Im A, = —=x/k(s, m*, M*).*" In sum
N <(m—7v° s<(m— M=
J+1r’/k(s, m:, M%), (s, \*) € D,
Im A, = s—7"/k(s, m*, M?), (s, \°) € 111, (43)
1 0, otherwise.

28 However, one very important change has occurred. For
all parts of I'y other than PQ, the singularity of A; has been
located at the appropriate M.(s + ¢) as determined by TI.
Thus, since the singularities of f are on the opposite side of
the A* contour to those of A,, f has no singularities on QSTP
in the curve limit, and hence the complex surfaces sprouting
from QSTP are nonsingular. However, for the arec PQ, A
effectively has a singularity at A2. — ¢/, so that f has one
at M. 4 i¢, which is the curve limit. Hence, the complex
surface sprouting from PQ is singular on the physical sheet
of f. This result agrees with that of Ref. 16.

27 Again, for the arc ZX, A _(s -+ ie) attempts to move
into the upper-half complex A? plane, but instead simply
slightly displaces the A2 contour upwards. Hence the remarks
of Ref. 26 apply. In fact, the singularity surface of f, which
leaves PQ, first connects to ZX, and then continues through
complex points to pg. (We remark again that we have assumed
M > u for definiteness. This determines that X is on I'in
rather than on TIy.)
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We can treat A; in a manner analogous to that
used on A,. Now one finds that R’ = 0 at X, and
R < 0on ZX, R > 0 on XWYV. Thus, on XWYV,
one writes

XWV : ;l;k(s, m?, M?)A,

r Ud)
R0

= Ins(\® — M)\ — ) —21In (R + U,

= In

(44)

where In (R’ + U?) is regular for sy < s < sy with
R’ + U > 0. Thus Im (1/m)k(s, m*, M*)A, = +ir
in IIT. However, in the same region, we have [cf.
Eq. (40), now U — R > 0]

XWV ;}rk(s, m*, MP)A,

=2In (U = R) — Ins(N® — A\ — AY), (45)

so that one sees directly that the imaginary parts
of A; and A, cancel; and further that neither XW
nor WYV is a singularity of f in any limit.

Finally, as s moves through sx, A2 circles anti-
clockwise around the A\’ contour end point at A’ =
(M — p)? ending in the upper half-plane with no
distortion on the \* contour. (This is similar to the
behavior of A} near sg.) At the same time, as s
decreases across XS, R’ + U’} becomes negative, so
that the form of Eq. (43) must be replaced by the
equivalent form,

Lkts, m?, M8, = 2 ® - U

—Ins—In(\* =A%) —In(3® — A\}) (46)

with 2 In (R’ — U’}) having an imaginary part of
4277 inside I'yr for sx < 8 < g8y (notice that
R’ — U’ changes from negative to positive as we
cross WX out of region IIT). Then form (46) enables
us to continue in s below sx, and shows that the
—27% which arises from In (\* — A?) for A* > A3, is
canceled by the +2x¢ from 2 In (R’ — U). Thus,
to summarize,

)\2<(M—p)2, S<(m—M)’;
2 2 2 2
Im 4, = [a/k(s, m*, M?), (s, \*) € III, @)
0, otherwise.

The slight extra complication in the region XYZ
arises because X belongs to I'jrr. If we had assumed
M < p, we would have found that X belonged to
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I';..”® In the equal mass case M = p, the point X at
which T touches > = (M — ) is at infinity, and
no such complication arises.
Finally we come to A,. Since, in fact
m
4 = ""%(Al + Az) + 2?{}(8, ng Mz)

m? + M® — s + k(s, m’, Mz)]
>< ln I:mz + M2 — — k(s, m2, M2) (4'8)

and the last part of Eq. (46) is regular throughout
the region under consideration, the complete specifi-
cation of A, is straightforward using (43) and (47).

In Appendix A, we verify these results by an
independent method.

8. CONCLUSIONS

Section 7 ends our direct evaluation of the triangle-
graph internal mass discontinuities A;. The problem
has been stated and solved. However, the A; are of
great importance in the Aitchison—Anisovich’™ in-
tegral equation, which is derived from the Khuri—
Treiman' equation, and which considers the problem
of 3-body final-state interaction effects. Further, it
has recently been argued by Pasquier and Aitchison™
that this equation provides a way of unitarizing
any three-body amplitude, since they prove that
the Khuri-Treiman equation does satisfy three-body
unitarity.

It is therefore worthwhile to comsider the A;
further. Hence, in Appendix A, we show how the
analytic continuation of the A; can be obtained by
using the known analytic properties of the triangle-
graph amplitude. Further, in Appendix B, we gen-
eralize Cutkosky’s rules for evaluating discontinui-
ties of Feynman amplitudes, so that they can be
applied to internal mass variables. One of the two
necessary generalizations makes use of homology
theory.® Yet this generalization is needed. (The
moral is clear.) With these generalizations we briefly
evaluate the A, using the Cutkosky rules, and find
agreement with the direct evaluation. Finally, in
Appendix C we reevaluate A; using the method
of Aitchison,® corrected where necessary, and again
confirm previous results,

28 By inspection of Eq. (3), we see that near 8 «» o, T’
behaves ag N = —(M? ~u?) (m? —3?)/s. Since m? > 2
M2 S u? determines whether X belongs to I'y or T'p.

2% R. Pasquier, “Some Analytic Properties in the Total
Energy Variable of Khuri-Treiman Type Amplitudes.” Pre-
%rint, July, 1965 (Laboratoire de Physique Nucleaire, B. P.

0. 1, Orsay, S et 0, France); I. J. R. Aitchison and R.
Pasquier, ‘“Three Body Unitarity and Khuri~Treiman Ampli-
tudes.” Preprint, March, 1966 (High-Energy Physics Group,
Cavendish Laboratory, Cambridge, England). See also the
works of G. Bonnevay cited in the latter preprint.
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Notes added in proof.
1. R. Pasquier (private communication; to be
published) has been able to derive the representation

ds’
(s — k(s’, m*, M*)°

a-(m* %)
Az "l‘ A3 = Wj‘

by interchanging the order of the dispersive and
the angular projection integrations in the Khuri—
Treiman equation. This interchange then leads to
an equation which can be immediately compared
with Eqs. (19) and (23) given by Aitchison.* One
can then unambiguously identify A,, and the com-
bination (A, 4+ A4;). (Pasquier works in the equal-
mass case. Hence, since each of A, and A; then
appears in a A’ integration starting at A*> = 0, only
the combination can be identified.) The identifica~
tion of A, is identical with that given in Ref. 9
[i.e., Eq. (Al) of the present paper]. Pasquier is
able to determine the appropriate s’ contour for all
relevant \’, for each of A, and (A, + A,), since the
interchange of orders of integration requires that
the contours be chosen in a “compatible” manner
(cf. Ref. 29, where this concept is introduced).

By straightforward though tedious algebra, Pas-
quier is able to evaluate his representation for
(A; 4 A;). He obtains the same result as given in the
present paper for this combination. Thus this work
confirms the validity of the modified Cutkosky rules,
and also the evaluation of A,. Further, since the
contours are prescribed (but see the second paper
cited in Ref. 29), Pasquier is able to determine the
appropriate branch of each logarithm in A, and
(A, -+ A;). His results agree with those given in the
body of the present paper, and in Appendix A.

Presumably Pasquier’s work can be generalized
to the unequal-mass case.

2. R. Pasquier (private communication) has pro-
vided clarification on the analytic continuation of
A,(s, N?) in s in the region A2 < N < \Z, as discussed
in Appendix A. He first remarks that for ¢s < s <
sp, we can follow all the physical A* values by using
A* <+ de [¢f. Eq. (A2)]. Specifically for such an s,
as N’ increases from — ® to (m — »), it passes above
each of A\*(s) and A2(s). As \° increases in this
clockwise sense past A2(s), s-(A\°) decreases and
passes under s, leading to the configuration shown
in Fig. 8(c). Similarly as A\* increases further past
Ai(s), 8+(A%) also decreases and passes under s, so
that the \* contour joining s_(A\*) to s,(\*) becomes
totally disengaged from s, in which case it can then
be straightened out into the rectilinear contour
joining s_(\%) to s,(A%). Thus for 85 < s < sp,
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A, (s, \*) is imaginary only for A2(s) < \* < A2(s).
This agrees with the remarks of Appendix A.
Pasquier now points out that as s decreases past
ss, having a positive imaginary part, \2(s) com-
pletely loops A2 in a clockwise sense. Then in the
representation (A2), the \® contour remains un-
distorted, but as A\ increases, it effectively now
passes below \*(s). Thus, for s < sg, as \* increases
from — o to (m — »)% it first passes over \(s),
and then passes under \(s). As \* passes A3(s),
s_(\*) decreases and passes under s, leading to a
configuration as in Fig. 8(c). Then as \* passes
below N\2(s), s_(\*) increases again past s, but again
it passes under s, so that for \®> > A2(s), the ¢
contour joining s-(A\*) to s,(\®) is again totally
disengaged from the pole at s. Thus again it can be
straightened out to the rectilinear contour joining
s-(\*) to s, (\*). This then corresponds to the physical
limit shown in Fig. 8(d); so that, in particular,
Ai(s, \?) is real for s < s_(\), even for A\* > A1
The author is happy to acknowledge very helpful
correspondence with Dr. Roger Pasquier.
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APPENDIX A. ALTERNATIVE TREATMENT OF
THE ANALYTIC CONTINUATION OF THE A;

Our discussion in Sec. 7 was based on the explicit
form of the functions A,, A;, and A;. However, one
of these functions A; also has an integral representa-
tion which was obtained in Ref. 9, and it is in-
teresting to study how that representation leads to
the same results. In Ref. 9, it was shown that

A8, \) = f o :
1S, T on & — Ok, M, MP)

[Reference 9 only considers the equal mass case
p = v = M; also we have inserted the missing factor
of = here.] This form is to hold with & taken real
and positive (i.e., in agreement with the cut specifica-
tion of Fig. 5), and, in particular, with an undis-
torted s’ contour of integration, for A§ < A* <

s+(22)

(A1)
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(m — »)°. (This avoids the complications arising
from the second-type singularity.) However, this
form was only derived for s < (u + »)? so that at
first sight it is not clear how to extend this both in
s and in N’

The clue is provided by the representation of f
given by Eq. (4). We already know the singularity
structure of f(s, \’) for all s and \’, as given by Refs.
16 and 10. It therefore follows from Eq. (4) that the
singularity structure of A,(s, \*) in A* for fixed s is
fully prescribed. It is possible to “invert’” this in-
formation to yield the singularity structure of
A (s, \?) in s for fixed A’. With this information, the
integral representation (A1) can be analytically con-
tinued in s. Since the direct evaluation of the rep-
resentation (Al) was already performed in Ref. 9,
and obtained the same result as given in Eq. (21),
the only specific ambiguities concern the analytic
continuations, i.e., the ‘“proper” branches to be
associated with the logarithm. By considering the
prescribed contours, we show that the results of
the present method agree with those of Sec. 7.

We first note that the representation of Eq. (4)
can be written

y_ _1 f"""” dN? By(s, N + 1e)
fs, N) = ). Nt ) — N

+ (4., A; terms). (A2)

That is, if the physical limit of f(s, A> — 4¢) has a
singularity, then this is a corresponding singularity
of A, in the A* limit A, (s, A* + %e¢).

Now, of course, the representation (A2) originally
assumed that s was real, with — o < s < (u + »)°
However, our aim is to analytically continue the
representation in s. In this continuation, as long as
no A* singularity of A;(s, \*) crosses the \’* integra-
tion contour, no new singularity of f(s, \’) occurs (at
least on its first physical sheet). That is, if f(s, A?)
has any A* physical sheet singularities not on — » <
N < (m — »)?, it follows that a \* singularity of
A(s, N*) must have crossed the A\* cut; however, any
singularities of A(s, \*) which are not first-sheet
singularities of f(s, \*) cannot have crossed the \*
cut.

We now recall'®’® that the only physical sheet
singularities of f(s, \*) are those associated with the
complex surface PQpq with corresponding imaginary
parts for s and \>. Thus, in the physical s limit s + e,
the only A physical-sheet singularities are associated
with the arc PQ. On this, A\2(s) is singular on the
physical sheet at A2(s + 7€) = A2(s) + 7€'. Further,
if we consider s == ZA, A finite, then, #f it is on this
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surface PQpq A2(s + 7A) has a finite positive (nega-
tive) imaginary part, and is still a physical-sheet
singularity of f(s, \°). But there are no other singu-
larities of f(s_\%).

However, when we consider A, (s, \*), then the
representation (Al) shows us that A, necessarily
has singularities at s = s.(\%), or > = A2(s). That
is, A;(s, \*) necessarily has singularities on the
whole of the (complex) surface T.

We also have another very useful piece of informa-
tion, namely that, for —e@ < s < (& — »)°, 4
must be real, since for such s, A, = Im f(s, \*) for
(M — p)? < N < (m — »* and f(s, \*) is real for
both s and \* off their cuts.

These two pieces of information enable us to
determine A, nearly completely, as shown in Fig. 8.
In that figure, we consider 4 different ranges of \?, in
the last three A\* having an infinitesimal positive
imaginary part. Let us first disregard Fig. 8(d).
Then the prescriptions follow from the representation
(A1), with X® + 4e being the proper A\* limit. In
particular, in Fig. 8 (¢) we know that, from the
original domain of definition of the representation
(A1), the integral is to be taken over an undistorted
contour on the first sheet of k(s', m*, M?), at least
for s < (u + »)* The A\* + e limit then puts the &
contour slightly below the real axis, so that s can
then continue along the real axis for all s <
(m — M)® = s,. Thus for this \* range, Im A, =
= /k for s.(\*) < s < s5,(\%), O otherwise.

The transition in Fig. 8 from (c) to (b) follows by
continuity, since s,(\’> + 7¢) loops clockwise round
s = s, as \* =+ 7e decreases past \J. One then again
finds that Im A, = #°/k for s_(3*) < s < 5,(3%), 0
otherwise, for one can rewrite the representation
in this region as

se=o [* 4 [0 ]

1
X ]C(3’, mZ) Mz)lfirnt sheet !

(A3)

where the two contours s_ — s, and s, — s, are below
and above the real axis, respectively.

In Fig. 8, on going from (b) to (a), i.e., (M — p)® <
A < (M + u)?, the representation (A3) still holds,
but now s. = (s.)*, so that A, now becomes purely
real for all real s < (u + »)®. This agrees with the
reality condition previously stated, and extends it
somewhat. It also confirms the distorted s’ contours
of Fig. 8 (2) and (b).

We notice that our preseriptions in Fig. 8 agree
with Eq. (A1) over undistorted contours, for A\ <
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Fie. 8. The &' contour for the integral representation Eq.
(A1) of Ai(s, A2). (a) (M — u)2 < 22 < (M -+ u)? A% real;
(0) (M + u)? < A < A% A% + e limit; () Mg? < A < Aqp?
A% o de limit; (d) Ap? < A2 < Ag? = (m — »)?, A - 7e limit,
We have defined s;=sq=(m—M)* and s,=s,=(m-+-M)%. In
(a) s, have finite imaginary parts, while in (b)~(d) their
imaginary parts are infinitesimal.

(d)

Ank
T

5 s
(#+y)2 i 2

A* < \Aj, for which the second-type singularity
is irrelevant [see paragraph after Eq. (Al)]. The
distorted contours in Fig. 8 (a) and (b) are for
A* < 2§ and show the second-type singularity. The
undistorted contour prescription also holds for A2 <
A" < A}, at least for s < (u + »)°. This now cor-
responds to the range in Fig. 8 (d). For this range,
we now assert as in Fig. 8 (d) that the physical s
limit is from above the effectively wundistorted s’
contour. (In the figure, the distorted &' contour
follows the trajectory of s_(A%), but we still take the
physical limit from above, so that this is equivalent
to the undistorted contour.)

At this point, we really have to return to the anal-
ysis of See. 7. If we were to take the distorted &
contour literally, we would allow the possibility
of the s pole being looped by it for s; < s < sg, and
so leading to Im A, = 2x"/k for sy < 8 < s_(\%).
But we would then contradict the conclusion of
Sec. 7 discussed in the paragraphs around Egs. (40)
and (41), in which the s continuity was used to
argue that no 27°/k contribution arises. The ap-
parent difficulty here is a manifestation of the need
for “compatible” contours, discussed in Ref. 29,
(See also Note 2 added in proof.) With our prescrip-
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tion, Im A, = #°/k for s_.(\*) < s < s.(3%), 0 other-
wise. Thus (with this slight retreat to Sec. 7) the
conclusions of this appendix agree fully with those
of Seec. 7.

Parenthetically, we can readily see how the arc
PQpq becomes a first-sheet singularity of f(s, \%).
Ay(s, N\*) of course always has singularities at s =
8.(\%; ie., at \* = A2(s). As s increases past sp
with small positive imaginary part (the physical
limit) A2(s) moves clockwise around \* = \2 =
(M + u)* circling from below the \’* contour and
pushing it upwards infinitesimally. As s now moves
upwards to acquire a finite positive imaginary part,
22(s) also moves upwards and carries the \'* contour
with it. This then produces a first-sheet \* singularity
at A2(s). Thus the (4, +) arc of PQpq is a first-sheet
singularity of f, similarly, so is the (—, —) arc of
PQpg.

APPENDIX B. EVALUATION OF THE A; USING A
(NECESSARILY) MODIFIED FORM OF THE
CUTKOSKY RULES

Preamble

Cutkosky” has given a complete method for evalu-
ating the discontinuity of any Feynman graph.
This method was originally proposed for discon-
tinuities across cuts in an external mass variable.
However, there is no obvious reason why it cannot
be applied as is to an initernal mass discontinuity,
such as the A,. In faet, Cutkosky’s method was so
used for the first time in Ref. 3. In that paper,
Aitchison did evaluate A;, A,, and A;. His A, and
A, agree with the ones obtained in the present paper;
however, the evaluation of A; given in Appendix A
of that paper contains several errors. None the less,
Aitchison did correctly remark that the Cutkosky
prescription needed to be modified in a way which
is implied by the work of Fotiadi, Froissart, Lascoux,
and Pham,® in their studies of Feynman diagrams
using homological methods. This homological pre-
scription differs from that of Cutkosky as regards
the proper domain of integration which is to be
used. Otherwise the rules are identical.

On close inspection, it turns out that, even as
regards A, and A,, the Cutkosky domain of integra-
tion must be somewhat modified. In the present
appendix, we therefore first briefly sketch the modi-
fied Cutkosky method of evaluation of A; and A,.
We then treat A; in more detail. Our results for
each of A,, A,, and A; agree with those obtained
in the main text of this paper.

The modification of the Cutkosky domains has
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to do with the Cutkosky prescription §,(¢* — m®) =
8(¢ — m*)6(qo), or, in our case 8(¢° — N)8(q).
We find that the ‘“‘proper” root restriction 6(g,)
must be relaxed when considering an internal mass
variable such as \*. The reason is related to the fact
that such variables have cuts which typically include
A\* < 0. A straightforward application of the Feyn-
man prescription > — e for > > 0 does, of course,
lead to the inclusion of only one g,-pole of the
Feynman propagator (¢° — A* + 4¢)™*, and such a
restriction is then equivalent to the restriction 6(g,).
However, for \* < 0, the propagator g,-poles can
enter the complex plane, in which case the restriction
6(q,) becomes ill defined. In fact, in that case the
poles will be complex conjugates of each other, and
one will automatically only pick up one such pole
in performing the Feynman integral, even if one
ignores the Cutkosky 8(q,). Thus pragmatically one
should ignore those 6(qo) which effectively cause a
cutoff in the Cutkosky domain of integration only
because an internal mass is then negative. A straight-
forward example and application of this idea is
presented in our consideration of A,.

However, a further problem arises when we con-
sider A;. In that case we again have a Cutkosky
prescription 8(go)8(g° — N\°) with A* < 0. This time
there are no other s-functions, so that we really do
have a gy-integral to perform. Yet, even disregarding
the 6(g,), we have no way of integrating 8(¢ —
q® + [\[*) throughout 0 < |g] < « without g,
becoming imaginary in part of the range of integra-
tion. One possible choice would then be to integrate
over (—\)! < |qg] < «. However, the work of
Fotiadi et al.® indicates that one should always
integrate over some closed cycle which vanishes
as one approaches the branch point in question.
(That the cycle be closed is related to the fact that
the discontinuity is the difference between two inte-
gration contours, and hence necessarily has a closed
integration path. That the cycle should vanish at
the branch point seems plausible, but not manda-
tory.) In our case, these conditions suggest setting
go = tk, and integrating in the k, |q| plane around
the circumference of the circle k> + q* = %, where
I? = —\°. However, if we let § range over all
directions, we must in fact restrict this integration
to the semicircle |q] > 0. This interpretation of the
closed-cycle condition differs from that of Aitchison.
As we see below, our interpretation does lead to the
same A, as already found. It is clear that the results
of homology theory have practical impact on sordid
computational problems, and that this theory de-
serves further study.
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Evaluation of A; and A,

Recalling the normalization of f given in Eq. (1),
an immediate application of Cutkosky’s rules leads
to

A=(m—y)?

L1 « @riy f &'k 5,04 leg)

==X 3
1

21
X 8.(\* leg) X (v* leg propagator)

1 1

= L x % x @riy [ @ 0G0 — k)
(ko) 3[K* — N*]
W=k —0)’ —1de’

X 8(p — k) — ] (BL)

where the various momenta are defined in Fig. 9.
Equation (B1) is Lorentz-invariant, and we there-
fore evaluate it in the p rest frame, with p, = m, and

m 4 M —s

%0 = 2m

_ k(m®, M?, 5)
- 2m

, el (B2)

Then

1
A = = X (271)*

xf(’hd(pf_lldcosaf_:dkof: Ik[* d [k|

X 0(m — ko)0(ko) X 8[m® 4 N* — »* — 2mk,]
8[ko — |k[* — ¥]
[LZ— )\2—M2+2k00'0—-2[k| Idl COSG—ie’
(B3)

where we have taken ¢ along the 2 axis. Because of

X

1

A1='2_?:.

1 2 ! 1 K
X == X (i) X21rf_1dcost9><2m>< 3l X

2021

F1a. 9. The 4-momenta appropriate to the evaluation of the A;.

the two delta-functions, we see that

2 A2 — 2 k2 2’ )\2’ 2
Ln__+2_m__l’_ _—(lnTLmTQ (B4)

Thus |k|> = 0 at the branch point \* = (m — »)?,
at which &, = m — ». This lies within the domain
of each #-function. However, in general, these re-
strictions become

0(m — ko) = 8[m — (m® + N —")/2m]

= 6(m’ +* — \})

ky = ) [klz =

(B5a)
and
8(ko) = (B5b)

While the restriction introduced by 8(m — k) has
no limiting effect, the second restriction arising
from 6(k,) implies that A, vanishes for N <
¥’ — m® < 0. But we know that this is not a singu-
larity of f. Hence this second restriction (B5b)
must be tgnored. It arises from a 6(q,), where ¢, is
part of a 4-vector ¢ which is spacelike. In fact, for
such a spacelike vector, the restriction 6(g,) is not
even Lorentz-invariant, which provides another good
reason for ignoring it. Once this step is taken, the
evaluation is trivial, leading to

0(m® + N — 1.

1
b — N — M® + 2kyo, — 2 || [6] cos 6 — €]

2m

2m 2

7 In {[ﬂz R oo 2(m” + 3 — v2><m2 + M® s) k(M N, D)k(s, m?, MZ)]

= T kG, mE, MP

2m

2

% [M, RO 2(m2 + 2 — u2>(m2 + M — s> . Bm?, X, k(s M’)]“}

2m

2m 2m

_ T ln{_R - U*} _ T
T ks, m®, MD T =R 4+ UY T k(s, m*, M)

which agrees with Eq. (21).

R — U}
m@+wk

(B6)

In a precisely similar manner, one can evaluate A, and obtain the result of Eq. (29). It is very clear
that the Cutkosky 6(g,) restriction should be relaxed for such cases. Needless to say Cutkosky himself did
not actually consider the case when an internal mass might become “‘spacelike’.
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Evaluation of A;
In a precisely similar way

f A% 6(ky) 50K — W)

1 .. 1 1
A =gpdiscf| T EXEmEX )X T T = = ©P
We again work in the p rest frame, and take ¢ to be along the z axis. Then

11 2' ' i g
—2%.><W2z.><(2m)><fo d¢[1dcos8£mdk0£ ik d [k|

0(k,) 5kt — K — \) _ ®8)
W — N — M® + 2koo, — 2 [Kk| 6] cos 8 — i])* — m® — N + 2mk, — 1e]

A,

X

Now however \*> < 0, so that we immediately drop the restriction 6(k,). But we are still faced with
the question of the domain of integration, and we follow the guide of homology theory.® Thus we set
ko = ix, and \* = —P, to obtain (1> — k¥* — «°). We then integrate around the circumference of this
circle. In practice, this is most easily done by changing variables by

|k| = r sin x, ko = ix = ir cos x,

with0 < r < o, 0 < x < 7, which leads to

1 w *
A3=~1~.X21r><f dcosof rdrf dy ir® sin® x
i) -l 0 )]

3 — D)
X [ — N2 — M* + 2ir cos x 0o — 2rsiny |8] cos 8 — €]l — m® — N + 2mir cos x — te]

(B9)

The r integration is absorbed by the delta-function, and the x integral can then be performed by going
to {= tan %x, whence

A3=-f d cos of lzdtzmt”
-1 -0

X [(® — A2 — M? — i1 + 1) + 26loo(1 — £) — 21 || cos 2]
X [(° — m* — \* — 491 + ) + 2mil(1 — O], (B10)

Here originally the { integration went from 0 to «; but, by using the symmetry of the integrand
ander § — = — @, t — —t, we have replaced the ¢ limits by — o < ¢ < 4. We thus have a closed
contour integral in ¢, since the integrand — {™* as ¢ — . The integrand has poles at

. . _ (m =2\ —» +ze]

t1 - 7:, tz - "'2, t = t [( + }\) — 1’ + e t4
ts| _ —20) |d] cos 8 F i — N — M — i’ — 4X*(o} — & cos® O)]F (B11)
ts w = N — M?® — je — 2)a,

Here, we have set 71 = \ in some of the expressions. (By inspection of (B8), we see that the final result

depends only on )\?, so that the choice 57 = =\ is immaterial provided it is made consistently.) We

also define

= —1

a=put =N — M>— 20, —de, b=2—(m+N —ie (B12)
Then we have
1 w 422;52
= f dcos 0 | A P)alf + & 9] cos 0 £ + (@ + 4he)](BF + (B + 4mN)]
2 2
f d cos 0 f a2 ‘” et (B13)
.-1 0

H(t

fwl
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The ¢ integration can then be performed by closing
the contour in the upper half-plane and enclosing
t), t;, and ¢;. Here we are working on the basis of
the pole locations for A* &~ 0, which are then in-
dependent of 6; and by analytic continuation we
preserve the same choice of poles for all > < 0.
Then

A, = 2m'f_l doos 0 2L &, + B, + R
! (B14)
=I5+ I, + I,
where
R, = (—)ab{2i[4 o, — 4\ |d] cos 0][4mA]}*, (B15)
By = fa{(1 + £)(2t,)
X [at; + 4N |6] cos 8 ¢, + (a + o)}, (B16)
and
Ry = b{(1 + £)(ts — 1)
X [bts + (b + 4mN]}™'.  (BI7)

The dependence of each of R, and R, on cos @ is
explicit, and the cos ¢ integration can immediately
be performed. Thus

_ @) (o — 4]
L= Syamn—a jop (ao ¥ |a|)

T

= 2k(s, m*, M)

m’ + M? — s + k(s, m?, Mz):]
X ].Il [mz + M2 —_ — IC(S, m2, MZ) ¢ (BIS)

Similarly, one finds

_ T R+ U‘)
L=gg ™ \e=0) B9

where R and U are defined in (17) and (18).

The evaluation of I; requires more circumspection,
since t5 is an irrational function of cos 6, and R; is a
nontrivial function of ¢;. We change variables to
T = t;, so that

r=1, cosf = i[a(Tz + 1)+ 2M°]
1 ’
4\ 6| 7 (B20)
. ar’ —a — 2)\0'0)
d cos 8 = z(  [o] 7 dr.

3 Here we are assuming that M > u, so that a < 0 for
A = 0. Our final results are independent of this assumption,
as can be seen by analytic continuation, since M = y is not
a singularity in M.
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Also
ts — ts = 2[t; + (2¢\ |d| cos 6/a)]

= (ar® — a — 2\oy)/(ar)

= [(d cos 8)/i(d7r)](4A 8] 7/a) (B21)
and
7, = 7{cos § = +1)
7- = 7(co8 § = —l)JL

= [F2i\ 6] — k(P N, M) ]/a.  (B22)

We then obtain
_ ﬂ T+ d(?’z)
el s U 4 A + b+ 4ma]

_m ’+d#( 1 b )
6] J.— 4mA\1 4+ 7> b7® + b + 4mA

I

w
" &G, w1
— In 7" + b + 4mN]1]7t

= L b+ 4mr(1 + Ti)-l]'
= 2k(s, mz, Mz) In [b + 4m}\(1 + Ti)—l (B23)

For the final step, we use the remarkable facts that
2
1+ % = 2MM* — oo’ — N — M)
F o] KON, M7, 1)
= M’&’[2AM* — a,(® — N* — M?)

+ ldl k()‘z) Mz: FZ)]_I' (B24)
Hence one readily finds that
b+ 4mr(1 + 72)7' = (1/2M°)(—R’ £ U’Y), (B25)
so that finally

+ Ut

T 4
I = 2k(s, m*, M?) In (R' - U”>' (B26)

On gathering together (B14), (B18), (B19), and
(B26) we obtain precisely the same result as already
given in Sec. 6.

Summary

The analysis of this appendix hence shows (at
least in our specific case) that internal mass dis-
continuities can be calculated according to Cut-
kosky’s rule, provided two important modifications
are made in the interpretation. These are:

1. Ignore the “proper” pole prescription associ-
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ated with 6,(¢® — m®) for m* < 0. Replace this by
the simple prescription 8(¢° — m®) for m* < 0.

2. When integrating over the ¢” associated with
such a §(¢° — m®) for m* < 0, the ¢o, |q| domain of
integration must be re-interpreted into the complex
plane, in such a way that one is integrating over a
closed cycle which vanishes as one approaches the
singularity in question. This result shows the im-
portance of homological methods in practical con-
siderations of Feynman graphs. The moral here is
clear.

APPENDIX C. EQUIVALENCE OF A; WITH
AITCHISON’S FORM (A4dded in proof)

As already noted, Aitchison’s evaluation® of A,
contains several errors. However, his basic method
of evaluating A; is valid, and in this appendix we
show that his corrected result is in fact equivalent
to the one given here.

We commence with Eq. (B10), and perform the
cos 6 integration. Then

A [T tdi

=1 L. EFD0E =D

(t - t5+)(t _ t6+)}
xn{i =i o
where
t5:& = t5|ooa Gzl — _é[ik()\2,M2,M2) :|:21:)‘ Idl])
th = tﬁleol G= 1 (02)
= —L k00, M7, ) = 200 Jol),
and
. .{(m — N — f}* kR, w5
*T AW AN = T N =S
_ —ik(®, m?, ) _ dlm — N =] €9

b TR, mP, YD)

We again locate the poles and branch points for
A & 0, and preserve these same locations relative
to the integration contour for A’> <« 0 by analytic
continuation. Then the integrand has poles at ¢ and
at t, in the upper half-plane, at —¢ and at —¢, in
the lower half-plane; and branch points at ¢, and
{s— in the upper half-plane, and at ts, and f_ in the
lower half-plane (cf., Aitchison, Fig. 15). Then using

t _ 1 {[ 1 1]
E+DE -6 20+ \Lt—t, t—2

1 1
+[t+t,"t+i]}’

C. KACSER

where we have split the poles into the two half-
planes, we immediately obtain

N T t, — s, (t, + t5_)
B = 3G, w2, 1) In {<t - te—> t, + tss
i+ t5+><i — ts_)}

X (7; + t5_ 7: - t6+

_ T (L’,, + t)@ + t5+) :
B 2k(3, m2) MZ) In {(tp + t5+)(7; + ts—)} ) (04)

(Here, we have used f;, = —i:.) [Eq. (C4) is
essentially the same as Aitchison’s expression for
As(s, \) given above his Eq. (A8). Aitchison incor-
rectly integrated x from 0 to 2r, instead of only from
0 to =. Thus, he incorrectly set A; = As(s, \) +
As(s, —\)—his Eq. (A4), when in fact A; = A;(s, N).
Actually 4,(s, \) is a function of \%.]

While (C4) is correct, and is in fact only dependent
on \?, this property is not explicit. Now, from (C2)
and (C3)

ts.(N) = —1/8.(—=N), L) = =1/6,(=N),

where &;.(A\) = ., and t;.(—)\) is obtained from
ts«(\) by the substitution A — —2X; similarly for
t,(—7). Hence, after trivial manipulation, we can
rewrite (C4) as

T A.B.
b=y 4. O
with
A4, = [t,()\) + t5_()\)][t,(—)\) + t5—('—)‘)]) (06)

B, = [i + .M + t:(—N)]
and where A_ and B. are obtained from A, and B.
by the replacement |é] — —|é|, under which £, —

t5:|:.
To reduce A, and B, further, we introduce the
following condensed notation:

k, = k()‘27 M2, w), K,= N4+ M — w,

k, = k2, m?, ), K, =N+ m* -, €7
k, = k(M*, m*,s), K,= M+ m*®—s.
Then
2mo, = K., 2m|é| = k., (C8)
and
R =2mK, — K.K,, Ul= k.k:} ©9)
R’ =2M°K,— K, K,, Ut =rLk

[(ct., Egs. (18), (17), (24), and (26)]. We also define
R" = 2K, — K,K,, U = k,k,. (C10)
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There is a very useful symmetry here, as indicated
in a triangle

(C11)
We then find
_Ti®, —2my) | i(mk, — xk,)]
A*‘[ %, T mK, T K,
X [ditto A — —}]
_ [z(m( o Uff%) + )\(R + Ui)}]
k,(mK, + \K,)
X [ditto XA — ~]
2eprr _ Treeh? L 22 12
— _[m (B U’ N(R + U)] (C12)

B (m’K2 — NK?)
But we also have the property

R* — U =4m’r, R” - U’ = 4MT,
R — U" = 4NT

[ef., Egs. (3), (20), (28), and the symmetry (C11)].
Hence

mAR" — UMY ~ N(R + U
= 5 (@ - D@ — vy
— ®" = UNR + VYY)
= —-2:% R+ UHR" — UHRU + R"UY). (C13)

Similarly, we find

i(mk, 4 N\k.)
(mK, + \K,)

_ [m(K,. + k) + MK, + fc.)]
"'i(mKu + \K,)

B, = [i + ]{ditto A= =]
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X [ditto A — —1)
- _[mn(Ku + kn)2 - )‘2‘(K0 + ka)2]‘
- (m*K3 — NK%) ©C14)
We now use the property
2 2 AyIag? 2 12 o A3Ze?
K, —k, =4°M°, K, -k, = &\'m’, (C15)

K} — i = 4m’M?
to obtain
mg(Kn + k#)z - )\2(Kv + k:)z

1 2 2 2
= ZME {(Kn - kl)(Kn + kp)

—~ (Ku — B)Y(K, + k)%
= 573 (K. + B)(E, + B)E R, — k). (C16)
Finally (using brute force multiplication), we observe
that
(K .k, — K,k)RU" + R"UY
= Kk, — K,k)[(@n'K, — K,K,)k,k,
+ (2NK, — K K )k,k,)
= 2k,(WK: — mK)® + U™,

where (C15) was used to eliminate &2 and %3,
Putting Egs. (C12), (C13), (Ci14), (Ci6), and
(C17) together, we then obtain

A+B+

_ R+UHR'-U"HK,+k) K. +kIR + U"),
= 2M*Tk,(m*K2—N'K?)

(C17)

(C18)

To obtain A_B. from A,B, we change || to —|d|,
ie., k. = —Fk,. In this change U* - —U}, Ut >
—U? k, —» —Fk,, and no other quantities change.
Hence

AB, @R+ UHYR + UHK, + k)
AB. (R -UHYR - UHK, —k)

Equations (C5) and (C19) are exactly equivalent
to Eqs. (36) and (48). Hence Aitchison’s equation
for A,(s, \) is equivalent to our expression for A,,
except for minor algebraic errors (cf, his erratum,
to be published).

(C19)
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Three principal continuous series of most degenerate unitary irreducible representations of an
arbitrary noncompact rotation group SO(p, ¢) have been derived and their properties discussed in
detail. The corresponding harmonic functions have been constructed.

1. INTRODUCTION

N our previous paper,’ the discrete series of most
degenerate representations of an arbitrary non-
compact rotation group SO,(p, ¢) were derived and
their properties discussed. In the present work, we
go into the continuous series of most degenerate
representations of these groups and the correspond-
ing harmonic functions.

The harmonic functions for the Lorentz group
803, 1) were investigated in detail by Dolginov
and his co-workers.” An arbitrary Lorentz-type group
was considered by Vilenkin,® who derived the ir-
reducible unitary representations of the class one
of 8O(n, 1). The construction of harmonic functions,
which carry one continuous series of the most degen-
erate representations of any SO.(p, ¢) group, was
given in Ref. 4. In this paper, we present three
continuous series of most degenerate representations
of an arbitrary noncompact SOy(p, ¢) group, and
we also construct explicitly a set of corresponding
harmonic functions. These harmonic functions are
characterized only by discrete numbers connected
with the representation of the maximal compact
subgroup SO(p) X SO(g) of the group SO,(p, ¢).

In Sec. 2, two series of continuous representations
of the 8O,(p, ¢) p = q > 1 and corresponding har-
monic functions related to the hyperboloids are
constructed. The same problem for the Lorentz-type
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Czechoslovak Academy of Sciences, Prague.
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Warsaw.
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groups SO.{p, 1) is considered in Sec. 3. The con-
tinuous representations and corresponding harmonic
functions related to the cone of an arbitrary SO,(p, ¢)
group are investigated in Sec. 4. Section 5 is devoted
to proof of the irreducibility of the derived series of
representations. Finally, in Sec. 6, we discuss some
features of the derived representations and harmonic
functions. For instance, it turns out that, except for
one series of representations of the Lorentz-type
groups, there exist two irreducible representations
of S8O.(p, ¢) differing by parity for any definite
eigenvalue of the Casimir operator.

The completeness relations of our harmonic func-
tions, the corresponding decomposition of quasi-
regular representations, and the connection with
the Gel'fand-Kostiutenko triplet will be treated
in detail in a subsequent article (Part III).

In what follows, we use the conventional ter-
minology, that is, we speak about representations of
the group SO.(p, ¢) on the Hilbert space 9, although
we derived only representations of the Lie algebra
® of the considered group on definite vector space D,
which is dense in the Hilbert space $. However,
in Part III of our series of articles, it will be shown
that our local representations induce the global
irreducible unitary representations of the group
S0+ (p, 9)-

2. CONTINUOUS SERIES OF MOST DEGENERATE
REPRESENTATIONS OF SO,(p, ¢) GROUPS
(# > ¢ > 1) RELATED TO HYPERBOLOIDS

For the most degenerate representations of
80.(p, q), the ring of invariant operators of the
corresponding Lie algebra is generated only by one
independent operator. Following the procedure ex-
plained in Sec. 2 of Ref. 1, we can represent it as
the Laplace—Beltrami operator on the definite vector
space D, which is dense in the Hilbert space of
functions, the domain of which are the following
homogeneous spaces of rank one,

X+ SOo(p> Q)/Soo(p - 1’ Q)y
X- = 80s(p, 9/80s(p, ¢ — 1.

i

(2.1)

2026
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Then we solve the eigenvalue problem for this in-
variant operator. It is obvious that the generalized
Fourier images of its eigenfunctions carry continuous
representations of the considered group. The ir-
reducibility of these representations is proved in
Sec. 5.

The homogeneous space X, and X_, defined in
(2.1), can be realized by the hyperboloids H% and
H¢, respectively.’ The hyperboloid Hj is determined
by the equation

(x1)2 + e + (xa)z
- (13a+1)2 — e — (xa+b)2 = 1 (2‘2)

and is imbedded in (¢ + b)-dimensional Minkowski
space M ‘", By using the biharmonic coordinate
system defined in [(3.4)-(3.9) of Ref. 1], and con-
sidering the properties of the metric tensor g,s(H?)

2027

on the hyperboloid H%, we can write the Laplace—
Beltrami operator A(H?) in the form [see (3.10)
of Ref. 1]

Y __ -1 _Q_ p~1 g s 1¢-1 _a__
A(H«)‘” coshp—l Bsinh“"l 990 CO! [/} smh [/} 30
+Aw ) _ A8 0€ (0, »), (23

cosh® §  sinh’ 6’
where A(S*H)[A(SY)] is the Laplace-Beltrami
operator on the sphere 8*' [§*7'] of the compact
rotation group SO(p)[SO(q)] defined by (A3) and
(A4) of Ref. 1. If we represent the eigenfunctions of
A (H?) as a product of the eigenfunctions of A(S"7"),
A(8%"), and a function V3,,,,.1,,.,, We obtain
the following differential equation® for the latter
function:

[ —~1 Aot gt g% bin(lp +p = 2)

cosh®™' 6-sinh®™* 6 d9 de

+ Zl!a](zlh) +i_ 2) —

sinh® 8

cosh” @

— 92 2
A - (E—i—g_—__) ].V?‘P/"-’lclnl(o) = Q. (2.4)

Here, I3, (ysy + » — DMlyal3a + ¢ — 2)] are eigenvalues of the operator A(S*™)[A(S*™")] on the
sphere S”7'[8*7"]. Therefore, l;,)[li;o)] are non-negative integers, except the lowest case p = 2[g = 2] when

by definition I, = m,[l, =

#i,], and m,[#,] is integer. A* + [3(p + ¢ — 2)I, A € [0, ») is our ansatz for

eigenvalues of A (H?2) corresponding to the continuous series of representations. It is shown in Part III that
in this way the whole continuous spectrum of A (H?) is obtained.
The solution of Eq. (2.4), regular at the origin, is given by the function

Vi ttun(8) = (N7H-tanh!"*!! 9. cosh! @+ =24 9., F, (3[ {10 + [lym| — 1A + 30 + ¢ — 2],

3Ulgal = luyn] — A + 3¢ — p + 2; |lya] + 3¢; tank® 6}, 2.5)
with
N = or T(|la| + 39)-TGA) :

The eigenfunctions of the Laplace-Beltrami opera-
tor A(H?) are then harmonic funetions

A la, 0o lpral la,oos, [igrad -
le-"'.”l[p/pal..;l'll’:"‘.ﬁ[:/:] (0: w, w)
of the form

S Here and elsewhere we keep the notation from Ref. 1.
Let us keep in mind that the brackets are defined as follows:

ta if a =2r
[a] = r=12-..
$a—-1) fa=2r4+1
and

if a =2r

ia
HM={ Pm1,2, e
Ha+1) fa=2r+1

I‘{%[iA + 'l(h), + lll}all + %(P + q— 2)]}:[1{%['“1 + Il(h)l - Illh), + %(q i + 2)]} )

Yottt el 6, 0, @)
= Vi ta(8) Yo S bl (@) Vi U lie) (@),
(2.6)
where V7, ,.1.110,4(6) is given in (2.5),
Yiewten) () and YRR (@)

are, respectively, the eigenfunctions of A (8*™*) and
A(S*™"). They can be expressed as a product of
the usual d-functions of angular momenta and
exponential functions [see (A9) and (3.18) of Ref. 1].
For instance, Y2 "2 072} () looks like
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Tayese,I{g/al .
Y.... Lo ,,,.f:;,,(w) = Y,l,:,'_......'_l,;tl(w) = (N_.él

k=2

with the normalization factors

No=2 I+ k-1,

(2.8)

New = 4@+ = DT G+ k= D7,
and
Jo=3h+k—-2), Mi=%m+h,+k—2),
M{=3%(mi—~bL,~k+2for k=28,
Jm=lu+r—1, and M., =1 +r—1

dp(w) = {**

'™ (7)) A% o0

1T cos (%) -sin®*2 (%) -do*- [] do*,
k=1

LIMIC, NIEDERLE, AND RACZKA

'l’;'(w) = (N:*) kI;Iz sin®™* (‘9,‘) 'dil.h:llk'(ztsk)' kIIx exp imkiob if p = 2r,

2.7)

* H sin** ("k)'djl.k:ﬂh’(20k)‘ kII €xp imkﬂ"k: if p=2r4+1,
=1

The harmonic functions
Yol A (8, @, @)
constitute an orthogonal set of functions with respect

to the measure du(f, w, @) induced by our coordinate
system on the hyperboloid H?
du(, w, ‘:’) = [G(Hz)]* de-des-d6

= du()-du@)-du(8),  (2.9)

where

for p = 2r,

sin®” ™! (8*") do"**- [] cos 8% -sin®*? (81)-d¢*- [] do*, for p = 2r + 1,
k=2 k=1

du(6) = cosh®* ¢-sinh*™* 9-d@,

and the expression for du(®) is the same as for du(w),
but in twiddle variables.

Let us construct now the carrier space of repre-
sentations belonging to the group SO.(p, ¢g). The
generalized Fourier transform with respect to the
eigenfunction (2.6) of a function

r+a

(8, ,8) = P@', --+ ,2") exp I:- Z_; (x")z] '

where P(z', -+ 2°*% is an arbitrary polynomial in
z’, and z* are expressed in our biharmonic coordi-
nates on H? [(3.4)-(3.9) of Ref. 1], has the form

Ayla oo, lpsa), Iasoee, Ulaysd
Xmsyoveamip/a) s, sos, Blesal

— (Y,?.;ff""'”’”"l"""“"" f

sumip/e) a0, /) )

= TariTGralida il =
= f YA s [’/’,.. 2 ~(¢/l|(0’ w, 0))
H?, :

My s miplal B eee FLesnl
1(8, @, @) -du(8, », &).

(2.10)

All such Fourier transforms determine the Hilbert spaces $5 and ©2'c of vectors

Avx
X = {X

A.*H? —

for which
Hx

TR FURTRN T R B FURTRNS £ 9928 I _ [even
NV A IS AV AR TP o Z“‘” - (Odd

A la, oo Blprad Ta,ove Tlasely2
myccemip/a) M, 00, Wiess)

< o,

Te,oen, blpzad Iavooe, Liared
my,ece mip/a) TR, 00t L a/s)

where I3, + [ is even or odd, respectively. The scalar product in the Hilbert space ;. is defined by

(XA.*, ‘pA.t) - A',,'....”,,,Lz,,...'“,,,,.'I,A.l-.---.Hp/.l.l’..---.lhlal 2.11)

Xy, sev,mipsa)sPia,cee,Mlosa) Tmatttemip/al,fia,oc,Mia/sl )
where the sum is taken over all integers (o, * -+ , Ligotr 02y *** » Ligaty My * = » M)y oy, =+ + , Fygqr) With
Las + lizo even or odd, respectively. The Hilbert space ©2F (92 is an eigenspace of the parity operator
with the eigenvalue +1(—1) and can be decomposed as follows:

©

Avx A,x
p.a T Z @ @D.G:l(p/tl.lld/:))
Hyp/al llq/e)=0
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where $2'2,. | 1. are finite-dimensional vector spaces determined by x’ *. il s Ukl with
fixed I3, and [j3,).
The continuous series C2+* of the representations of the group SO.(p, @), p > ¢ 2 1, on the Hilbert space
* is induced by the representation of the corresponding Lie algebra on the vectors x*

o lien . _ {even
Li,‘XA' {(YA lh m[l,‘/,./]'}mf ml((q//u,) Luf); l(}vl + ll%ul = (Odd )}) (2.12)

s srat Ixiree Flosn N _ feven
BHXA' {(Yixl "‘(I:Isll ;m ﬁ'ﬂ‘:{n!; B,,f}, Ei%v} + Z{h} = (Odd )} 3
where again

pta
f(o) w, ‘:’) = P(xl: ] xpﬂ) €xp [—' ‘Zx (x”)zjl .
[P(z', --- , 2”*%) is a polynomial and z* are expressed in the biharmonic coordinates on the hyperboloid
H? in (3.4)-(3.9) of Ref. 1] and L,;, B,, are elements of the Lie algebra of the compact and noncompact
type, respectively [Ref. 1, Egs. (6.2), (6.3)].

The proof of the irreducibility of the derived series C2'* of the continuous representations is given in
Sec. 5.

The harmonic functions on the hyperboloid H? can be obtained by exchanging p, li,, and g, lya, Te-
spectively, and vice versa only in the functlon Vi ti,a(0) contained in the harmonic function
Y&t e ordien) on the hyperboloid H2. The continuous serles C2,r of the most degenerate ir-
reduclble unitary representations of SOy(p, ¢), » = ¢ > 1,0on $1,F are then constructed by the same pro-
cedure as described above.

3. CONTINUOUS SERIES OF MOST DEGENERATE REPRESENTATIONS OF S0(p, 1) GROUPS
RELATED TO THE HYPERBOLOIDS

The spaces X, and X. (2.1) can be realized now by hyperboloids H? and H2, respectively.' The biharmonie
coordinates on H} and H) are introduced again as in [Ref. 1, Sec. 3]. We consider the Lorentz-type groups
separately because the range of  on the hyperboloid H? is (— «, «), and therefore the solution of the
eigenvalue problem of A(H?) is different from the corresponding one in the previous case. On the hyper-
boloid H}, the range of 8 is from zero to infinity since we restrict ourselves to the upper sheet of the hyper-
boloid H}. Of course, the upper sheet of H] is a transitive manifold only under the proper SO.(p, 1) group,
i.e., under the group of transformations g = {g,;), for which g,, is positive.

The Laplace—Beltrami operator A (H?) has the form [Ref. 1, Eq. (5.2)]

p—1
A = et 05+ 885D se(-a, ), 30
where A(S”"?) is the Laplace~Beltrami operator for the SO(p) group. Representing the eigenfunctions of
A(H?) as a product of eigenfunctions of A(S”"") and a function V4, Ls+1(0), we obtain the following differential
equation for V3, ,,(6):

1 d -1 i» (l in} + 2 — ) ( - 1)2] =
[:coshn—l 9d0 OSh e + { 1 {COSh g + As + LT 'Vf',lnl(e) = 0) (3‘2)

where 13, (g + p — 2) and A® 4 3(p — 1)* are eigenvalues of A(S”") and A (H?), respectively. Both
independent solutions of Eq. (3.2) are regular at the origin and can be taken as orthogonal func-
tions ; 2V3y,,,,(6) in the form

Vim0 = —2(,K"%) -tanh 6-cosh™ @ V*4 ¢
.2F1{%[@A + llhl %‘(P + 1)], %[ZA — l(h’l — %(p - 5)]; %;ta.nh’ 0}

(3.3)
and

“:/l](e) = (2K—i) cOSh'[i(P—1)+lA] 9
'2F1{%[7‘A + l(h) + %(p - 1)]7 %HA ~— l(ivl - %‘(P el 3)]; %;ta.nh’ 0}’
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with
g = rheosh ed) — (="' cos [3(p — D]}~ |T{3iA + Ly, + 3p — DI
1 sinh (rA)-|T{3[A + Ly + 30 + DI}F ’
K = Tleosh @) + (= 1) cos [3(p — Drl} - IT{3[EA + 1y, + 3 + DI

and A € [0, »), l;4,, is non-negative integer except
for the case p = 2 when I, = m, and m, is integer.
The eigenfunctions of the Laplace—Beltrami operator
A(H?) are harmonic functions orthogonal with re-
spect to the measure du(w, 6) = [§(H?))'dw df. Their

form is
12 Y 28, @)

= ,.2Vi !,/;)(3) : Y’ln’;ln:?;;:)(w): 34
where ¥, "2,2)7., () are eigenfunctions of A (8”7

expressed in Eq. (2.7) and ,,.V},,.,(6) is given
in (3.3).

The construction of the carrier space of the rep-
resentation of the group SO,(p, 1) is analogous to
the previous case. Thus, the generalized Fourier
transform with respect to the eigenfunction (3.4)
of a function

f(ay w) = P(x'l: : pﬂ) exp [

where P(z", - z**') is an arbitrary polynomial;
z', expressed in biharmonic coordinates on H3[Ref. 1,
Eqgs. (3.4)-(3.9)], has the form

A, l: tfa/s} A, s,
1.2Xms oee mis/e] (1 2 ¥m o

f
[ ea¥i

ey,

=]

W Hpral
”‘l’/a] ’

ezt (8, @) 1(8, w)-du(8, w). (3.5)

All such Fourier transforms determine the Hilbert

space §2,* of vectors
_ A ta,oev,2lpse)
L-’;X = {(a Y. mm’-/; H
ALl Lipss)
Bux {(a Ym, L m(’;'/‘- »

where (8, w) is a function as in (3.5) and L,;, B,, are,
respectively, the representations of the generators
of the compact and noncompact one-parameter sub-
groups of the group SO,(p, 1).

The Laplace-Beltrami operator A{H.) on the
hyperboloid H. has the form (See Ref. 1, Sec. 5)

o —1 _— AT
AH) sinh* ' @ 0ao sink aaa sinh®8 ’

6€[0, ). (3.9

sinh (r4)- [T{3GA + Iy + 3@ — DYV ’

Ay A ls,
X * = '{aﬂ(mxu"'

for which

b1 =

RTINS even
.m[w(/’:/] l:a -+ l(hl = (Odd )}

=

e iz, i {pse}
M.t Mip/s]

A.l,

s llpssli2
aAmMmy, P’ <m

mlv/al

and for which a + 13, is, respectively, even or odd.
The scalar product in the Hilbert space $2.* is
defined as

A, A, ALl ip/al Aylayeer,Blars)
o ) = Z Xmis ot aWm. imtarar s
A,
XYV E 85, (3.8

where the sum is taken over all integers L, « - - , 351,

My, -+, My, 80d @ and a -+ 1y, is even or odd,

respectively. The Hilbert space §21F(H27) is again

the eigenspace of the parity operator with the eigen-

value +1 (—1). The structure of the Hilbert space
2.* has the form

E @ ‘@:.'1*.1(,/.1: (3.7

1iprsl

where ©;4%,,,,) are the finite-dimensional vector
spaces containing uxn.::: ,,,[’,‘;’,’," with fixed I,).

The continuous series Cp* of the representamons
of the group SO,(p, 1) on the Hilbert space )" is
induced by the representation of the corresponding

Lie algebra on the vectors x*'*:

nf)ya + lliv) = ((e):;(ein)}

(3.8)
B.f);a + ly, = (s\drsn)}’

Since A(H}) has again the continuous spectrum of
the form —A? — [3(p — 1)J%, and eigenvalues of
A(S™Y) are =Ly (g + » — 2), the eigenfunc-
tions of A(H}) can be expressed as

YA !n

mx‘p‘/»s/)a ,(3: )

= Vim0 Yo,

.' "'."ll"('f;;: 1 (w) H

(3.10)

where now
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”’/',(0) (K—i) tanhll(p/s)l e.cosh[u—i(p—l)l 0
F 3l | — 1A + 3@ — D], 3llgn] — A + 3@ + DI; |lya| + 3p; tanh® 6}, (3.11)
K = @mT(ia)- r(ll.m + 3p) :
T{30A + 5@ — 1) + [lgn |1} T{HEEA + 30 + D + g1}’
Yivablers) (w)isgivenin (2.6), and A€ [0, ), Iy, The biharmonic coordinate system on the cone is

being a non-negative integer except for the case
p = 2 when, by definition, I, = m,, and m, is integer.

The series C , of the continuous most degenerate
irreducible unitary representations of the group
SO0.(p, 1) on the Hilbert space i, are easily ob-
tained from those constructed in Sec. 2 by omitting
dependence on all twiddle variables.

As proved in Sec. 5, we construct two series,
C2* and C%,, of irreducible unitary representations
related to the hyperboloids H? and H}, respectively.

4. CONTINUOUS SERIES OF MOST DEGENERATE
REPRESENTATIONS OF SO(p, g9 GROUPS
RELATED TO THE CONE

In this section, we derive the continuous series
of most degenerate representations of an arbitrary
S0.(p, ¢) group on the Hilbert space $(X) of func-
tions the domain X of which is the following homoge-
neous space of rank one under the action of SO,(p, ¢)°:

X = 80u(p, /T @ SO(p —1,¢ - 1). (4.1)

Here, T°*** is the group of translations in the
(p + ¢ — 2)-dimensional Minkowski space M*~"**7*,
The homogeneous space X can be realized by the
cone C? defined as

@+ @ = @Y= = @) =0

Following the general procedure described in Ref.
1, Sec. 1, we have to introduce first the biharmonic
coordinate system on the cone C?. Then we would
try to find the metric tensor g.s(C%) on the cone C?
and construct the Laplace—Beltrami operator. How-
ever, it turns out that the metric tensor is singular
on the cone, and hence the Laplace—Beltrami opera-
tor does not exist. Therefore, we have to construct
the second-order Casimir operator C*® directly from
the algebra. Calculating the Cartan metric tensor
from the Lie algebra R [see Ref. 1 (6.1)] of the group
80o(p, ¢), we easily find that the Casimir operator
has the form

= —__Qi____ — 2 2
_2(p+Q_2)v Qz—' ;Lii §Bat-
“.2)

¢ The authors are grateful to Dr. O. Nachtman for a
valuable discussion on the group of motion on the cone.

0(2)

introduced as

xb = r-x’k, k = 1,2, e, Dy (4:.3)

l=p+1,p+2,-,p+4q
where z*, ' have the same structure as in formulas
(3.5)-(3.7) of Ref. 1. We represent now the Lie

algebra R of the group SO, (p, ¢) with respect to the
parametrization (4.3) by the operators L,; and B,,:

1
L,.,.=(x"a—*",.—x a‘”) 2+

l
z =r&,

ox oz’
‘.aﬂlhﬂ ; w(}?)) a
+ (x axi - axi aﬂ”p) ’ (4‘4)

wheret,j = 1, 2, - -+, p. The analogous expressions

holdfor L;j, 2, j=p+ Lo+ 2, -+« ,p 4+ q.
B, -x"i‘r%
trfi e
+x'g—§.a%l '-'+x'a:;;:jiwL‘w, (4.5)
wheres=1,2,--- ,p;t=p+1,p+2,:--+,p+¢;

and z'*, #' are defined in (4.3). The operators L;;
are r-independent and have the same form as in
previous cases. The corresponding representation of
the invariant operator Q. has the form

Qz =

[ pred V2 o e Vi —:I (4.6)

The left-invariant measure on the cone is given by

du (ry @, @) = ™" dr-du(w)-du@), (4.7

where du{w) is defined by (2.8).

From here we pursue again our general procedure,
ie., we first solve the eigenvalue problem for the
invariant operator Q. (4.6). The eigenfunctions of
the operator ), are the solutions of the differential
equation

& ‘
{ o TeT =Dy

+ A+ B +a- 2)]’}x(r) =0, @48
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where we put the ansatz A* + [Hp + ¢ — 2)]%,
A € (—=», =) for the spectrum of the operator
Q.. It will be shown in Part III of our work that we
do not lose any part of the spectrum of Q, in this
way. Hence, the general form of the eigenfunction
of the operator @, has the form 7°¢(w, &), where
o= =3P+ q— 2) + 1A, and ¢(w, &) is a function
which can be chosen in an arbitrary way. It is con-
venient for our purpose to restrict eigenfunctions
of the invariant operator Q, to be the harmonic func-
tions of the following form:
Yi;h m(x;f/'n/;' lﬁf’

= @m)he Vi) (W) YR (4.9)

where a = —3(p + ¢ — 2) + 7A, and the functions
Y,',.’,,...,',,‘.}ﬁ;:,(w) are defined in (2.7) for p > 1 (for
p = 1 this function equals one).

The generalized Fourier transform with respect

to the eigenfunction (4.9) of a function

vl -
i;‘:/’:s (’I‘, w, (.0)

Tgioes, H -
e ”i‘l'lq:;:](w))

'f (x‘)’] )

$m=]

f(?‘,w,;}) =—..P(3;1, e ,.’!3“1) exp["'

where P(z,, --- , °*°), an arbitrary polynomial in
2' [z' are defined in our biharmonic coordinates
(4.3) on the cone C?%}, is given by

A, ;:
Xmy,

NPT
I

o ilpra), la,eee
"I:/ll My ree

(YA !,

”p/:! xn
m;,/,) B,

1a,+
xf Y:“’
[+

RITTY
i'u:/l:l ] j )

clipraly l.
mip/a). e,

i "
ngy,.’),("': w, @)

”p/ﬂ I: wes,
Camip/al By,

L“xA,i: {(Y:hh

{( YA ls
with {(r, », ) as in (4.10).

For ¢ = 1, the corresponding representations are
constructed in a way completely analogous to that
used in Sec. 3. Let us keep in mind that in this
case we have restricted ourselves only to the proper
SO(p,1) group (upper sheet of the cone C3).

5. IRREDUCIBILITY

A, The Representaﬁons Related to the Hyperboloid
forpzg>2
The maximal compact subalgebra (consisting the
generators L;;) with any generator B,, of a one-
parameter noncompact subgroup generates the whole
algebra. Therefore, the problem of the irreducibility

l(»/:l_:ls
"‘lp/ll-'hn.'

B.tX '

NI

I{g73)
cenyiifg/el )
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’f(?', w, ‘:’) 'd#(r3 o, “6)' (4'10)

For p > ¢ > 1, as in previous cases, all such
generalized Fourier transforms determine the Hil-

bert space $2'*, of the vectors
LOE SRS Y-S PYRTEI § FY2% B PORTRNE 1 0978
X = {Xm.’"'-mujaz.ﬁx'.“‘.ﬁ(:/:l}:
for which
Az ALl Tioral, Iavoon, Ugre) 2
”X “ E X s il B mlam| < @,

where 1, + f.m is even or odd, respectively The
Hilbert space $2* can be decomp0sed in the form

-2
A.x
pa

(4.11)

@D 9.
p.aills/al fleraly
Hiprad. lig/al=0

avsn
l(p/!""l(q/ll"{@dd

where ©; 516,01 . 11041 8T€ the ﬁnite—dimensional vec-
tor spaces determined by x4l izl e i ller)
with fixed l,;,, and Zg*ﬂ

The scalar product in the Hilbert space 22 is
defined by

(A&"p)li)__zxz\h

I(c/a)
m!c/ll

i /s} tl
"‘lp/.] i

ALt 121 1S R ¥
™y b mr»/’;fx’ mx‘ "75!://:1 H (4-12)
where the sum is taken over all integers L, - -« Iy,

l‘t!) Zliah My * 2y Mgyl gy ey ﬁ(hh with
Lym + Ly even or odd, respectively.

The representation of the series C2:* on the Hil-
bert space 92:* is defined by the representation
of the algebra on the vectors x™'*

L:if); Ly + Zlhl = (g\drzn)} ’ €13)

':::;'il(l:/l:l’: Buf)} ll}nl + Zth) = (gggn)}’

of the representation of the algebra can be solved
by considering only the set of generators L;; to-
gether with one of the generators B,,.

For the proof, we take the generator B,,,., and
represent it by the definition (2.12) on the vectors
(2.10) which determine the Hilbert space $2.5 @

2.7, Calculating the explicit form of the operator
B, ... from the expression (6.3) of Ref. 1, we easily
find that it can map an arbitrary vector f; ,,.,.1(0/s) €
Dn it tsray 1iarey ODLY to sUCh VeCtOTS f7,,,10 10s4, TOX
which

l?iv} = l(b& %1 and Z{h; = lliﬁ 4 1.

Hence, we have at least two invariant subspaces
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2+* with respect to the representation of the

algebra for the same eigenvalue of the Casimir opera-
tor. In what follows, we show that any of these
is irreducible, i.e., they do not contain the invariant
subspaces with respect to the representation of the
algebra.

To show that there is no invariant subspace in
the vector space determined by the vectors (2.9)
with respect to the algebra R, it is sufficient to find
vectors

A.”ﬂ/!!_.“c/.)
m(p/2)B(q/a]

A,
S @D:G:”p/!,.l(glu’i

l(h)’ zlial = 0: 1: 2, - “y

B 9% 2%
p.p+aX0,0 -
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such that every B, ,..xA;}1?/*k ') has nonvanish-
ing components in four neighbouring subspaces

A+ s
P.aiblpsa) 1, e/a) 210 Choosing

A.”p/a?_.“q/-) —
mp/a) Bla/s) T

A la,veo, lprad, la,nes, Tigre)
My, v mip/a)a, 0t Wlg/e] )

where
C = Mgy = gy = 0

m2=m2=-.

and
lmll) Imll) 12: lz; ttty l(hl-l; l(h)—l

have the minimal possible values, we calculate from
(6.3) of Ref. 1 and (2.12):

— I+ 14+ 30+ q—2) + Al 4.0 A.D-INC+ 1, T+ 1)/NQ, DPE-g* i

+ =143+ q¢—2 +id —p|-A,0-A-(D-INC+ 1, T~ D/NQ, DIt 00"
—l=1+3p+q¢—2+iA—p+2[-AD)-A.0)-INU— 1,1 + 1)/N(, D -o* 101

+l4+1+3p+qg—2 +ia—2-A.D-A-(D-[NC — 1,1 - 1)/N(, DIF-p* 111,

(5.1)

where | = ly,), | = I3, A.(0) are defined by (6.7) or (6.8) of Ref. 1, NI, ) = N(lynlya) = Num-Nia
IN 45 and Ny, are defined by the expressions (3.21) of Ref. 1], and

Al p+ar/n liqerd/e
X ’

¢A-”,/-),“l/-l —

17-NT A 2570 atr1) /s Alpse,lcatsyss
3@ Do = X-1.0 1,

for odd p and ¢,

forevenpand odd q, (5.2)

A,lpsa,l A lpsanl Alpsand Adsseld
=D A T XL — dxeanat, for even p and g.

The only coefficients in the expression (5.1) which
can vanish for non-negative integers l;,), o are
A_(lyn) and A_(I,). If p(g) is odd, then the
coefficient A_ (1 p415) [A-(I4041))] 18 Zeroforly gy =
0l e+1» = 0] in accordance with the fact that we
have the representation. If p(g) is even, 4A_(1},) =
0[A_() = O] for §;, = 1 [, = 1]. This does not
mean that the representation is reducible, because
the mapping

A% B A,
@t.c:”ph’-“c/nl - ‘b?:ﬂ”n/l)"’l.lh/ll'ﬂ

always exists and the operator B, .., is skew-sym-
metric on the vectorspace determined by the vectors
(2.10).

Thus, we proved that the second-order Casimir
operator is not sufficient to specify the irreducible
representations. The complete specification of the
irreducible representations is achieved by the com-
mutative invariant algebra, generated by the second-
order Casimir operator and an operator P, the
eigenvalues of which are ==1. Let us show that the
operator P is the representation of the parity opera-
tor pz* = —2*, k= 1,2, ..., p + ¢ From the ex-

plicit form of the harmonic functions, we easily
calculate the representation of the parity operator
on any harmonic function

A ls,voe Ulprat, Ia,ove, Tlgrs?
Ple."'.mu/:].r’r’u."'.ﬁ[q/-l(Q)
[ 72 9% PYXTINS 2 PV2S I PURTEN S P92e |
= me."'.mlv/:l'ﬁn."’-ﬁlq/:l(pg)

— [ l[p/,)+l(¢/.)_ A lg,veo, lipsa), Ia,0ve, llgra}
= ( 1) me.~--.m1»/-1.r'r'u.---."in/-l .

(5.3)

Then the representation of the parity operator on
the space $; " is defined by the expression

PXA.IM"‘-”p/:’;’s.“‘-l(a/t]

Mia 0, m(p/e) M, 0o, fe/a])

_ Ala, oo lpsat,la,one Ligra)
- <Ym:.:--.m[g/ix’.r‘r‘n.:--°.r'r'-n'/:1 ’ Pf)

Ala, oo, lip/at e, vee, fgsa)
M1, o mp/a) fia, 20, M[g/s) *

_ (_1)1(»/-)+ll¢/.l_x (5.4)
It follows that the vectors x"'* of the space §}-*
are common eigenvectors of the operator A (H?)
with the eigenvalue A? 4+ }(p + ¢ — 2)]® and the
operator P with the eigenvalue =1, respectively.

Completely analogous proof holds for the series
Cgy* of the representations related to the hyper-
boloid H3.
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B. The Representations Related to the Hyperboloid
forg= 2
The proof of the irreducibility of the representa-
tions of the continuous series Cp3* and C}.* does
not differ from the previous one as the vector

A,lfpsal
Bp.szo.’ﬁ. [

where

A, {pre} A e, lpsal
X6, %,

LIMIC, NIEDERLE, AND RACZKA

values, has essentially the same structure as in the
previous case.

C. The Representations Related to the Hyperboloid
forg=1
The proof of the irreducibility of the representa-
tions of the continuous series C} , can be obtained by
specifying the one which is derived in A above.

T Xewoteomtaan g Omitting completely the indices &, -+ , Ije,
with |my], &, -+ , lypi-1 having minimal possible i, -+ fq, in A, we obtain
Braexa ' = = |l + 3o — D) + A} Al Ny + D/N(Lgn]ie? e
= la + 3@ + D + A A () NG — D/N@)e* 07, (5.5)
where A (lis2)) are defined as before, N(li;/1) = Ny is determined in (3.21) of Ref. 1, and
Pt o {xé"‘w”', for odd p, 5.6
3EH0a " — x2477), for even p.

For the representations of the seres continuous C}}*

the vector
A tigze}
L‘:Xm»/:{‘
where m, = « -+ = My, = 0and jmyf, I, -

A,
By e ixe’

]

A,1
Bn.p+l *9Xo !

we choose, as in the case of discrete representations,’

A la,vso, dipsal

= 1.2Xmy, o0 0078 9

* s ligpy~1 have the minimal possible values.

— 3 — 1) + 1+ iA|- A D) INQ + 1)/N(DEe* '+
— |3p = 3) + I 4 dA]- A_(D-[N( — 1)/N(De"?,

where A, (l) are defined as before, N({(3,y) = Ny, is defined in (3.21) of Ref. 1, and

(6.7
13 — 1) + 1+ iAl- A,()-IN( + D/N@D}e* '
+ 30 — 3 + 1+ Al A()-IN( — D/NDPe* ",
.l(u—n/-, for Oddp (5.8)
et — LaxdiP), for evenp,

A
Allpzed . |1.2X0
L .-{

Analyzing the coefficients in the expressions (5.5)
and (5.7), one can verify again that there is no in-
variant subspace, i.e., the representations of the
series C*1* and C}, are irreducible. Hence, the
irreducible representations of the series Cj4* on the
Hilbert space $1,* are again characterized by the
eigenvalue of both the Casimir operator A(H3) and

the parity operator P.
D. The Representations Related to the Cone

By the same argument as in the previous section,
we first establish the existence of at least two in-
variant subspaces $2" and §), with respect to
the representation of the group for the fixed value
of the Casimir operator Q,. Then we prove their

irreducibility as before (for instance, for ¢ > 2). As

we have mentioned, the representations L,; (4.4)
of the generators of the compact one-parameter
subgroups have the same form on §}* as in Sec. 2.
Moreover, since the operators IL,; are reduced by
the subspaces $)311,,.1.11,,, €Xactly to the same
operators as in Sec. 2, the subspaces ©2:3:1,,.1. 11001
are irredueible with respect to the maximal ecompact
subgroup. Now, we proceed as before, ie., we con-
sider the operator B, ;.. and the vector

A, ipral, Blasnd
mip/sl Bla/ny T

J.U% POTEN S 9279 I8 FONT DI § 908 |
My, ot mips] By, 0 Migsal

where m, = «++ =My, =y, = - = gy =0
and }mli, 1?7%;%, lz, Zz, Ty, l{%p}—»l, fg,m_l have the
minimal possible values. Using the definitions (4.5)
and (4.13), we easily compute the following expres-
sion:
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Byprexes! = +EA — 1 — 1= 3 + ¢ — 2]-4.(D-A.(O)-INC + 1, T + 1)/NQ, DP g™
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A — 14T — 3 — g+ D] 4.0-A-()-IN( + 1, T — D/NQ, D¢+
+EA+ 11— T+ 3p — ¢ — - A-()-A.(D-INQ — 1, T + 1/NQ, DI gt 701
FEA+ I+ I+ 3+ g— 601 A(D-A-(D-INC — 1,1 — D/NQ, DIE-o* 1, (5.9)

where A.(1), N(l, I) are defined as in the expression
(5.1) and ¢*'*'! is defined as in expression (5.2).

Using the same analysis as before, we can check
that there are no invariant subspaces of the vector
spaces determined by the vectors (4.10) with respect
to the representation of the algebra.

The representations relate to the cone for g = 1
and g = 2. The corresponding proofs of irreducibility
obtain as before.

The unitarity of the representations of the group
S0,(p, q) on Hilbert spaces $2* related to all three
homogeneous spaces will be proved in Part III of
our work.

6. SUMMARY

Three most degenerate principal continuous series
of the irreducible unitary single-valued representa-
tions of an arbitrary noncompact rotation group
80,(p, ¢) have been constructed. These series are
related to three homogeneous spaces of rank one
under the action of SO,(p, @), i.e., to the hyperboloids
H? and H}, and to the cone C%.

Generally, the most degenerate continuous series
of irreducible unitary representations of SO,(p, ¢) are
characterized by two numbers, A and P. The former
determines the eigenvalue of the second-order Casi-
mir operator and the latter is the eigenvalue of
the parity operator.

In particular cases the situation is as follows:

@) 8S0.(p, q), p = ¢ > 1—The constructed repre-

sentations are determined by both A and P. A is’
real from the ranges (0, «) and (— », =) for
representations related respectively to the hyper-
boloids and to the cone; P has the value ==1.

(ii) SO,(p, 1)—Two series of representations of the
Lorentz-type group related to the hyperboloid
H? and to the upper sheet of the cone C7 are also
characterized by both A and P, whereas the rep-
resentations of the series related to the upper
sheet of the hyperboloid H} are characterized
only by the number A. The ranges of A is again
(0, =) and (— », «) for representations related
respectively to the hyperboloids and to the cone;
P is equal to 1.

The harmonic functions of the derived three con-
tinuous series of representations have been explicitly
constructed. They are labeled by numbers A, P,
from the corresponding ranges mentioned above, and
by a set of integers L, --- , lygy, my, -+, Migos
Zz, ree 2'““, ﬁil, rery, m[;ﬂ, which determine the
eigenvalues of the maximal set of compact com-
muting operators defined in (7.8) of Ref. 1.

ACKNOWLEDGMENTS

The authors are grateful to Professor Abdus
Salam, Professor P. Budini, and the IAEA for the
hospitality extended to them at the International
Centre for Theoretical Physics, Trieste, Italy.

It is also a pleasure to thank Professor K. Maurin
and Dr. J. Fischer for interesting discussions.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7, NUMBER 11 NOVEMBER 1966

Bi-Orthogonality Relations for Solving Half-Space Transport Problems
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The method of singular eigenfunction expansions is applied to time-independent, one-speed, half-
space transport problems with anisotropic scattering. Adjoint eigenfunctions are constructed such that
a set of hali-range bi-orthogonality relations is valid. These relations lead to the expansion coefficients
in a direct manner. The adjoint eigenfunctions are also used to express the half-space albedo operator
which relates the emerging angular density to the ingoing one.

L INTRODUCTION

N the mathematically equivalent theories of one-

speed neutron transport and of monochromatic
radiative transfer, several analytical methods have
been developed for handling problems in plane
geometry."'* Most work in this field has so far
been limited to the simplest scattering laws, in
particular, to isotropic scattering. The primary rea-
son for this limitation is that, for more complicated
scattering laws, all such methods soon become
lengthy and beset with complications.’* Problems
with highly anisotropic scattering are, however, of
practical interest, especially in the optics of turbid
media. The measured scattering function of natural
fog® shows a forward to backward ratio of 40 : 1
and can be satisfactorily fitted only by a polynomial
of at least eighth order.® The need for handling
anisotropic scattering again arises with a simple
model in slowing down theory, where a Mellin
transform in the energy variable leads to an equa-
tion of the one-speed type.”

Any kind of anisotropic scattering can, of course,
be handled numerically by the Wick—Chandrasekhar
or the Sy methods of discrete ordinates. However,
it might be useful to gain more insight into the
properties of solutions by having some analytical
method fully worked out for an arbitrary scattering
law. This will be done with Case’s method,’ which

* National Science Foundation Postdoctoral Fellow.

1 8, Chandrasekhar, Radiative Transfer (Oxford University
Press, London, 1950). .

B, Davist;n, Neutron Transport Theory (Oxford Univer-
ity Press, London, 1957).
L Ruster. J. Math. & Phys. 34, 256 (1956); 37, 52 (1958).

«1. W. Busbridge, The Mathemaiics of Radiative Transfer
(Cambridge University Press, London, 1960).

5 E. D. Spencer, J. Opt. Soc. Am. 50, 584 (1960).

¢ 8. Pahor {unpublished).

1 R. E. Marshak, Rev. Mod. Phys. 19, 185 (1947); see also
J. J. Mclnerney, Nuel. Sci. Eng, 22, 215 (1965).

s K. M. Case, Ann. Phys. (N. Y.) 9, 1 (1960); Recent
Developments in Neutron Transport Theory, Michigan Memo-
rial Pgoenix Project Report, The University of Michigan

(1961).

utilizes an expansion of the angular density (in-
tensity) in terms of the eigenfunctions of the homo-
geneous transport equation. Completeness prop-
erties of the set of eigenfunctions were first proved
by Case for isotropic scattering, and by Mika® for
anisotropic scattering.

If scattering is isotropic, application of Case’s
method to half-space problems can be simplified by
the use of half-range orthogonality relations for
the eigenfunctions.” So far this auxiliary technique
has been generalized to linearly anisotropic scatter-
ing (where the scattering function is linear in the
cosine of the scattering angle).'* There, bi-orthog-
onality relations involving certain “adjoint’ eigen-
functions had to be employed. In the present
work,'” this technique is generalized to the case
where the scattering law is described by an arbitrary
polynomial. Azimuthal dependence of the solutions
will also be permitted.

Section 11 deals with the homogeneous transport
equation and its eigenfunctions. Also included is
a set of equations for Chandrasekhar’s H-functions,
which are basic for the application of singular
eigenfunctions to half-space problems. Sections IIT
and IV (the latter for a nonabsorbing medium)
contain the derivation of the bi-orthogonality rela-
tions and of associated equations involving the
eigenfunctions and their adjoints. This derivation
provides some reduction of effort over what was
previously done for isotropic’® and linearly aniso-
tropic scattering.'’ It turns out that the construction
of the adjoints in the general case is somewhat
tedious, but, after this is done, the solutions of
standard half-space problems can be expressed in
an exact and compact way by the adjoints and the

v J. R. Mika, Nucl. Sci. Eng. 11, 415 (1961%.

10 I, Kusdger, N. J. McCormick, and G. C. Summerfield,
Ann. Phys. (N. Y.) 30, 411 (1964).
( u 1;1 J. McCormick and 1. Kusger, J. Math. Phys. 6, 1939
1965).

12 Preliminary results reported at the Ankara Inter-
national Summer School of Transport Theory (1965).
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H-functions. The scheme to be followed in the
computation of these two sets of functions is sum-
marized in Sec. V.

II. EIGENFUNCTIONS

The transport equation (equation of transfer)
has the form

3
(u wt l)I(x, @)

1 2
= [ aw [ pleos I,y 0), O
4r J_, 0
where p is the cosine of the polar angle with respect
to the positive z axis, and ¢ is the azimuthal angle.
The scattering (phase) function p(cos 6) is assumed
to be a polynomial of order N,

N

p(cos §) = g @,P.(cos 6), @
0<m<l1 |m|<2+1, 1=1,2 ---N.(@3)

We defer the case w, = 1 until See. IV.

Application of the spherical harmonies addition
1,13

theorem to Eq. (2) gives™
p(cos 6) = p"(u, ')
N
+ 2 2; P, ) — B

XA —pH" cosmlp —¢), @

where
) = SR, O
PG = @/d"IPiG), ©
b = T Gn+ D, (eeRefilt) (7
R ®

Here and henceforth, l = m,m + 1, --- N.
We seek particular solutions of Eq (1) of the
form

Iz, py ) = "¢, W — );,..{cos m¢}

sin me ©)

and obtain the following equations for the eigen-
functions ¢™ (v, u):

13 T, W. Mullikin, Astrophys. J. 139, 379 (1964).
U4 In this and subsequent equations, substitute 1 and 0 for
the symbols I1#,_, and Y *;.,, respectively, whenever k < n.
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¢ — 1e"F, u)
1
= ¥ [ 8" )86, 1) dmG), (10
m=0,1,--- N,
where, for the sake of brevity, the symbol
dm(p) = (1 — u*)" du (1

has been introduced. Let us normalize the eigen-
functions by
1
[ 76, dm) = (12)
For convenience in future notation, we suppress
the superscript m with ¢™(», u) and other functions.

All relevant quantities in any of the equations must
be understood as referring to the particular azimuthal

- component under consideration.

To the interval —1 < » < 1, there corresponds
a continuous set of singular eigenfunctions

B 1
o0, 1) = Pgl, WO .

+FA)A =) —p).  (13)

The @ refers to Cauchy principal values of integrals
of ¢(v, u). Here we have used the definitions

11 [ 10w dm@
\G) = 1 ”“’f.l e SR D)
g, u) = l_Eﬂ c:g:0)pi(u). (15)

The functions g,(v) are defined by the equation

06) = [ 66, 0p6) dmG),  (9)
and obey the recurrence relation':*?
+1— mgu.0) — hwg: ()
+ @+ mg.() =0, (17
h; = 2l + 1— Wie (18)
By virtue of (7) and (12),
026) = II @n + ), 19)

so it follows from (17) that the g;(») are polynomials
of order (I — m), alternatively even and odd.

In addition to the set of continuum eigenfunctions,
there may also exist discrete modes of the form

g(:*:viv I-‘) R

¢(Ev;, w) = P, v F p

(20)
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The discrete eigenvalues are determined as roots of

A(zry) =0, [23))
AG) =1 — f g(z:zﬂ)_dzz(u)
=1—-1z M)_dﬂ(_”.). (22)

-1 g — 1

It can be proved that these eigenvalues are real,
and we assume that they are outside the interval
(—1,1). Let»;, = 1,2, - - - M, denote the positive
eigenvalues, ordered in decreasing magnitude. Their
number is limited, as can be shown in the manner
of Mika,’ by

M<N-—m+1. (23)

We exclude degeneracies in the »,’s, since any such
exceptional case requires special treatment.*®
The boundary values of A(z) on the cut (—1, 1)
can be expressed as
A*() = lim AQ =& 4¢)

=0+

= A0) = Hmgl, (A — ). (24)
Also of importance is the expansion
AR =1 — Zog‘;—?., l2] > 1, (25)
where
T =5 | uz"g(u, ) dm(p). (26)
By induction it has been shown'® that
N hy

In applying Case’s method of solution, we need
the H-function of Chandrasekhar' for the ‘char-
acteristic function” g(u, u)(1 — &*)™. A closed-form
expression can be quoted,

(A=) — 27 I_Il @ —2)

1 1
X exp [% ‘/; In
which is equivalent to an expression derived by

Chandrasekhar.! A translation from this notation

to that used by Case® and others’™** is effected by

) IT 6 — 2%,

H(—2) =

A*G) dv
A@)v —=2

| e

H(—2) = (29)

15 R. Goldstein, Nucl. Sci. Eng. 18, 412 (1964).
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RHG) = 295 IT 65 — ). (60

The notation with the H-function has some ad-
vantage over that involving the X or 7.
We also need the following equations'®

H7'@QH(—2) = AQ), 635)

rftrice] (5] o

Ao 1 f‘ gk, uifflsuz‘dm(u) Y
11 1
T 2mi [H*(—;o H‘(—u)]
= 3uH@W)g(, w1 — )",  (+34)
1 1 1
s+ ey | = B, (439

The restriction of the variable p to the interval
(0, 1) in (34), (35), and in some of the subsequent
equations is indicated by -+ with the equation
numbers.

From (33), we obtain the expansion

1
M -l- X% kH>1 e
where
b= | W0t WHG dmG). @)

Using Eqgs. (25), (31), and (86), we find a set of
useful relations,*
2n
Nan — 2.32n + g (_l)kﬂkﬂbt—k = 0' (38)

The 8. can be, in an obvious way, expressed in
terms of the moments of the H—function,

oy = fo l B H(p) dm(y).

III. BI-ORTHOGONALITY RELATIONS

(39)

In half-space problems, we are led to expansions
of the following form®'*

M

_E a (i, we !

i=1

I(x; F) =

1
+ [ 466, 0" & + 1@, w).  (@40)
The term f(z, u) embodies (1) any eigenmodes in-
creasing with z, if they are permitted by the bound-
ary condition at x — o, and (2) a particular solu-
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tion of the inhomogeneous equation in the event
that sources are present. The expansion coefficients
a; and A(») have to be determined from the bound-
ary condition at z = 0, that is, from

M

>

i=1

W) = X a0+ [ 4G W) b, (+4D)

where

v(w) = 100, ) — O, w). (42)

The existence of such expansions is guaranteed
by the half-range completeness theorem. A proof
of this theorem has been given by Mika’® for m = 0,
and can be generalized to any m.

We wish to facilitate the determination of the
coefficients a; and A(v) by constructing a set of
half-range bi-orthogonality relations. To this end,
an appropriate weight function must be found and
an “adjoint” @(v, u) specified for each ¢(», u).

Inspection of the derivations in previous work'®"**
leads to the conjecture that the weight function
again will have an analogous form (except for the
change in notation). Thus, the bi-orthogonality rela-
tions should read as

1
[ 66, 66, WG dmG) = 0, » =, (+43)
The plus sign with the equation number now refers
to » and »' and indicates here, as well as in some
further equations, that positive eigenvalues must
be taken, »,» € (0, 1) or = +v;, 5 = 1,2, --- M.
Otherwise, the letter » will be used to denote any
eigenvalue, positive or negative.

It will later be necessary to carry out some trans-
formations of the integral in (43), where we have
to rely upon the identities (34) and (35). Our
choice of the weight function essentially hinges
upon these identities, which are a consequence of
H(z) being a solution of the appropriate Hilbert
problem.

We are left with the task of constructing the
function @(», p) such that Eq. (43) will hold. Let
us first see what happens to the integral in that
equation if ¢ is substituted for ¢. The derivation
will be amenable to some useful generalizations
if complex variables 2z, 2 & (0, 1), z =% 2, are
substituted instead of the real », »'. That is, we wish
to evaluate the integral

g(zu)g(z,u)
Qz—ﬂz -

pH(w) dmp) = JG@,2). (44

Partial-fraction analysis immediately leads to
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1 1
@) = 72 [ o6 e, 0
1 1
X I:Z' - z—u

Now, in view of Eq. (15), J can be expressed in
terms of the integrals

]uH () dm(u).  (45)

K.

[ ) LB Gy am). )

These functions can be reduced to simpler quantities
by the following manipulation:

R = [ pit L= L) L) )

1
+ [ 26 LB Gy amGy. @)
In the last term, we substitute the left-hand side
of Eq. (34) and then change the integration path
into a contour encircling the interval (0, 1). After
the contour is blown up, we collect the residue at
u=2. The integral over the large loop gives the prin-
cipal part (the polynomial part), 2[p,(2)/H(—2)l.,,
of the function 2p,(z)/H(—2) appearing in the in-
tegrand. The final result is

Kz(z) = Ki(2) — 2p:(2)/H(—2),

where K (2) is the following polynomial of maximum
order N —m — 1ifl < N,and N —m ifl = N:

K.,@) = j: pi(pe )g(z L)

(48)

0o ) = 008 8) 1 516) )

+2l 755,

It is useful to know for later purpose that, if 2
is substituted by any of the positive eigenvalues,
we have the simpler expression

(49)

1

K0 = 2 [ 5o, wuHG) dmG).  (+50)
For v = »;, the proof of this equation is immediate
from Eq. (46) because H '(—»;) = 0, and the last
term in (48) therefore vanishes. The continuum
eigenvalues are included by allowing z in (46) to
approach the interval (0, 1) from above and from
below. The arithmetic mean gives a principal-value
integral. Then we add on both sides the contribu-
tion due to the é-term in the eigenfunction ¢(, u).
It is this contribution which now cancels the last
term in (48), in view of the identity (35).
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With Eqs. (15), (46), and (48) used in (45), we

express J(z, 2') as

J@,2) = Lz, 2)

__2 [g(z,z’) _g(z',z)]
z—2 LH(-Z) H(—-2]’

where L is a symmetric polynomial of maximum
order N — m — 1 in each variable, namely:
N
Le,?) = 2 3 alo@KE) — 6@K@]-
(52)

From Egs. (45) and {51) we deduce that, for any
two different positive eigenvalues, the relation

2, [ 06, o6, WRHG) dms) = L) (+59

Gy

holds. For two discrete eigenvalues, this is im-
mediately clear because the last term in (51) van-
ishes. The extension to the continuum eigenvalues
is carried out in the same way as in the proof of
Eq. (50).

With Eq. (53), it becomes clear how the adjoint
é(v, u) has to be constructed. It should differ from
¢(», u) by an amount

LWBb, 1) = 0, u) — o0, B GEY)

such that the corresponding contribution to the
integral (43) cancels the right-hand side of Eq. (53).
That is, we want B(», p) to fit the condition

2 [ 60, 0B, () dme) = =L6,»). (459

If this is satisfied, the bi-orthogonality relation
(43) holds, with ¢ defined by Eq. (54).

In view of Eq. (562), and thinking of a Legendre
expansion of B(», p), we see that this function must
be a polynomial of maximum order N — m — 1
in each variable. Therefore, we write

B, = 2 B6Ip),

and we try to determine the coefficients from the
condition (55). In view of Eq. (50), we have

3 BOKG) =

i=m

(56)

Gy

In the simple case N = 1, m = 0, the L, K,,
and B are constants; from Eq. (57), we obtain

—L{, ).

B = Elho@oai/ (2 - 'woao)s (58}

which has been shown'® to equal the ¢B of Ref. 11.

18 N, J. McCormick, Ph.D. thesis, The University of
Michigan (unpublished).
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The sole condition for the existence and uniqueness
of B(v, u) is that the K,’s in Eq. (57) are linearly
independent. Unfortunately, it has not been possible
so far to guarantee this linear independence for all
physically possible scattering functions, although
simple examples indicate that linear dependence
could occur at most for special values of the w,’s. For
what follows, we assume that linear independence
of the K; polynomials does hold; for any particular
case, one should verify the validity of this assump-
tion numerically.

It may be added that the troubles here are similar
to those encountered with other methods for handling
transport problems with anisotropic scattering. Ei-
ther explicitly or tacitly, in each of these
methods®****''" the nonvanishing of some deter-
minant has been assumed without proof.

Two further useful equations are obtained by
generalizing the integral in (55) to complex variables.
Using (56), (46), (48), and (57), we find

[ 288 i, yurtte) dm

2B(’, 2)
H(—z)

Combination of this result with (44) and (51) enables
us to write

f 9, m) [9(2  4) + B, M)]}EH(P-) dm(y)

2=

= —Lg, ) — (59)

2¢(z, 2)
T @ —2)H(—4)

H(z_z) [ 0, 2) . T B¢, Z)]

If two different positive eigenvalues are sub-
stituted for 2, 2’ in this equation, the bi-orthogonality
relations follow, as already mentioned. On the other
hand, we may also substitute negative eigenvalues.
All such relations can be summarized in a single
equation,

I

(60)

[ 46, 09807, it te) dme

”d’(": I’)@( ;)

(', )
H(—7) 06, vr#=v.

H=) @D

Here we have introduced the following step funetion:

6@) = {0

1 otherwise.

for 0<v<1, (62)

17 8, Pahor, Nucl. Sci. Eng. 26, 192 (1966).
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It may be mentioned that Eq. (61) encompasses a
set of eight formulas worked out previously'' for
the special case N = 1, m = 0.

We are left with the determination of the nor-
malization constants. Those for the discrete eigen-
functions follow from (60) if we put z = », and then
let 2’ approach the same value. After application of
the identity (32), the result is

[ 461, 0096,, wmtiG) dms

= wigbs,me)| 22|

Before we can deduce the normalization constant
for the continuum modes, we must decide what
meaning to attach to the product of two singular
eigenfunctions in the event that » and »" are allowed
to merge. Following an established practice,* ™ we
use

1 ® 1
vV—u v —u

_ 1,[@’1 e 1]
v—u vV —p vV— U

+ 7 80 — u) 80/ — u), (64)

which for »* — » is a definition. With this definition,
the Poincaré-Bertrand formula permits the formal
inversion of orders of integration in certain double
integrals.’®

All the deductions which led to Eq. (60), and
specifically to Eq. (61), remain valid also for v* — »,
0 < » < 1, except for two additional contributions.
One contribution, N@)eHG)(1 — ) "8 — '),
originates from the product of the é-functions in-
volved in ¢ and ¢, and another,

g0, NIPHE)( — ¥ 3¢ — v),

is due to the last term in (64). The identity (24)
enables us to write the final result as

e

[ " 66, 066, WHG) dm)

= A*G)AOWHEP)(A — D)™™ 8¢ — '),
v, &€ (0, 1). (65)
The three equations (61), (63), and (65) are all
we need in several typical half-space problems for

calculating the expansion coefficients in (40). It
might also be mentioned that these equations sim-

18T, Kugger and N. J. McCormick, Nucl. Sci. Eng. 23,
404 (1965).
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plify the determination of the expansion coefficients
for slab problems.”®"*® In some applications, it be-
comes necessary to derive a few more auxiliary for-
mulas, as was done for N = 1."!

If we are interested solely in the angular dis-
tribution emerging at z = 0, we need only Eq. (61)
forO<v <lory =v;,and —1 < < 0. Instead
of handling each single ¢(v, u) separately, we may
use the whole expansion (41) and get, after re-
naming the variables,

Y(—p) = p ' H(p)
X [ W= WWHG) dmG). (460

Here the left-hand side denotes the value of the
expansion (41) (the coefficients of which we now
need not know) with —yu substituted for . Thus
the relation serves to determine the emerging an-
gular distribution from the ingoing one." Equation
(66) may therefore be called the “switching relation”,
or we may say that the integral operator in (66)
represents the albedo operator for a half-space.
A slightly generalized technique can be used to
determine both the reflected and the transmitted
angular densities for a slab, after the expansion
coefficients are calculated.

As an example of the use of Eq. (66), we consider
the albedo problem, defined by the boundary condi-
tions

IO, u, @) = 8(u — po) 3 — ¢0),

I(x: 4] ‘P) - 0:

(+67)
(68)

The azimuthal Fourier expansion'® may be written as

r— o,

N

I(:L‘, K, ‘P) = E (2 - 5Om)Im(x: ”’)

m=0

X (1 = @)™ — pd)™* cos mlp — ¢o)

+ 00— we| oo — ) —
m

N
X MZ_‘:’ (2 — 8om) cos m(p — %)]' (69)
The boundary condition for I™ is
"0, p) = M (4-70)

2r(l — w)™
According to Eq. (41), where now f = 0, we

¥ G. J. Mitsis, Nucl. Sci. Eng. 17, 55 31963).
20 N. J. McCormick and M. R. Mendelson, Nucl, Sci.
Eng. 20, 462 (1964).
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substitute I™(0, u’) for ¢(u’) in the switching rela-
tion (66) and obtain

Im(O; '—”')
= (2""1‘)—1M0H "(uo)H m(l‘)‘ﬂm(_#; Ho) - (+71)

The entire emerging angular distribution is then
given by

I0, —u,9) = '2”70‘; ".}-'?) 2 — Som)H™(u)H™ (o)

X ¢"(—n, u)(A — &)™?

X (1 — u)™? cos mlp — @). (+72)

The functions
4rp2 — 8em)I™(0, —)A — p)™*(1 — E)™?

and 47ul (0, —u, ¢) for 4 > 0 equal Chandrasekhar’s
S™(u, uo) and S(u, ¢; uo, o), respectively. In terms
of these functions, relation (66) and its azimuth-
dependent generalization can be derived by physical
intuition, as shown by Chandrasekhar.!

The reciprocity theorem of Chandrasekhar says
that uI™(0, —u) is a symmetric function of u and
o, SO that

BB (—n, po) = ud"(—po, 1).

An expression similar to (71) has already been
derived by Busbridge,* namely

poH m(l’-) H" (Mo)
4r (Il + #o)

X 25 (=) "t q (1) g (o),

lum

(73)

Im((), _I“‘) =

(+74)

where ¢7(u) are polynomials. We conclude that

214—1(.“ + Ilo)d;m(“#; ﬂo)
= gU—n, po) — (& + po)B(—n, o)

N

= 2 (= 1)MeTg ) ¢ (o).

l=m

(75)

Pahor'” has recently found a practical method for
obtaining Busbridge’s ¢%, so that B could then be
constructed from (75).

IV. THE NONABSORBING MEDIUM

In the case with no absorption (w, = 1 and there-
fore hy = 0), the azimuth-independent problem
(m = 0) requires special consideration because
», and —», merge at infinity. The approach when
@ — 1 is like v, & [hoh:]}. Consequently, two of
the eigenmodes become identical,
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lim ¢(2;, p)e™™ = 3.

To—1

(76)
A new linearly independent eigenmode arises in the
following way:

ilml Fhnlo(—vi, W™ — ¢, e "]

=3z —3w). (77)

Once again we are omitting the superscript (m = 0).
The function A(z) now has a double zero at in-
finity, and we see from Egs. (27) and (38) that

Bo =1, (78)

The value of %, now becomes important and is
given by the equation®

Mo = 17 62 = 3.

e
s 21+ 1

The polynomials ¢;(v) are of order I — 2 instead
of I. Therefore, the polynomials K,(z) as defined
in Eq. (49) are of maximum order N — 3orl — 1,
whichever is greater; if N < 2, K, vanishes. Ob-
viously the lowering of the order destroys the pre-
viously assumed linear independence of the K,.
However, because the maximum order of L(», v')
now is only N — 2, it is sufficient to assume that
linear independence holds after any one of the
Ky/s,1 =0,1, -+ N — 2, is omitted. Under this
assumption, the expansion (57) exists, but it is
not uniquely determined.

Except for the ensuing ambiguity in B(v, u),
we can now take over from the previous section
the formulas for the eigenfunctions ¢(v, u), with
the exclusion of the limits of ¢(v;, p) and é(v, u).
The corresponding relations for the latter functions
will be derived separately.

By using v = », in Eq. (61), we obtain in the
limit

= (79)

ol
=

14

T H(—)

This gives us a supplementary condition upon
B(v, u). After the expansion (56) is inserted into
(80) with » > 0, we have

[ ' 0, HG) du = 06).  (80)

o) + ”2 B.6)k: = 0, 81)

where

b= lim nK,6) = [ PUGOuHG) du. (82)

Fo—1

We assume that condition (81) and Eq. (57) de-
termine B(v, u) uniquely. For example, for N = 2,
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we find in this way

Bo, i) = 32 (22— ).

25}

(83)

From Eq. (61), supplemented by (80), we see
that the switching relation (66) remains valid, with
¥(u) defined as before.

We also have to introduce

§i6) = lim $6, 1) = 301 + 5G], (89
where
b(p) = iuf.ll B, u). (85)
Equation (61) shows that
[} 66, 6.00mBG) dn = — 556006, (80
Then, using the expansion
b = 3 bPAG), @7
we derive from (86) with » > 0,
K@) + 3 bEKi6) = 0, (89)

which determines ¢,(¢) up to a constant factor.
This constant will now be evaluated from the nor-
malization constant corresponding to (63) for j = 1.

First, we derive from the recursion formula for
g:(v) that

. -1
lim g,6Pi6) = IT=H—" (9)
It follows by inductive reasoning that
. T 4+1 1
im g6, v) = JI=5—= =37, (@0

in view of Eq. (79). Finally, from (63), with (25)
and (36),

'/; 1 (W pH(u) dp

(91)

Equations (88) and (91) determine the b,’s, and
hence the function ¢,(u). As an example, we quote
the result for N = 2:

‘51(#) = 1/hfa. (92)

With respect to Milne’s problem where the eigen-
mode (77) appears in the expansion, we also need to
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evaluate integrals involving ud. From Egs. (77)
(with z = 0) and (61), we find

/; 1 pb@, WeH () dp

2
14

= ~H{ 0 — Wbsb(—n), O3
where we have used Eq. (36) and the symmetry
relation (73), with an obvious generalization in the
variables. Equation (93), together with Eqgs. (80),
(86), and (91), represent a set of additional formulas
needed for w, = 1.

For the integral

1 ~
C = [ Wh(IuHG) du ©4)

no expression like the 1/h,8, in Eq. (91) has been
found, so we have to evaluate it in terms of the
moments of the H-function, which must be com-
puted anyway.

As an example, we consider some results for the
Milne problem, for which

10, p) = 0,

I(x, ) ~ z,

(+95)
(96)

T —r o,

We now have the expansion

M
I(z, ») = 3z — 3) + }a, + 5__‘; ap(s, we ™!

+ fo L AGSG, e . (@)

The two leading terms in (97) give the asymptotic
density

Pas() = 2m(hyz + a,), (98)

which vanishes at the extrapolated endpoint, z =
—z,. After g, is evaluated by applying (86), (91),
and (94) to the expansion (97) for z = 0, we find

S0 = 3Cﬂ1. (99)

To determine the angular density emerging at
z = 0, we use the switching relation (66) and Eq.
(93) to show that

I(O: —u) = hlﬂlH(M)$1(ﬂ)- (+100)

With expression (92) inserted, this equation re-
produces a result of Chandrasekhar' for N = 2.

V. CALCULATIONAL SCHEME

As shown by the two examples in Secs. III and
IV, the final solutions of standard half-space prob-
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lems can be expressed in closed form by the H-
functions and the adjoints ¢™(v, u). The latter in-
volve the polynomials B™(v, u), the coefficients of
which have to be computed numerically. Only for
the simplest cases (i.e., for N — m = 0 or 1, and
for N = 2if wy, = 1, m = 0) is it practical to ex-
press the B™(v, u) directly in terms of the coefficients
w; of the scattering function. Even then the H-
functions and a few of their moments have to be
calculated numerically for each particular scatter-
ing law of interest.

For any scattering law, numerical computations
could proceed according to the following scheme.
First, the coefficients of ¢g%(v) are found from Eqgs.
(17) and (19). [The coefficients for ¢3(») are ex-
plicitly known.?] This enables us to express A™(2)
from Eq. (22) either numerically or in terms of the
function tanh™' (27'). The discrete eigenvalues »%
are then determined from (21). (For », Holte’s
power series® could be used if absorption is weak.)
The values [dA"(z)/dz],.,, are also to be computed.
Similarly, A"(») and the boundary values are found
in terms of tanh™ (») through Egs. (14) and (24),
respectively.

The functions H"(x), 0 < u < 1, and the values
of H"(»7) can be computed either from the non-
linear integral equation,’'*''** Eq. (33), or from
the closed-form expression (28). A modified form
of the latter, probably better suited for computa-
tion, is'’

_1 Y m
TG =014+ H(1+#/V)

X exp [21” f 'In ﬁ:gg {V—i—; ~ %} dVJ . (101)

All further computation makes use of the numeri-
cally computed moments o7 of the H-functions,
defined in Eq. (39), forn = 0, 1, -+ 3(N — m).
In an obvious way, the quantities 87 of Eq. (37)
may then be calculated forn = 0,1, -+ (N — m).
[For w, = 1 and m = 0, only the moments oy,
n=12 -+ 3N —2),andthegl,n=12—---N,
are required.] Numerical accuracy may be checked
by use of the identities (38).

With the values of a7 and 8%, the coefficients
of the polynomials K3(»), I = 0, 1, --- N, easily
follow from (49). Linear independence should then
be verified. Finally, after calculating the coefficients
of L™(», ') from Eq. (52), the determination of the

2T, W, Mullikin, Astrophys. J. 139, 1267 (1964).
22 8, Pahor and I. Kuiger, Astrophys J. 143, 888 (1966).
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coefficients of B"™(v, u) is carried out using Eq. (57).
For w, = 1, m = 0, Eq. (81) must also be used to
find B%(», u). In this event, some additional work
is required for the determination of the coefficients
of b(u) from Egs. (88) and (91).

The determination of the K- and L-polynomials
could be avoided if the Busbridge polynomials
¢"t(n) are determined by the method of Pahor.'” The
coeflicients of B™(v, u) would then be found by use
of Eq. (75).
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APPENDIX. REMARK ABOUT FULL-RANGE
ORTHOGONALITY RELATIONS

As shown by Mika,” Eq. (10) immediately leads
to full-range orthogonality of the full set of eigen-
functions, with the weight function w(l — u®)™
In particular, for v, »¥ & (—1, 1),

[/ 46, 607, 3w dm)

= A*MA A — )™ 8@ — V), (A1)
where the superscripts m are again omitted. To this
we can add a convenient expression for the nor-
malization constants for the discrete eigenfunctions:

f_ 11 [6(£r;, w)1°s dm(u)

2”: g(”: ) V3 [dA(z)/dz]:-u

These relations enable us to solve the problem
of a plane source in an infinite medium.

The proof of the last relation is obtained by
applying the reasoning of Sec. III to full-range
integrals. Denoting the various functions modified
in this sense by the same symbols as in that section,
we introduce first

(A2)

J(z, 2).

g(z7 I»‘) g(Z ) l;) dm( ) (A3)

_12_“3 -

After a partial fraction analysis, J can be expressed
in terms of the integrals

B6 = [ pe 8 yame). a9
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Analysis similar to that leading to Eq. (48) then p,{x) and Egs. (16) and (17) show that
shows that o
K,G) = —— . A
Ri@) = Ki(2) — 2p:DAG), (A5) ) =517 90 (A7)
where K;,(2) is again a polynomial. We have gllllgrfﬁ(;e’ proceeding as in Sec. III, we finally
2 1
K.y = " f_l 2w, wu dm(u) (A6) J(z,2) = - E p (g, 2)AR) — gz, 2)AR)]. (AS8)

whenever v is an eigenvalue, as shown by the aid
of Egs. (21) and (24). The recursion formula for

After we substitute z = Z»; and carry out the
limit 2’ — =%£v»;, Eq. (A2) immediately follows,
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In this paper, a model of a paramagnetic impurity in a semiconductor (or of an F’ center in an alkali
halide) is proposed. It is an exactly soluble form of the quantum-mechanical 3-body problem. Specifi-
cally, we deal with 2 interacting particles in any number of dimensions in an attractive external
potential, and present the qualitative features of the resulting eigenvalues and eigenfunctions. We
find algebraically the conditions for a magnetic moment to appear (e.g., for an F’ center to become
unstable with respect to an F center) and discover that even a large 2-body electronic repulsion U
does not cause a moment to appear when the one-electron bound state orbits about the impurity are
sufficiently great. Conversely, in the case of small, tightly bound orbits, beyond a certain value of U,
the impurity does in fact become magnetic in the ground state. Using the exact ground-state solution,
we show that a perturbation-theoretic expansion in powers of U has a finite radius of convergence.

1. INTRODUCTION

HE problems associated with magnetic im-

purities in metals have received a great deal of
attention,’ but are still far from reaching a rigorous
solution. By contrast, we have readily found an
exactly soluble model of paramagnetic (donor or
acceptor) impurities in semiconductors, which can
be rigorously analyzed over an entire range of param-
eters with rather interesting results. The present
paper is the first report on the theory of this model,

* This work was supported by the United States Air Force
Office of Scientific Research under Grant AFOSR-107566
{D. M.) and AFOSR-71364, 50866 (E. L.).

t Present address: Physics Department, Northeastern
University, Boston, Massachusetts. .

1 The quantum- and statistical-mechanical aspects have
been discussed by P. W. Anderson, Phys. Rev. 124, 41 (1961),
.and recently extended by, among others, A. C. Hewson, Phys,
Rev. 144, 420 (1966), and by J. R. Schrieffer and D. C. Mattis,
4bid. 140, Al412 (1965). Transport properties have been
analyzed by J. Friedel, Metallic Solid Solutions (W. A.
Benjamin, ¥nc., New York, 1963), and most recently by
D. J. Kim, Phys. Rev. (to be published).

giving features of the eigenstates and of the mag-
netic properties. Quantitative numerical results as
well as transport properties (i.e., scattering cross
section), statistical mechanics, and other features of
this model will be reported later.

It has long been known that the Coulomb re-
pulsion among electrons in impurity states of a
semiconductor cannot be safely neglected. More
than eleven years ago Brooks® wrote, ““... band
(i.e., Bloch) states have the property that the cor-
responding wavefunctions are spread throughout the
crystal. Thus there is practically no price, in terms of
extra electrostatic interaction, for putting two elec-
trons in the same (Bloch) state. This is the condition
for the applicability of Fermi statistics in its simple
form. In the case of localized states, however, a
very different situation obtains. Even though an

2 H. Brooks, Advances in Electronics and_Eleciron Physics,
L. Marton, Ed. (Academic Press Inc.,, New York, 1055),
Vol. VIL See also C. Kittel, Introduction to Solid State Physics
(John Wiley & Sons, Inc., New York, 1956), 2nd ed., p. 359.
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electron may be allowed two directions of spin in a
localized state, once the state is occupied by an
electron of either spin, it cannot then be occupied
by an electron of opposite spin, because the elec-
trostatic repulsion of the two localized charge dis-
tributions would raise the energy of the second
electron. . .”. If only a single electron can be bound
to the impurity, the latter is perforce a paramagnetic
impurity of one Bohr magneton. The present model
is designed to explain precisely how this single
binding may or may not occur.

Several superficial difficulties have to be overcome
in the process, for, in general, the problem of two
interacting particles in an attractive potential well
(such as the two electrons in helium atom or in the
hydrogen molecule) has no solution in closed form.
Fortunately for us, the present calculation for the
solid is more tractable than the usual two-electron
problems, and it ¢s possible to obtain an explicit
solution in closed form, as we show below.

In all such problems involving two electrons, one
readily proves® that the ground-state wavefunction
is nodeless; it then must be symmetric under inter-
change of the spatial coordinates of the two particles,
and it must belong to spin § = 0. Does this preclude
magnetic behavior? The answer, surprisingly is no,
provided the 2-particle repulsion U exceeds a eritical
magnitude U,. In that case, one of the electrons is
ionized and the energy splitting between the ground
state and the lowest 8 = 1 state ceases to be finite
and becomes O(N ), where N = number of atoms
in the crystal. The ground state can then be taken
as an arbitrary combination of triplet and singlet, so
that, in effect, there is one Bohr magneton localized
on the impurity, and one uncorrelated Bohr mag-
neton on the second, wandering, particle. The net
localized spin of the impurity is then 1up, the largest
value attainable in the present model. One of the
results obtained below is an expression for U, in
terms of the one-electron parameters (viz., band
structure and binding energy of the impurity poten-
tial well). When U, is infinite, then the impurity
is always entirely nonmagnetic.

3 E. Lieb and D. Mattis, Phys. Rev. 125, 164 (1962). This
theorem and its consequences are discussed also in D. Mattis,
The Theory of Magnetism (Harper and Row, Publishers, Inc.,
New York, 1965), Chap. 4. The 2-electron problem considered
earlier by J. C. Slater, H. Statz, and G. F. Koster, Phys. Rev.
01, 1323 (1953), also indicated that, without Hund’s rule
coupling, the ground state belongs to S = 0, on the basis of
a model similar to the present model with v = 0. A different
but also exactly soluble model of two electrons in an harmonic
oscillator potential, interacting by Coulomb repulsion, was
solved by KT Kestner and O. Sinanoglu, Phys. Rev. 128, 2687
(1962). Their interesting result cannot be directly compared

with ours, however, because it has no scattering state, no
unbound solution, and no magnetism.

D. C. MATTIS AND E. H. LIEB

After the present manuscript was essentially com-
pleted, strong experimental evidence for the existence
of such paramagnetic impurities in n-type InSb was
reported by Katayama and Tanaka® (viz., the ex-
istence of a resistance-minimum anomaly such as
have been commonly observed in metals containing
paramagnetic impurities, but much larger than in
these metals). An earlier indication of this was
provided by work on the thermoelectric power by
Khosla and Sladek.®* Both series of experiments
were preceded by a theory due to Toyozawa,® based
on the Hartree-Fock approximation. As we see
below, this approximation can only be valid for very
deep donor levels.

As another application, we recall that the F center
consists of an electron bound to a vacancy in an
alkali-halide crystal, whereas the F’ center consists
of two electrons bound to the same vacancy. The
energetic stability and capture cross section of the
F’ center for the second electron may also in prin-
ciple be calculated by the present methods, extending
recent approximation schemes.®

2. DESCRIPTION OF THE MODEL

In this section, we describe the general model and
its general solutions, explaining the steps whereby
the latter are obtained. In the following section a
one-dimensional example is explicitly worked out
using this method.

For definiteness, we discuss a donor-type impurity
and 2 electrons in the conduction band of a semi-
conductor. (The analysis for an acceptor-type im-
purity and 2 holes in the valence band is, mutatis
mutandis, formally identical.) The electrons move
from one Wannier site to the next, with overlap
matrix elements K(R; — R;). The band structure,
given by the Bloch energies e(k) (the Fourier trans-
forms of the K’s) is therefore

o) = % > K®: - R) cosk-Rs.  (21)

In addition, there is the potential of an impurity
at the origin: —v(R,) which is assumed to be deep
enough to have one and only one bound state.

[If the potential has no bound state there can
be no localized spin, as the probability that
either of the two electrons is in the vicinity of

+ Y. Katayama and 8. Tanaka, Phys. Rev. Letters 16, 129
glggg;, R. Khosla and R. Sladek, Phys. Rev. Letters 15, 1521
1 .
8 Y. Toyozawa, J. Phys. Soc. Japan 17, 986 (1962). [See
parenthetical statement after Eq. (2.22).]
6 8. Y. La and R. H. Bartram, Phys. Rev. 144, 670 (1966),
and references therein.
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the impurity is just O(1/N) ~ zero. (This is
quite different from the cases of interest in a
metal, where electrons are always available
in the vicinity of any site.) When the potential
has two or more bound states, the analysis be-
comes more complicated than envisaged in the
present calculation but it can be done. A sum-
mary of our findings in the more complicated
situation is this: if the bound states are a degen-
erale set, then the 2-electron ground state of the
impurity is likely to be a triplet or doublet
magnetic state, in agreement with Hund’s rule.
Otherwise, the impurity is generally a nonmag-
netic singlet for all values of the two-electron
repulsion. This situation, descriptive of multi-
level traps such as gold in germanpium, can in
fact be handled by the present methods although
we do not further consider it in the present
paper.’]

Before introducing the two-particle interaction,
let us solve for the one-electron eigenstates for the
band structure (2.1) in the presence of the impurity
potential —v. This can always be done by straight-
forward methods (an explicit solution in the one-
dimensional case is displayed in the following section)
and results in a set of orthonormal eigenfunctions
labeled by an ascending quantum number » = 0, 1,
2, - -+ and spin quantum number m = +3:

¢r.m = 'Z fr(Ri)c?.m IO)

with energy eigenvalues: e, ;

r = 0 for the bound state,r = 1,2, ---
for continuum states, arranged in the se-
quence e, < e,41, and interlacing the Bloch

energies e,.

2.2

(2.3)

Two-particle states are merely antisymmetrized
product states,

q’?.m:r’.n' = 2-*{[2 ff(Rl) ,E fr’(Ri)
= 3 1R X1 BINetactn | 0)

with energy eigenvalues:

E(r,v") = ¢, + e;r = ¢ = 0 for the two-
particle bound state, r = 0 and #' 5 0 (or
vice-versa) for the one-particle bound state,
and r £ 0 and ' # 0 for the completely
ionized states of the impurity.

(2.4)

(2.5)

7 For more background into the one-electron problem, the
nature of the bound states, etc., we refer to G. F. Koster and
J. C. Slater, Phys. Rev. 95, 1167 (1954); ¢bid. 96, 1208 (1954);
and M. Lax, ¢bid. 94, 1391 (1954). Interaction with field bands
is discussed by L. J. Sham, Phys. Rev. 150, 720 (1966).

Of all these two-particle states, only the one-particle
bound stales possess a localized magnetic moment of
one Bohr magneton, the others having a localized
magnetic moment which is either identically zero
(two-particle bound states) or virtually zero, O(1/N),
(for the completely ionized states).

The two-particle eigenstates in presence of the
two-particle interaction can be written as

® = 3 FRi, R)ctuctn |0),  (26)
.7

and are antisymmetric or symmetric under the

interchange of RB; and R; according to whether they

belong to eigenvalue 8 = 1 or 8 = 0 of total spin.
We obtain the correct F’s by a Green’s function

technique. First we write the complete two-body

Green’s function,

GolGj | 7) = 3 @ (j).fr(i,)fr"(j,)

E —e —e,

@7
and then, in terms of the repulsive two-body inter-
action U(R,, R;) > 0, we obtain

F@j) = > U@, NGe('§ | FGE),  (2.8)
i,

a system of linear coupled equations which are to
be solved for the wavefunction F and the energy
eigenvalue K. If U is nonvanishing over the entire
crystal, this poses an intractable problem which
must be solved by any of the variety of approximate
techniques used in scattering theory. Although it is
justified to neglect this long-range interaction, there
are good reasons, outlined by Anderson,' not to
neglect the Coulomb repulsion near the impurity.
There, the atomic orbitals, hence the Wannier or-
bitals, tend to be more compact, and the electro-
static repulsion cannot be ignored, particularly in
the case of magnetic atoms. If U is nonvanishing
over Z distinct sites in the neighborhood of the
impurity (located at the origin), the solution of
(2.8) reduces to a Z* X Z* determinantal equation.
In what follows, we assume the simplest model,®
i.e., an interaction only at the origin [ie., Z = 1,
with U0, 0) = U, and U(7, j) = 0 for R, and R,
not both at the origin).

With the assumption of such a local repulsion,
the wavefunctions are explicitly given as

F@ij) = UG(00 | #)F(00). 2.9
We immediately note that all the antisymmetric

solutions (i.e., the triplet states, in addition to those

8 The simplest model displays the qualitative features of
the general model; we have also determined that Anderson’s
model! yields similar results in the present context, when a
one-particle bound state exists.
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E| L/’ EO: E!

magnetic

E, . “—region —>

2e,

F1a. 1. Energy eigenvalues as functions of repulsive 2-body
interaction U. Lowest singlet solution E; and triplet solution
E, merge for U > U,, resulting in a localized moment of
1 up. The dotted line (spurious) indicates solution of Eq.
(2.17) in range U > U,. Note that, although curve shown
does not indicate it, dE./dU = 0 when U = U, Range of
energies above E,; is l-particle scattering states continuum.
Shaded range labeled “continuum’ refers to the 2-particle
scattering states.

singlet states which have a node at the origin)
have the unperturbed energy eigenvalues

E =ce +e,. 2.10)

thus compensating the vanishing numerator in (2.9)
by a vanishing denominator. These wavefunctions
are given in (2.4). Excluding such trivial solutions
from present considerations, let us now consider
those solutions for which F(00) 0. First, we
calculate the magnitude of this parameter required
to normalize the wavefunctions:

1= X FGHE = Foop ¢ 3 00 3

$.7 ror’ (E — & - er’)2 ’
ie.,

2 Y-t
F(00) = {U’ Z——]L@fﬂ@l—} , (@211

ror! (E — & = ef’)2

where we have made use of the orthogonality
relation,

> PO = b 2.12)
Next, we solve for the eigenvalues E by setting
R. = R; = 0 in the eigenvalue equation (2.9) and
obtain;
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_1‘.. - Z fr(o r‘(O !2 .
u 4SE

— &y = &y

(2.13)

This is a standard eigenvalue equation with the
usual inlerlacing properties: there is an eigenvalue
E between each pair of neighboring unperturbed
energy levels E(r, ') given in (2.5). Thus all but
one of the energy levels may be displaced by at
most O(1/N), no matter how large U is allowed to
become. The exception is the 2-particle bound state,
which corresponded to r = r/ = 0 for the unper-
turbed electrons. If we denote its energy eigenvalue
by E,, we must have

260 < Eo < & + e = El. (2.14)

The first inequality reflects the fact that a repulsive
interaction can only raise the energy,’ and the
second is proved by setting E, = ¢, + ¢, — . As
z is varied from the value ¢, — ¢, to zero, the right-
hand side of (2.13) varies from 4 o to — «, which
ensures that at some intermediate value a solution
to the equation musi exist.

What we are to discover is that, in the limit
N — o the range of z required to change the right-
hand side of (2.13) from some finite positive value
to — = 15 only O(1/N). Consequently, the solution
E, of (2.13) must have the general features shown
in Fig. 1: it is an increasing function of U below a
certain value denoted U,. For values of U larger than
this, B, = ¢ -+ ¢, = const, in the limit N — «.
As a result, the ground-state energy is a nonanalytic,
albeit continuous, function of U at U = U,, which
defines U, as: precisely the magnitude of the repulsive
potential required to singly ionize the impurity.
Thus, for U > U,, the impurily possesses a magnetic
moment of one Bohr magneton.

The above is not a general property of the above
eigenvalue equation, but follows, rather, from de-
tailed consideration of both numerator and denom-
inator in this equation. We find it important to
consider the normalization of the unperturbed states
1.(?), so as to find their amplitudes at the origin,
and we find that the continuum states behave
differently from the bound state in one very sig-
nificant way.

Thus, we note that, while the bound-state ampli-
tude at the impurity site is fo(0) ~ 0(1), the scat-
tering-state amplitudes are O(N %), and we there-
fore write

I:O) = n*()/N,

¢ Differentiating {2.13) with respect to U yields dE/dU
> 0 for all eigenvalues E.

r>1, (2.15)
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which defines n(r) a quantity O(1). The eigenvalue
equation (2.13) now reads

b= 2Ol ord x 0

U € — €
(N) ;l_l@"’ﬁ_)_ (2.16)

In solving this equation for E,, it is permissible to
proceed to the limit N — o and replace sums by
integrals, provided E, does not exceed E, = ¢, + ¢,.
Let us define U, as that value of U for which E, =
E,. Then, E, = E, for the entirerange U, < U £ o,
whereas for U < U, the correct solution is obtained
from the equation

U~ — e, — e(r)
, g(ﬂg(r’)n (QLA)
+ffdrd fatrnt), v<u, @
where g(r) = density of states factor required to

change a sum to an integral.

If we interpret the integrals as principal parts
integrations, this equation also has a (spurious)
solution for E, in the range U > U,, indicated by
the dotted line in Fig. 1, which merely shows that
the limiting process N — o must be taken carefully,
for we have already seen that the correct solution
in this range is E, = E,.

We may also examine the results of perturbation
theory, by expanding the exact solution in powers
of U. Letting

Ey =2¢,+ y
define the energy shift y, we readily solve for this
quantity in (2.17):
y = LO)* U1 - UQ)™"
= L@ UQA + UQ + --+),

where @, the correlation terms in (2.17), are given by

Q=2m@VfWE%%%%@

, g’ n’ ()
+ ff dr dr E, —e(r) — e(r)

and, in the Rayleigh—Schrédinger perturbation the-
ory, may be evaluated using approximate values
of y, computed to the desired order in powers of U.
Clearly, the expansion ceases to exist, and perturba~
tion theory becomes meaningless, once

UlQl=1.
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The Brillouin-Wigner perturbation theory, in which
Q is not approximated, appears to have a somewhat
larger radius of convergence. Further examination
of this point would be of interest, but is outside
the scope of the present investigation.

We now proceed to a very useful simplification,
which enables the double integral in (2.17) fo be
formally eliminated from the theory. This is es-
pecially valuable for numerical computations.

Simplification of some Integrals
We define Iy(W,) as

2
IN(Wo) = %7 ;WZLL_T% s Wo S €1,
(2.18)

and the limiting function I(W,) = I.(W,) as

ggr)n ) .
e(r)

The negative signs are introduced to make I > 0.
Next, we consider the ground-state eigenvalue W, of
the one-electron Hamiltonian with the original im-
purity potential —v(R,) plus a perturbing one-body
potential \3; o, added thereto, resulting in —v(R,) +
A8; 0. It may be assumed’ that we know W, as a
function of A, or conversely, that we know A(W,)
[this is of course easiest if v(R,) itself was nonvanish-
ing only at the origin, as in the example of the fol-
lowing section]. At any rate, we know W, < ¢,. We
may use the one-body Green’s function to obtain
the integral equation,

1 _ @ _n'0
A(Wo) - Wo_eo—l_ %Wo—er

by complete analogy to the preceding calculation.

But now we have the advantage of knowing W, and
MW,), and thus can solve for

lfn(O) ¥ 1
— € A(Wo)

and we may also easily take the limit N — « to
obtain I(W,) therefrom. Substitution into (2.17)
yields the following, simplified, equation®®

W) = — f dr 2.19)

(2.20)

In(Wy) = (2.21)

1 1o(0)[*
1 mljo—_ﬂg—) fdr g(r)k—(E—la, 2.22)

16 For comparison with other results and recent theories, the
following references may be useful: L. D. Fadeev, Mathemati-
cal Aspects of the Three-Body Problem in the Quantum Scai-
tering Theory (Danial Davey & Company, Inc., New York,
1965); J. Callaway, J. Math, Phys. 5, 783 (1964), and Phys
Rev. 140, A618 (1965); G. V. Skorniakov and K. A. Ter-
Martlrosm, Zh. Eksperlm i Teor. Fiz. 31, 775 (1956)
[English transl.: Soviet Phys.—JETP 4, 648 (1957)1; L.
Eyges, J. Math. Phys. 6, 1320 (1965).
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which is the desired alternate, and fully equivalent
version of (2.17).

[Equation (2.22) may be (crudely) interpreted as
an effective, Hartree-Fock type, one-body repulsion,
given by a constant M(W),

A =T O

with the integral in (2.22) representing the
effects of correlations. We see that the Hartree—
Fock approximation would be exact if U were
replaced by a smaller interaction (the integral
can be shown to be negative)

0= {U” - f dr 9@ () /NEs — e(r)}}—l < U,

but since this involves an integral over the “ef-
fective coupling constant” A, U is in general
just as difficult to obtain as an exact solution to
the problem. Note that, when v is much larger
than the band width, the correlation energy
becomes negligible and the Hartree-Fock theory
is correct for all values of U.}

3. LINEAR CHAIN AS EXPLICITLY SOLUBLE
EXAMPLE

The appearance of a localized magnetic moment
in the one-dimensional case is all the more striking
because of the theorems® that the ground-state
magnetic moment vanishes. For this reason, it would
be of great interest to generalize the present analysis
to examine the case of more than two electrons, but
we have not completely succeeded in this as yet.

We consider the nearest neighbor coupling, i.e.,
K(©) = 1 and K(da) = —% corresponding to the
band structure

¢(k) = 1 — cos ka, 3.1
and an attractive potential localized at the origin
—o(R;)) = —vb;.0, v 2> 0. 3.2)

The one-particle eigenfunctions with a node at the
impurity are simply

f.(n) = (1\7 3_ 1>§ sin kn

with energies independent of the interaction,

3.3)

e, =1 — cosk,, 3.9

where periodic boundary conditions imposes
sin k,(3N + 1) = sin k,(—1N),

which results in

k, = 2xr/(N + 1),

r=1,2,---,31N. (3.5)
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Precisely because of the vanishing amplitude at
the impurity, however, these functions do not ap-
pear in the equations for the ground state of the
interacting system. The even eigenfunctions are
of course derived from the cosine functions and,
infroducing the phase shifts ¢,, may be written as

fn) = C7F cos (&, In| + o). (3.6)

The energy is also given by (3.4), but the wave vec-
tors k, must be recalculated. This is done by study-
ing the n = 0 amplitude equation

e, 0S¢, = cos ¢, — cos (k, + ¢,) — v cose,. (3.7)
We use (3.4) to eliminate e, and obtain
0= ¢ < m. (3.8

Periodic boundary conditions give a second relation
between ¢ and &

k.= Q@rr—20)/N+1), r=1,2,--- ,IN. (3.9

tan ¢, = v/sin k,,

In the limit N — « the normalization constants
C, are independent of r, and are given by

C, = iN. (3.10)

So far we have N out of the total N + 1 eigenfunc-
tions; the missing one is the bound-state solution,
which decays exponentially from the origin and is
therefore independent of boundary conditions for
large N. For an infinite chain, it has the form

fom) = Citexp —an|, «>0, (31D

hence an energy,
€ =1 — cosha (38.12)

a finite amount below the continuum. The eigen-
value is onee more determined by the » = 0 ampli-
tude equation

e = 1 — exp (—a) — v, (3.13)
which, combined with the preceding, yields
sitha = v  (meaningful only forv > 0)  (3.14)
or
6 =1— (14 (notethate, < 0).  (3.15)

Finally one determines the normalization constant

Co=1+22 exp —2an = cotha.  (3.16)

n>0
All these formulas are valid to within an error
O(exp —aN), and so should hold, with a reasonable
choice of parameters, for all but the shortest chains.
Equations (3.6) and (3.8)—(3.10) yield 2 (0) fi.e.,
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n’(r)] for the continuum states r > 1. The bound-
state amplitude at n = 0 is given by Egs. (3.11),

(38.14), and (3.16). The results are
fo@ " = v/(1 + 0}

and n*() = 2[1 + —”——]_1.

sin’ k, 3.17)

Finally, we can readily obtain A(W,) required for
the simplified form (2.22) of the eigenvalue equation,
and find

AWo) =v — [(1 — Wo)* — 1. (3.18)
The eigenvalue equation in question now reads

1 v
U0+ —-({2=-0Q+D —EJ) -1}

1/ dk (1 + v*/sin® k)!
+ rfo P2 = cosk — By —1f 19
and must be solved for E; only in the range
2-20+ ¥ <E <1-@0+H (3820

As U is increased from zero to a value U, E, in-
creases from the left-hand value of the inequality

V)

[ 4
nenmagnetic

v.{U)

UMIN

nonmagnetic

(N
>V

MIN

Fi1a. 2. Schematic solution of Eq. (3.22) for one-dimensional
model. For » < v, no finite 2-body repulsion can magnetize
the impurity ground state, which will always have a 2-body
8 = 0 bound state. For » > v, the impurity can be jonized
(acquiring 1 Bohr magneton in the ground state) by U > U,,
where U, is the solid line shown. (Dashed lines indicate the
asymptotes.) Region of magnetic behavior is indicated by
shaded region above the curve U, which has its minimum
value Unin 8t vmin. The points v.(U) are defined in Fig. 3.
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N

energies

binding

! ;
% w(U)

i
Vmin

Fie. 3. Schematic solution of Eq. (3.22) for fixed inter-
particle repulsive potential, U, and variable attractive
potential, v. Compare with Fig. 2, especially the points
v_(U) and v, (U). Note that »_(U) is always greater than the
fixed point v,, regardless of the magnitude of U, and that
v, and v_ straddle vyin.. Finally, note that one can easily
prove that dE,/dv, as well as E,, is a continuous function
of v, and therefore (dE,/dv) = (deo/dv) at v = v,.

to the right-hand value. For U greater than U,,
Eq. (3.19) is no longer valid and we have,

Ey,=1— (14 P¥nd of Ufor U > U,). (3.21)

[This is but repeating the observations made fol-
lowing Eq. (2.14.).]

To obtain the magnitude of U,, we replace E, in
(3.19) by the upper bound in (3.20):

1_ 1.1
U.” A +5H " x

% f' dk (1 + v*/sin® k)™ )
o v — {[1—cosk+ 1+ —1}}

(3.22)

The solution is shown in Fig. 2. From this figure, it
is clear that, if v is smaller than a certain value
(denoted v,), then the right-hand side of (3.22) is
negative, signifying that no value of the interparticle
repulsion will ionize the impurity. This is further
illustrated in Fig. 3.

4. SUMMARY

In examining the ground state of two interacting
electrons about an attractive impurity, we found a
variety of possible behavior (as summarized in the
first two figures). Generally, there exists a finite
critical repulsive interaction U, such that, if U
exceeds U,, the two electrons cannot be simultane-
ously bound in the neighborhood of the impurity,
and one of them spontaneously ionizes in the ground
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state. When this is the case, only one electron, with
its single Bohr magneton, is found in this neighbor-
hood. For U not exceeding U,, however, the electrons
are both bound to the impurity which therefore has
net spin 8 = 0 in the ground state.

However, for the linear chain, we have also found
that, when the attractive impurity potential v is
sufficiently small (less than an amount v,, as shown
in Fig. 2), no finite electronic repulsion can ionize
the impurity, i.e., U, = . The reason for this is
intuitively obvious; when the impurity potential
is weak, the bound-state orbits are very large so
that the charge clouds of the two electrons have
very little interaction. It then requires little cor-
relation energy to keep the two particles out of each
other’s way in this limit, and the result is a non-
magnetic ground state for all values of the inter-
action U. In the opposite limit of very large attrac-
tive impurity potential », the electrons become very
tightly bound and require U Z v to be ionized.
(Here the approximate Hartree-Fock theory®®
should be most reliable.) There exists an optimum
magnitude of v (denoted by v,..,, Fig. 2) requiring a
minimal interaction energy U (denoted by min) to
become magnetic. The detailed nature of these re-
sults must be modified somewhat if they are to
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apply to three dimensions, as bound states do not
exist for arbitrarily small v, but otherwise qualita-
tively similar comments can be made in three di-
mensions on the basis of our exact results, Eqs. (2.13)
or (2.16) and (2.17), or (2.22).

Considering the simplicity of the present model,
such a variety of behavior is truly surprising, and
illustrative of the virtue of exactly soluble models in
the analysis of the complex phenomena of electronic
ragnetism. Extensions of the present model which
have some appeal might include the extension to
more than two particles and/or more than one
impurity, and, closer to the present analysis, an
explicit quantitative calculation of the eigenvalues
and eigenfunctions in three dimensions, and a cal-
culation of the anomalous scattering cross section*
in the magnetic case when U > U,.

The capture cross section of traps may also be
related to the two-body interaction, which provides
a mechanism whereby one electron may become
bounded by releasing its energy to a second carrier.
The scattering properties in our model are, in any
event, expected to have considerably more structure
than in the one-¢lectron theory of solids because
of the two distinct continua, Fig. 1. We hope to
return to these topics subsequently.



JOURNAL OF MATHEMATICAL PHYSICS

VOLUME 7, NUMBER 11 NOVEMBER 1966

Acoustic Scattering from an Interface between Media of
Greatly Different Density

K. M. MITzZNER

Northrop Norair, Hawthorne, California
(Received 31 March 1966)

The problem of acoustic scattering from a curved interface between two homogeneous media is
formulated as two integral equations relating the normal velocity and the velocity potential at the
interface. The equations are so chosen as to minimize coupling. When «, the ratio of the densities, goes
to zero, the equations decouple, one becoming the equation of a soft-boundary problem, the other of
a hard-boundary problem. For small v, an approximate solution is constructed by perturbation
methods from solutions to the related soft- and hard-boundary problems.

1. INTRODUCTION

ANY practical acoustics problems can be satis-
factorily idealized to scattering from an in-
terface along which two homogeneous fluids are in
direct - contact. Frequently one medium is much
more tenuous than the other but not so tenuous
that v, the ratio of the densities,’ can be set to zero
in reflection calculations. In other cases, as when the
media are a gas and a liquid, v is negligibly small in
reflection calculations but important in caleulating
the transmission from one medium into the other.

Thus motivated, we develop here a general integral
equation formulation of time-harmonic acoustic scat-
tering from an interface of arbitrary shape between
homogeneous media. We then specialize to the case
of small ¥ and, by perturbation methods, construct
an approximate solution in terms of the solutions
to related soft- and hard-boundary problems.

More specifically, we first formulate the general
two-medium problem as two coupled integral equa-
tions, the unknowns being the normal velocity and
the velocity potential at the interface. The formula-
tion is optimized to give minimal coupling of the
two equations. When v goes to zero, the equations
decouple, one becoming the equation for the field
in the dense medium with a soft boundary, the other
becoming the equation for the field in the tenuous
medium with a hard boundary. For small v, the
decoupling is not complete; however, by expanding
the fields in formal power series in v and collecting
terms of the same order, we obtain a sequence of
equations which can be solved one by one. The terms
of the series for the normal velocity are solutions
of soft-boundary problems, and the terms of the
series for the velocity potential are solutions of
hard-boundary problems. The formal series will con-
verge in some cases, but will, in general, be as-
ymptotic.

1 Without loss of generality, we will always choose v < 1.

For complicated interface geometries, especially
for problems which must be solved by numerical
methods, it is much easier to calculate the first
few terms of the perturbation series than to solve
the coupled equations directly. Furthermore, the
perturbation solution gives us a physical insight
into the effect of varying v.

In Sec. 2 we introduce the integral equations for
scattering in a single medium and the boundary
conditions at an interface. From these we construct
in Sec. 3 the minimal coupling integral equation
formulation of the two-medium problem. The per-
turbation technique for small v is developed in
Sec. 4. Then, in See. 5, we work out a simple example,
scattering of a plane wave incident on a plane in-
terface from the tenuous side; in this case the
perturbation series converges provided the angle of
incidence is not too close to grazing.

To avoid unnecessary mathematical detail, we
limit our discussion a priors to well-defined physically
meaningful problems with unique solutions. Further-
more, we consider only interfaces sufficiently smooth
and source functions sufficiently well-behaved so
that we can use without modification the theorems
on limits of potentials given by Kellogg in his
classical treatise’; the most important constraint
thus imposed is that the interface must have con-
tinuous curvature.

Harmonic time dependence e~
stood everywhere.

“f is to be under-

2. BASIC EQUATIONS AND BOUNDARY
CONDITIONS

The Field in a Homogeneous Region

Consider a volume V bounded by surface S with
outward normal n,. Let the volume be filled with a
homogeneous medium of density p in which the

? 0. D. Kellogg, Foundations of Potential Theory (Dover
Publications, Inc., New York, 1953), especially Chap. VI.
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speed of sound is ¢. We define in the usual manner
a velocity potential U related to the particle ve-
locity V and the pressure disturbance P by

V=VU, P = jupU. 2.1)
This potential satisfies the Helmholtz equation
(V* + YU = (1/0Q, (2.2)
where
= w/e 2.3)

is the wave number and Q(r) the source term.

The field in V can be expressed in terms of its
values on 8 with the aid of the Green’s funetion
for an unbounded volume,

Golr, ") = —(p/4xR)e™**, R = |t —1'|, 2.4
which satisfies
(V> + )G = p 8r — 1) (2.5)

and obeys the radiation condition at infinity. We
first define the incident field U, as the field which
would be produced in an unbounded volume by the
sources in V; using the Green’s function, this can
be written®

Uy = (/) [ av' 6. 2.6)

v

Then, applying Green’s second identity* to U and
G, we obtain the well-known equation

P(U - Uo)

= [ 48" [6Go/em) V" — GolaU"/onp)),  (@.7)
8
valid at points r in the interior of V.
Applying Green’s first identity* to eV U and
G,, with e an arbitrary constant vector, we find

o(VU — VU = fs s’ [-V'G, x @ x V'U)

+ KGUni + (V'G) aU'/omg]  (2.8)

at an interior point of V; the details of the deriva-
tion are given in the Appendix.

Once U and 8U/dn, are known on S, we can
find U and VYU everywhere from Egs. (2.7) and
(2.8). Thus the scattering problem reduces to deter-
mination of the two surface fields. It is well-known

3 For simplicity we indicate functions of the integration
point ¢’ with a gnme Joint functions of r and r’ are explicitly
defined as such. In all other cases the observation point
argument r is to be assumed.

4+ J. A. Stratton, Electromagnetic Theory (McGraw—Hﬂl
Book Company, Inc New York, 1941), Sec. 3.3
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that for r on S these fields satisfy the integral
equation

3pU — pU,

= f S’ [(9Gs/on)U’ — Go@U'/oml)]  (2.9)

obtained by taking the limit as r approaches S in
Eq. (2.7). Similarly, taking the limit of Eq. (2.8)
in the manner described in the Appendix, we find

30 0U/ony ~ p 8U,/dm,
- f a8’ [ x VG)-(@) x V'U)
S
+ kz(no‘n@GoU']

~ [ a8 @6/ana)@U" fomi), (2.10)
g

where [z is the integral over the punctured surface,
that is, the limit as A — 0 of the integral over that
part of S outside a sphere of radius A centered at r.
This last equation was first derived by Maue,®
using a rather more complicated approach.

We can obtain an alternative expression to (2.10)
by multiplying Eq. (2.7) by (n,+V) and letting r
approach S. We find

o [l -
~ 3 lim {aizo f a8’ [ano @)]U'} ’

where it can easily be verified that the first integral
exists, Both forms (2.10) and (2.11) will prove
useful below.

ang aﬂq,)

(2.11)

It is convenient at this point to introduce the
operators L; defined by

LX = — f 48’ (1/p)(3Go/on) X", (2.123)

LX = f 4’ (1/0)G X", (2.12b)
LX = — [ 4% Wnlms * VG- x V'X)
-+ kz(no'nf))GoX "
= -—f dS’[ I(GO/P+1/47TR):}

+ 3 lim {6‘3% f a8’ [ano(l)]X’}. @.12¢)

8 A. W. Maue, Z. Physik 126, 601 (1949).
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LX = f 48’ (1/p)(8Gs/0n) X 2.12d)

Then Eq. (2.9) can be written in the compact form
M=G6+L)U+ L,3U/on, — U, =0, (213
and Eqs. (2.10) and (2.11) can both be represented by

N = LU+ & + L) 8U/dn, — aU,/dn, = 0.
2.19)

It is clear that Eqgs. (2.13) and (2.14) are not in-
dependent, for, if they were, we could solve them
with no reference to boundary conditions; in fact,
both are equivalent to Eq. (2.2) and thus to each
other.

Boundary Conditions

Now let us consider two homogeneous media, m,
occupying volume ¥V, and m, occupying volume V,,
separated by a boundary 8 with unit normal

n =10y = —Ngy (2.15)

directed from V, to V,. We assume that the media

are in direct contact at S, that is, that the effect
of the membrane or surface tension layer separating
the fluids is negligible. Then pressure and normal
velocity are continuous across S provided there
are no boundary-layer sources. More generally, the
boundary conditions are

oU,/on — oU,/on = V,, (2.16a)
Uz — P1U1 = -(l/iw)PAy (2-16b)

where the discontinuity in normal velocity Va(r)
and the pressure discontinuity P.(r) represent the
effect of boundary-layer sources.

3. MINIMAL COUPLING FORMULATION OF
SCATTERING AT AN INTERFACE

We are now ready to formulate the problem of
scattering at an interface between two media. In the
nondegenerate case, that is, when

Y = Pz/pl # O, (31)

the problem is effectively solved once the four
functions U,, U,, dU,/on, and 3U,/dn are deter-
mined on 8. The boundary conditions (2.16) supply
two of the four equations necessary for this deter-
mination.

The other two equations are not unique. We have
available two pairs of equivalent equations M, = 0,
N, =0,and M, = 0, N, = 0, obtained by writing
Egs. (2.13) and (2.14) for both media, and we may
combine these four equations in an infinite variety
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of ways so as to produce two independent equations.
Specifically, the formulation can be completed using
any two equations of form

M2+C¥M1 = Oy
N —5N2 =0,

with « and 8 finite.

Although all resulting formulations are mathe-
matically equivalent, they are by no means equally
desirable for either theoretical or computational
purposes. In fact, there is one specific formulation
which in most situations simplifies both the ex-
pression and the solution of the two medium problem.
This we call the minimal coupling formulation be-
cause (as we show below) in a very significant sense,
it minimizes the coupling between the potential and
the normal velocity.

The minimal coupling formulation is obtained by
setting

3.2
3.3)

B=7 (84

in Egs. (3.2) and (3.3). Using Eq. (2.16) to eliminate
U, and aU,/dn, we then obtain the two basic
equations for U, and U, /dn:

%‘(1 + 'Y) U. + (La2 + 'YLal) U,

a=1,

+ L@U/on) = Uy, + Us  (3.5)
and
31 + (U /6n) + (Lar + vLar)(8U,/0m)
+ vL U, = Uy + vUsa.  (3.6)

Here the L, and L; are defined by Eqgs. (2.12a),
(2.12d), and (2.15); the other operators are given by

L,X = (Lbl i Lbz)X

- é’; fs 48’ e**((sin k-R)/RIX’  (3.7)

and

LfX = (Lcl - ch)X

) 3 ikrys.
= fs a8’ 227 ¢*(isin k_R)/RIX"

- - fs 48’ (**/RY)
X {[(1 — ik,R)sin kR — k_R cos k-R]
X nn' — 3 — k. R)@m-s)(@’-s)]
+ [(k-R)*sin k_R — ik.R
X (sin k_R + k_R cos k_R))(n-s)(n’-s)} X’; (3.8)



2056

and the source terms are

Ut = U + f 48’ Gu/ 09 Vs, 3.9)
Ug; = U(}l - %P A/ T:WPI
+ (1) Lds' (3Go/onPh,  (3.10)

ngl == aUm/ on
+ (Uiwsd) fg s’ [@ x VGo)-@ x V'P)

+ Einn)Go,P{], (3.11)

and

UE'»: = 80’02/61‘& - %VA
+ fj a8’ (1/p)(0Gn/om) Vi,  (3.12)

In the expressions for L, and L,, we have used
ke =3k + k), k- =14k — k)  (313)
and
s=(@ ~1)/R=VRE=-V'R. (3.14)

The first form of Eq. (2.12¢) is used in obiaining
U%,, and the second form in obtaining L;; Chap VI,
Theorem 10 of Ref. 2 is used fo cancel the limit
integrals in the latter caleulation.

In order to see the sense in which the above for-
mulation minimizes coupling and why this is impor-
tant, we must introduce some elementary ideas from
the theory of integral equations. An equation is of the
first kind in a variable if the variable appears only
implicitly, that is, only under the integral sign. An
equation is of the second kind in a variable if the
variable appears both implicitly and explicitly.
Either type of integral equation ecan be considered
as equivalent to an infinite set of simultaneous linear
algebraic equations. Equations of the second kind
are thus preferable, in both analytical and numerical
work, for the same reasons that a matrix with
relatively large diagonal elements is preferable to
one with all elements of about the same magnitude.

Now Eq. (3.5) is of second kind in U, and first
kind in 8U,/9n, whereas Eq. (3.6) is of second kind
in 4U,/dn and of first kind in U, If L, and L,
were zero—which is indeed the case when k;, = ky—
we would have two uncoupled equations of second
kind. The terms L,(dU,/dn) and vL,U, can thus
be thought of as coupling terms which complicate
the solution of Egs. (3.5) and (3.6).

If now we compare the expressions for L, and L.,
we see that L, is the only operator of form
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(L., — (B/v)L..] for which the higher-order sin-
gularities in the kernels of the L, cancel. Only
L; has a kernel which can be integrated without
introducing tangential derivatives or special limit-
ing processes as in Eq. (2.12¢). Similarly L, is
the only operator of form (aL,, — L,,) for which
the singularities in the kernels of the L, cancel.
Thus we can characterize the minimal coupling
formulation as follows:

The minimal coupling formulation involves
lower-order singularities in the kernels of the
coupling terms than does any other formulation
generated from Eqgs. (3.2) and (3.3).°

The cancelation of singularities tends to minimize
the overall effect of the coupling terms and to
simplify both analytical manipulation and numerical
solution of the equations.

Let us turn now to the two degenerate cases
p: = 0 and p; = «, both corresponding toy = 0.
When p, = 0, the problem is characterized by the
soft-boundary condition

pUs = pUy — (1/iw)Py = 0. (3.15)
The formulation reduces to the single equation
3 + La) 80U /on = U, (3.16)

obtained by substituting Eq. (3.15) in Eq. (2.10).
When p, = «, the problem is characterized by the
hard-boundary condition

U /on = 8U,/dn — Vi = 0, @3.17
and the formulation reduces to the single equation
G+ LU, = U (3.18)

obtained by substituting Eq. (3.17) into Eq. (2.9).

We now readily see that, as vy approaches zero, S
will look more and more like a soft boundary as
seen from V, and more and more like 8 hard bound-
ary as seen from V,. Starting from this observation
we obtain a perturbation technique for small v in
Sec. 4,

4. THE PERTURBATION TECHNIQUE
FOR SMALL ¢

In the last section we noted the relationsip be-
tween the problem of scattering from an interface

¢ The analogous formulation for electromagnetic theory
is given in C. Miiller, Grundprobleme der Mathematischen
Theorie Elektromagnetischer Schwingungen (Springer-Verlag,
Berlin, 1957), Sec. 23. Coupling is not minimized in the
acoustics formulation derived in J. Korrings, J. Math. Phys.
6, 1107 (1965), Sec. 7; here one of the two basic equations is
equivalent to Eq. (3.6}, but the other corresponds to Eq. (3.2)
with & = 1/4% a choice which does not lead to any simplifi-
cations,
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when v is small and the problems of scattering from
soft and hard boundaries. We develop now a per-
turbation technique in which we construct the solu-
tion to interface problems with small v from the
solutions to related soft- and hard-boundary prob-
lems. First we present the formal derivation and
then we discuss its validity and significance.

The formal derivation is straightforward. First
we write Eq. (3.6) as

(% + Ldl)(aUl/an) = Ua

+ y[U&: — (G + La)(8Uy/0n) — L,U,]  (4.1)
and Eq. (3.5) as
(% + LaZ) U, = U:)kz + U%
— L(aU,/dn) — v(3 + La)Us. (4.2)

Since none of the operators L, or source terms U%
and Ug depend on v, we have thus grouped together
on the right all terms of order v. Next we introduce
into the equations formal power series expansions of
the unknowns,

U /on = 2_~'UD, U, =
im0

YU,

i=0

@.3)

and collect terms of the same order in v.
We thus obtain the equations of the perturbation
technique,

G+ LU =
G+ LaU” =

1)
U:l ’

U;‘“),

4.4)
j=0.

Here the effective source terms are given by

Ux® =

U(a)knl ’

1V = Ute = (G + LU + LUS],  (45)
U = —[(& + Lyp)UYS™ + LUV, jz 2,
and
Ur® = Uk + U% — LU, 4.6)
Ur? = =[G + La)Us™ + LU, j2 1.

The unknowns in Eqgs. (4.4) must be solved for
in the order U}y, U, UL, U, ete. Then at each
step we have a single equation with a known right-
hand side. Comparison with Egs. (3.16) and (3.18)
shows that each U¥’ is the solution to a soft-bound-
ary problem and each U{” is the solution to a hard-
boundary problem. Thus, when the formal series
(4.3) converge or give a sufficiently accurate as-
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ymptotic approximation, then the problem of scat-
tering from an interface can be reduced to the
sequential sclution of problems involving soft and
hard boundaries.

As v — 0, the limiting solutions for soft and hard
boundaries are approached continuously; thus the
perturbation theory must be valid, at least as-
ymptotically, for y sufficiently small.” The example
of the next section shows that the perturbation
series in some cases converges to the exact solution
and in others gives rise to asymptotic approxima-
tions.

In practice we frequently encounter problems in
which U,, is the only source. Since aU,/dn is
given to zeroth order by an equation of form (3.16)
and U, = U, is of higher order, it is meaningful
to characterize the situation as scattering from an
“almost soft” boundary. Similarly, when Uy, is
the only source, then U, is given to zeroth order
by an equation of form (3.18) and 3dU,/dn is of
higher order; we can characterize this case as an
“almost hard” boundary problem.

For a gas-liquid interface, v is very small and can
usually be considered zero in reflection calculations.
The field transmitted across an almost soft boundary
into the gas m, can be calculated accurately from
U and U'D = U without reference to the value
of . The field transmitted across an almost hard
boundary into the liquid m, is of order 4 and can
be calculated accurately from U}’ and U® = UP.

5. EXAMPLE. SCATTERING FROM AN ALMOST
HARD PLANE INTERFACE

Let us now investigate the nature of the perturba-
tion theory by applying it to the well-studied prob-
lem of a plane wave incident from the tenuous
side on a plane interface. By proper interpretation
of the results, we see how, in general, the perturba-
tion series can be either convergent or asymptotic.
We also show that an impedance boundary condi-
tion does not satisfactorily describe scattering from
an almost hard boundary.

Let S be the plane z = 0, with 2 > 0 in V..
Consider a plane wave incident from V, at angle 6,:

Uoz = Uo exp {’l:k2°r}

= U, exp { —ik.(x sin 6, 4 z cos 6,)}. (5.1)

7 This is not the same as requiring v to be small compared
to unity. The U,.(j) and Ux(j) may be decreasing rapidly
with j so that v is sufficiently small while still greater than
umtfr, or they may be increasing rapidly so that y can be
small compared to unity but still not small enough. The
example of Sec. 5 illustrates this point.
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Then it is weli-known that at the interface

2 . .
pU = T-I——K'y p2U, exp {—ik,x sin 6.},

21Ky

aU/on = 11 Ky k. cos 6,
X U, exp { —ik,x sin 6,}, 5.2
with
K = [(k/ks)" sec® 6, — tan® 0,]).  (5.3)

We now show that for |Ky| < 1 this result can be
obtained exactly from the theory of Sec. 4.

This problem is especially simple because L, =
L; = 0. Thus Eqgs. (4.4) reduce to

:;’) — 2U::1(1'), 2(i) — 2U;k(”, (54)

and the effective source terms are also greatly
simplified.
The zero-order effective sources are by inspection

[ ® k. sin k_p’ 9 (sin k_p’
LE=if d'fd'[’—*—,—— 9, (antp
g o Jy ¥, o P + dp P
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Ug:(o) = Uoz
= U, exp {—ik,z sin 6,}.

U =0,
(5.5)
To evaluate the higher-order terms we first define

E = exp {—1ik,(z’ — x)sin 6,} (5.6)

and then evaluate the two integrals®

LE = (/in) [ dp ™ — &™)
0
2%

X f d¢’ exp {—i(ks sin 60" cos &'}
0
= 30esin 037 [ o ()7HE — o),
[}
Jor(kz sin 8,)p’][(k. sin 9:’),‘”]*

- —%i(l ;{ K)(Ic2 cos 6,)7Y, (5.7)

and

):I exp {i[k.p’ — (k;sin 6; cos ¢")o’1}

= —ik_ -+ (§I-> k. sin 6, f de’ (1/0") sin (k_p"e*** f de¢’’ cos ¢’ exp {i(k. sin 6,)p’ cos ¢’}
T 0 -7

= —ik_ + i(k; sin 6,)} f dp’ (0") 7 sin (k_p")e™* J,[(k, sin 6,)p'][(k- sin 6.)p' )
0

It

—31(1 — K)k, cos 0;.

Using these results we obtain
UXY = 0Uo/02 — 2L,Uss = —ik, cos 6,U,

— 22Uy L;E = —iKk, cos 6,U,,, 5.9
and the difference equations for the succeeding terms,
.1 — K UX?

L TTRG=D)
U2 T K kycos¥;’

U = (5.10a)

- U*l(i—l)
+ i1 — K)k, cos 6, U7, (5.10b)
The pair of equations (5.10) is readily solved to give

U:I(:) =

%) _ g\ . .
U3 ’ —( K).Uozy ]21, (5-11)
U:‘l(,) = i("K)’kg [{01) 0,‘U02, j _>_ 2.
We thus find
pU = 2p,U0s Z (—Kv)',
1= (5.12)

aU/on = 2ik, cos 6,Us 2. (—Kw)',

i=1

which indeed converge to Eqs. (5.2) for |Ky| < 1.

(5.8

We can acquire considerable insight into the
nature and limitations of the perturbation technique
by a study of the above results. First we note the
ratio

(8U/an)/pU
= —iy(ks/p2)[(kr/kes)® — sin® 6,1, (5.13)

In general k is smaller in the dense medium, so
that, no matter how small we make v, the ratio
depends strongly on 6,. Thus, even in this simple
case where there are no internal reflections, the
almost hard boundary condition cannot satisfactorily
be replaced by a standard impedance boundary
condition dU/dn = AU. Such a condition may,
however, be valid for the associated almost soft
problem.

We next note that for fixed ¥ we can choose 8;
close enough to grazing so that |Ky| > 1. If we

8 In this evaluation we use Ref. 4, Eq. 6.8 (37), and
A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi,
Table of Integral Transforms (McGraw-Hill Book Company,
Inc., New York, 1954), Vol. 2, Eq. 8.2 (18) [for Eq. (5.7)] and
Eq. 8.4 (15) [for Eq. (5.8)].
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admit complex angles of incidence (37 -+ 46;), then
we see that |Ky] > 1 also holds for complex angles
near grazing. Thus the plane wave spectrum of a
general source distribution in V, will contain a band
around grazing for which the perturbation series
does not converge. If a given source distribution
contains sufficient spectral energy in this band,
then the perturbation series for this source also
will not converge. Therefore, in general, the perturba-
tion technique gives rise to an asymptotic approxima-
tion.

Furthermore, for a concentrated source distribu-
tion we would expect best accuracy on that part
of the plane below the sources, where grazing waves
are least important. By extension, for scattering
from a finite body we would expect best accuracy
in the “illuminated’ region.

6. CONCLUDING REMARKS

The most significant material presented here is
the minimal coupling formulation of scattering at
a smooth curved interface, given in Sec. 3, and the
perturbation technique for the special case of small
v, given in Sec. 4. The minimal coupling formula-
tion is the more fundamental result, for it is the
best way to set up most two-medium problems for
any range of y. It can be used as the basis for a
numerical approach to the exact problem and as
the starting point in developing other approxima-
tions, such as for the treatment of small interface
irregularities.

The perturbation technique, on the other hand,
is of greater immediate importance. It gives a
physical insight into the interface scattering prob-
lem, a way of directly observing the effect on scat-
tering of changes in 4. Thus we have found with
very little effort that transmission from a liquid
into a gas is independent of 4 and transmission in
the opposite direction is proportional to y; we have
also shown that scattering from an almost hard
surface cannot be described by a simple impedance
boundary condition.

The perturbation technique furthermore reduces
the scattering problem to the point where it can
be solved numerically for fairly complicated inter-
face geometries using existing methods for soft- and
hard-boundary problems.” In these methods the
integral equation is replaced by a finite set of
algebraic equations, and the amount of computa-
tion necessary to solve the problem varies roughly

* R. P. Banaugh and W. Goldsmith, J. Acoust. Soc. Am.
35, 1590 (1963) (two-dimensional case); G. W. Soules and
R. P. Banaugh, Northrop Ventura Report 3515 (1964)
(three-dimensional case).
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as the cube of the number of algebraic equations.
For a given accuracy, the exact interface problem
requires twice as many equations as a hard- or
soft-boundary problem. Thus, for example, the trans-
mission across a gas-liquid interface can be cal-
culated by the perturbation technique with about
one fourth the work necessary for an exact solution.
When more than one value of v is to be considered,
the computational savings are of course much greater.

The perturbation series converges to the exact
solution in some cases but is in general asymptotic.
Perturbation solutions with larger domains of con-
vergence and improved rates of convergence can
be constructed from this series by various mathe-
matical strategems, such as those discussed by Morse
and Feshback.' Indeed, we have effectively done
this in Sec. 5, where we analytically sumamed a
series, valid for [Kvy] > 1, to get a result valid for
all K.

We have assumed throughout that the media
are in direct contact. Although this is often a good
approximation, there actually must always be a
surface-tension layer, membrane, plate, or other
separation along the interface to prevent mixing
of the fluids. Frequently the dynamics of this sep-
arating layer affect the acoustic scattering sig-
nificantly; in some cases, such as structural vibra-
tion problems, the response of this layer to an
acoustic wave is of direct interest. It appears that
the theory of this paper can be generalized to take
into account such layers, and work along these lines
is now under way.
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APPENDIX. DERIVATION OF EQUATIONS
FOR VU AND 3U/on,

If we apply Green’s first identity* to e-VU
and G,, use Eq. (2.5) to eliminate V@, and then
evaluate the integral containing the é&-function,
we obtain

e- (V) = e f S’ (6G./onl)V' U’
S
+ e-f AV’ G,V U’
v
— f AV’ V'Gy-V'(e-V'U"). (Al
v
10 P, M. Morse and H. Feshbach, Methods of Theoretical

Physics (McGraw-Hill Book Company, Inc., New York,
1953), Pt. 11, Sec. 9.1.
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To simplify this we require the easily established
relationships

V(e V'U) = (e:V)V'U' = e(Q/p ~ KU
f— VI x (e *® V!U!)’ (A2)

+ f AV EV(GoU")
v

+v [ av (1/p>GoQ'}- (A5)

f dV' VG [V’ % (e x V'U") Since this must hold for all values of e, we can
4 suppress the factor (e-). From Eq. (2.6) we see
that the term involving Q' is just WV (oU,). The
other two integrals can be reduced to the form
given in Eq. (2.8) by straightforward application

if

—fvdV’ V' VG, x (e x V'UY)]

= e- L dS' (g x V'Gy) x V'U, (A3)  of standard vector identities, and the proof of that
equation is then complete.

and Now let us multiply Eq. (2.8) by (n,+), make the

VG, = —=V'G,. (A4)  substitution (A.4), and take the limit as r approaches

S. Since the singularity in G, is of form 1/R, the

Using these in Eq. (A1) gives > )
limit can be evaluated using Kellogg’s results®

e (pVU) = e'{ f ds’ [(m}-V'Go) V' U’ specifically Chap. VI, Theorems IV-VI, and the
s discussion leading up to Theorem V. The result
+ @m§ x V'Gy) x V'U’') is Eq. (2.10).
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The usual differential form P, for the quantum-mechanical momentum operator P which is conju-~
gate to a generalized coordinate ¢ (¢ < ¢ < §) is, in atomic units, Py = — i(g™*) 8/9¢ (g* ), where g is
the Jacobian of the transformation from Cartesian to generalized coordinates. However, P, is not
always self-adjoint on the domain © of physically aceeptable bound-state wavefunctions, as a proper
quantum-mechanical operator should be. An integral form is proposed for P, defined by

Pilg) = @077 [ exo (kPG dk, o« < g <8,

where

8
Fk) = @m)™ f exp (—ikOIOFE &, | E D.

The effect of this integral operator (which is suggested by the ideas of Fourier transforms) differs from
that of Py only at the end-points of the range of ¢. In a sense, it is formally equivalent to an operator
(suggested by Robinson and Hirschfelder) which is obtained by adding certain delta-function terms
to Ps, but it suffers from none of the defects, since delta-functions do not appear explicitly. Various
properties of the integral operator are derived. Some discussion of the domain D is presented as an
appendix.

1. INTRODUCTION ¢ being the Jacobian of the transformation from
Cartesian coordinates to generalized coordinates.
Let us suppose that the physically relevant range
of the coordinate ¢ is @ < ¢ < 8. Then the inner
product (u, v) of any two functions of ¢ is defined by

(u, v) = fﬁ u*vg dg. ]

HE customary differential form P, for the

quantum-mechanical momentum operator P
which is conjugate to a real generalized coordinate
g is, in atomic units,

P, = —i(g™") 9/39(g"), ¢))
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1t follows from (1) and (2), after integrating by
parts, that

(u) Pov) - (POuy v) = —i[gu”]ﬁ-a- (3)

In order that P, should be a proper quantum-
mechanical operator, it is required to be self-adjoint*
on the domain D of physically acceptable bound-
state wavefunctions (some discussion of this domain
is given in the Appendix). A necessary condition
for the self-adjointness is the vanishing of the bound-
ary term on the right-hand side of Eq. (3) when u
and v are functions belonging to ©. However, such
boundary terms do not always vanish.

There are thus three possibilities. Firstly, the
domain D could be restricted so as to exclude func-
tions for which the boundary term in Eq. (3) does
not vanish. This is not realistic, as a simple example
of nonvanishing boundary terms arises when u and
v are o-type hydrogen-atom wavefunctions expressed
in parabolic coordinates.*'* Secondly, the generalized
momentum operator P may not be a proper quan-
tum-mechanical operator representing an observable.
This might well be the case, but it does not seem
too unreasonable to suppose that generalized mo-
mentum components can, in certain circumstances,
be measured, even if the required apparatus has to
be rather complicated. Thirdly, the differential op-
erator P, may not be a true representation of the
quantum-mechanical operator P. It is this third
possibility which is pursued in this paper.

An attempt to find a self-adjoint form for P has
been made by Robinson and Hirschfelder.? They
suggest an expression P, for P, where

P, = P, — 3i{d.(¢ — @) — 8-(8 — 9} @

the delta~functions being similar to Dirac’s except
that their effects inside an integral are, respectively,

[ 1080~ @da =@, «<i<s,

and

8
[10s6-0d=10, a<i<s @

[The inclusion of the delta-function terms is based
on the fact that a more fundamental form of (1)
is —¢{a/8q + % div (h4)}, where h is the metric

M. H. Stone, Linear Transformations tn Hilbert Space
(American Mathematics Society Publications, New York,
1932), Vol. 15, Chaps. IV and V.

* L. 1. Schiff, Quantum Mechanics (McGraw-Hill Book
Comg ny, Inc., New York, 1955), 2nd ed., Chap. 1V,

3 P. D. Robinson and J. O. Hirschfelder, J. Math, Phys. 4,
348 (1963).
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scale factor corresponding to ¢, and § is the unit
vector in the direction of ¢ increasing. The delta-
functions arise naturally in the interpretation of
div (h4) at the end-points where § is ill-defined.]
It is easy to see that P, is formally self-adjoint,
insofar as

(u, Py) = (Pw,v),

irrespective of the boundary values of u and wv.
However, in spite of this, and notwithstanding the
fact that P, (like P,) satisfies the necessary com-
mutation requirements, the form (4) is not really
satisfactory. Indeed, P, is not strictly an operator
at all. The deltafunction terms are only strictly
meaningful when appearing inside an integral over g,
and it is not possible to interpret expressions such
as Pj, or give meanings to inner products like (Pu,
Pv) without an artificial convention defining the
square of a delta-function.

These considerations lead us to propose an integral
form for the operator P which has the same effect
as P, when P, is self-adjoint, and otherwise is, in a
sense, equivalent to P,. This integral operator does
not suffer from the same shortcomings as does P,
because delta-functions do not appear explicitly.

We develop the integral form in Sec. 2, and derive
some of its important properties in Sec. 3. Finally,
in Sec. 4, the relationship between corresponding
integral and differential operators is discussed. We
concentrate on the situation which arises when the
end-points a and 8 are both finite; this is potentially
the most unpleasant case. Modifications are obvious
if ¢ extends to infinity at either or both ends of its
range.

2. THE INTEGRAL FORM FOR P

We are led to the integral form for P by consider-
ing the situation in what is effectively generalized
momentum space. The starting point is Fourier’s
integral theorem. Let f(g) € © be a wavefunction,
and let F(k) be the ‘finite’ Fourier transform of
f(g)g*(g), defined by

8
Fk) = (2m)7* f. exp (—k)fOFE d;  (6)

F(k) can be regarded as the ordinary Fourier trans-
form of a function ¢(g) defined by

]
qs(q)={f(q)g(q), a< <8,
0, —o<g<a or B<qg< o,

@

(Should @ be — = or 8 be + «, then the appropriate
part of Eq. (7) can be omitted.] In Eq. (6) we use
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£ as a dummy variable instead of ¢; this practice is
adopted throughout the paper whenever an integra-
tion over the whole range of ¢ is involved, thus
avoiding confusion with any ¢ representing a cur-
rent value.

We make the following assumptions concerning
a function f € D

B
@ [ @1 @ de < =; )
8
®) [ @1 do & < =; (8)
B
© 0.h=[ Hore@d< =  ©o

(d) f(&)g*(®) is of bounded variation in the neigh-
bourhood of £ = g.

Condition (a) ensures the existence of F(k) for
any finite k. Conditions {a) and (d) ensure that
Fourier’s integral theorem holds (see Titchmarsh®),
so that

1@ = @077 [ exp ko a,

a< g<@B 't

[Even if (a) and (d) do not hold, but (c) does,
modified forms of Egs. (6) and (9) are still available
with convergence in mean replacing actual equality.?]
By Parseval’s formula,* (c) is equivalent to
[ rwra < o, (10)
which is one of the conditions which f must satisfy
in order that it should belong to D (see the Ap-
pendix). Condition (c) is inserted to justify a change
in the order of integration in Sec. 3A below.
Because of the possible discontinuities at a or 8
in the function ¢{g) defined by Eq. (7), a factor %
must be inserted® on the left-hand side of Eq. (9)
if it is to be true when ¢ = a or ¢ = 8. Thus Eq. (9)
does not hold at the end points unless f(a)g*(a) or
f(8)g¥(B) is zero. Although this frequently happens,
we do not wish to restrict the function f(g) in this
way. In fact, if f(a)g*(a) = F(8)g*(8) = O, then the
usual differential form P, as given in Eq. (1) is
self-adjoint (see Sec. 4), and no difficulties arise.
Equation (9) can be regarded as an ‘“‘expansion”
of f(¢) in terms of the formal eigenfunctions
g ¥(q) exp (¢kg) of the operator P,, with F(k) playing
the role of a wavefunction in %-space.

4 E. C. Titchmarsh, I'nfroduction io the Theory of Fourier
Integrals (Oxford University Press, Oxford, 1948), 2nd ed.
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Operating on Eq. (9) with P,, we have
.3 9, - -
Pif(g) = —ig *55 @) = @07l 7Ny

X f exp GQEF(R) dk, o < q <B8. (1)
We assume that the integral in Eq. (11) is convergent
(see the Appendix); it is a uniformly continuous
function of ¢, and so the differentiation under the
integral sign is permissible. Equation (11) is not
true in general at the end points « and 8 because
of the discontinuities in the function ¢(g); it does
however hold there if f(a)gi(a) = F(B)g*®B) = 0,
and possibly under other circamstances mentioned
in See. 4. It is readily shown (see Sec. 3B) that the
integral operator on the right-hand side of Eq. (11)
is self-adjoint, and so we take it as our definition
of P; it agrees with the usual form P, except at the
end points. Thus we stipulate that, for every f(g) € D,

Pi(g) = 20 %Xy

X f " exp (ikQkF() db, «<q< B  (12)

It must be emphasized that Eq. (12), which
defines P, holds good for the closed interval a <
g < B, whereas Eqs. (9) and (11) are in general
merely true in the open interval @ < ¢ < 8.

3. PROPERTIES OF THE INTEGRAL OPERATOR P

We now demonstrate some important properties
of the integral operator P, defined by Eq. (12).

A. The Commutator [P, ¢] = Pq — ¢Pis —i
1t follows from Eqgs. (6) and (12) that

PG = @0767@ [ exo Grolk dk

B
X [ exp (~iho@P© &t (13)

Conditions (8a) and (8b) ensure that the &integrals
in Eqgs. (12) and (13) converge uniformly with
respect to k over any finite interval; thus the order
of integration can be changed. Doing this, we find
that

8
P@) — aPf = @070 [ 1026 at
x [ ew (it - DIk — 9 db. (19

The k-integral gives
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~i [ exp tak(g — B} db

+ ik exp {ik(g — 1%,
and thus, using Eqs. (6) and (9), Eq. (14) becomes

P(qf) — qPf = —if + ig  (Q[k exp (k)P (k)] ..

(15)
Assuming that the boundary term in Eq. (15)
vanishes (this matter is discussed in the Appendix),
it follows that the operators [P, ¢] and —¢ are
equivalent when operating on a function f(g) & D.
Thus the usual commutation rule for a momentum
operator is satisfied.

B. P is Self-Adjoint

To show that P is self-adjoint, we must prove
that (u, Pv) = (Pu, v) whenever u, v € . Denoting
the finite Fourier transforms of wu(g)g*(g) and
v(q)g*(q) by U(k) and V(k), we have

8
(u, Py) = @m)} f., u*(g)g*(q) dq

X f " exp (ikQ)kV (k) dk,

8
Pu,0) = @0 [ o0d@ dg

x [ " exp (—ikg)kU*(K) dk.

Changing the order of integration in each case (this
is justified as in Subsection A above ), we see that

w, Ps) = (Pu,v) = f_ T RUR V) dk. (16)

C. The Expectation Value of P for a Real State is Zero

We must show that the expectation value of P
for any real state f(g) is zero. This should be so,
because the probability current density, being pro-
portional to (fVf* — f*V7), is identically zero, and
thus the mean value of all momenta should be zero.
It is enough to show that (f, Pf) vanishes whenever
fisreal and f & D.

If f is real, then F*(k) = F(—¥k). Thus from Eq.
(16) with u = v = f, we have

¢, Pf) = f_ : KF(—RF() dk = 0,  (17)

by symmetry.

D. The Meaning of a Function of P

Because of the unitary nature of the transforms
(6) and (9), Eq. (11) implies that an operation by
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P, in g-space is unitarily equivalent to a multiplica-
tion by k in k-space, provided that @« < ¢ < 8.
Thus, formally, an operation by a function x(Po)
in g-space is equivalent to a multiplication by x(%)
in k-space, again provided that « < ¢ < B, ie,

©

x®f = @ro)™* [ exp Ghox®FG) dk,
a<g<B. (18)

Analogy with the pair of equations (11) and (12)
therefore leads to the conjecture that x(P) may be
defined by

x(P)f = @rg)™ [ exp Gkax(WF® dk,

a<¢g<B (19

in those cases where x(P,) is not self-adjoint. Just
as in Subsection B above, it can be shown that
x(P) is formally self-adjoint if x is a real function.
Corresponding to Eq. (16), we have

W, x(P)) = (x(P)u,v)

- f XBU@RVE dk.  (20)

Equation (20) can also be used to give a meaning
to iner products like (Pu, Pv), since methods
similar to those in Subsection B indicate that (Pu,
Pv) = (u, P%).

4. THE RELATIONSHIP BETWEEN THE
INTEGRAL AND DIFFERENTIAL OPERATORS

It is possible to derive a formal relationship be-
tween integral and differential forms for the op-
erator P. We already know that the integral form is
equivalent to the usual differential form P, in the
open interval ¢« < ¢ < 8.

Integrating (6) by parts, we have

; B
POy = —@0™ g [ exp (—ikt) % 00 dt
+ (2n)™ - [exp (~ikD)fg1L.
Thus, from (12) it follows that

Pilg) = —i@n)g7@) [ exp (ko) d

@y

8
X [ exp (—it) 3 (1e) e

+ i(2m) g7 X(g) f_ : exp (tkq)

X {exp (—ikB)f(B)g*(8) — exp (—ika)f(@g* ()} dk.
(22)
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The first term on the right-hand side of Eq. (22)
simplifies to Pof{g); the second term, which vanishes
if fla)g*(a) = f(B)g*(B) = 0, can otherwise be
expressed formally in terms of delta-functions, viz:

Pf(g) = Puf(g) + ig7H(g){8(g — B)I(B)6*®)
~ 8¢ — f@)gH@)]}
= Pof(q) — ¢{é(g — @) — (g — B)}f(@
= Pof(g) — $¢{8.(¢ — @) — 8-(8 — 9f(®)-
(23)

Expression (23) involves the delta functions men-
tioned in Sec. 1. So we see that the integral form
for P is in a sense equivalent to the operator P,
proposed by Robinson and Hirschielder; if either
1(®)g*(8) or f(a)g*(a) is zero, then the corresponding
delta-function term is omitted.

We may also omit the delta-function terms in
(23), or strictly the last term in Eq. (22), if P is
only to be associated with functions belonging to the
sub-domain D, of D on which the usual differential
form P, is self-adjoint. In order that P, be self-
adjoint, it is necessary that g(B)u*(Bv(B) =
gla)u*(a)v{e) when 4, » € D, {cf. Eq. (3)]. Thus, if
1(g) € Do, we must have gH(8)1(8) = g*(e)f(a) exp (iv),
where v is a real constant. Equation (22) shows
that the inner product (u, Pv), for instance, is then
the same as

(w, P) + 5i{gBu*Bv(B) ~ gl@u*(@v(@)},

and so (u, Pv) = (u, Pyw). Thus if the usual form
P, is self-adjoint, we can take it as the definition
of P; it is only when P, is not self-adjoint (i.e.,
when we are concerned with functions belonging to
D but not to Dy that the integral form (12) is
necessary for the definition. The integral operator is
a kind of extended definition of the usual differential
operator; this concept of extended definition has been
discussed by Friedman,” employing the delta-func-
tion approach.

Similar formal expressions involving delta func-
tions and their derivatives can be developed to
represent powers of P. For example, P? is defined
by [ed. Eq. (19)]

Pile) = @077 [ e GRoRT® d,

a<g<B (29

5 B, Friedman, The Principles and Techniques of Applied
}ghatke?gics (John Wiley & Sons, Inc., New York, 1956),
ap. 11,
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After integrating expression (6) for F(k) twice by
parts and substituting in (24), it is found that

Pf(g) = Pif(9) + (20 '¢"}(g)

x [ exp Gholib exp (~ik0fe*

+ exp (—ikd) ;;—’g (GgD1? dk. (25)

The last term in {25) can formally be written as
| {2 s - e
] 8
+g -9y {f(s);:*(&)}lm

and it can be omitted althogether if we are dealing
with functions with respect to which Pj is self-
adjoint. The special case when P35 happens to be a
kinetic energy operator is an example, for kinetic
energy operators are all self-adjoint on the domain
®. This happens when P2 = —g7%9%/3¢*(g* ) is the

same as
e {g_ _6_}
9 3¢ \W* aq

(h being the metric scale factor corresponding to ¢),
as for instance when ¢ is a spherical polar radial
coordinate. But, generally Pj is not self-adjoint
on the domain D, and the integral form (24) must
be used for P°.

APPENDIX. THE DOMAIN D

L= (26)

In theory, there is no ambiguity about the domain
D containing all physically acceptable bound-state
wavefunctions, but in practice, the conditions that a
function should belong to © are often hard to apply.
Kato® shows that D is the domain of the closure of
all Laplace operators, i.e, of all kinetic energy
operators, all such operators being self-adjoint on
this domain. Kato also gives precise conditions in
terms of Fourier transforms under which a wave-
function belongs to ©. If, for example, ¢¥(r) is a
wavefunction describing the behavior of a particle
at the vector position r, then the conditions are

[ wer ax < =, (a1

and
[ i P a < =, (a2)

¢ T. Kato, Transl. Am. Math. Soc. 70, 195 (1951).
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where ¥(k) is the Fourier transform of ¢(r), defined
by
v(k) = (2r)"} f exp (—ik-r)¢(r) dr. (A3)

The integrations in {(A1)—(A3) are respectively taken
over all k-space and all r-space. Generalizations of
these conditions hold for wavefunctions of many-
particle systems.

The conditions that a wavefunction f(z) of a
single Cartesian coordinate z should belong to D
take the simple forms

[ str e < o, (A%)
j: TR W de < o, (A5)

where
5® = @0 [ " exp (—ikn)f(x) dz.  (A6)

Unfortunately, the situation is not so straight-
forward for a function f(g) of the generalized co-
ordinate ¢. The condition (A4) has its analog in
Eq. (10) of the text, which, in the equivalent form
(8¢), is just the condition that f(g), being a bound-
state wavefunction, should be normalizable. How-
ever, (A5) has no immediate counterpart. This
latter condition is equivalent to saying that

L1, Lf) = (f, Lf), (A7)

where L, = —8°/82 is effectively the kinetic energy
operator. The appropriate kinetic energy operator
which corresponds to ¢ is L, given by (26), and,
instead of (A5), we have

y]
e [ 1o dg

X f " FOL*g exp (ik)} dk < w.  (AS)
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Equation (A8) simplifies to
- 4 *
@t [ 1ot da

-« 4

X f {E a,k’}F(k) exp (ik) dk < =,  (A9)
- =iy

where the coefficients a, are functions of ¢ depending

on g(g), h(g), and their derivatives. Condition (A9)

most probably implies that

f " KF() exp (ikg) dk < w,

r=10,1,23,4, (A10)

but we cannot be absolutely certain of this without
knowing details of g(g) and h{g).

Equation (A10) must hold when » = 1 in order
to make equations (11) and (12) meaningful and P
well-defined. It is also necessary that

(kF(k) exp (kQ)Jea-w = O (AlD)

if the commutation rule [P, ¢] = —1 is to be satisfied
[vide Eq. (15)]. (A11) surely holds if (Al10) is true
forr = 0, 1, 2, 3, 4. However, it seems probable
that we cannot definitely assert that conditions
(A10) with r = 1 and (All) are satisfied, given
that f(g) € D, and so we must be content with
assuming that these conditions are fulfilled in order
that the operator P be a proper quantum-mechanical
operator.
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A pseudovirial theorem is derived for time-independent particlelike solutions of finite energy (sin~
gularity-free and spatially localized time-independent solutions) to field theories associated with an
action principle. It is shown that a useful necessary condition for the existence of such particlelike
solutions is generally obtainable as a corollary to the pseudovirial theorem. This necessary condition
is in faet sufficient to preclude existence of any well-localized particlelike solution for all but special
field theories with the more common forms of algebraic interaction. On the other hand, strong satis-~
faction of the necessary condition can lead to model field theories with rigorous closed-form particlelike
solutions, as shown by example for a class of Lorents-covariant theories which feature a real scalar
field in interaction with a two-component complex Weyl spinor field. Some of the latter particlelike
solutions to the scalar-spinor theory are energetically stable with respeet to spatial dilatations, hence
likely to be stable in the dynamical sense. A counter example to the more general sufficiency of the
strong satisfaction condition is presented, showing that strong satisfaction of the pseudovirial theo-
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rem’s corollary does not always guarantee the existence of singularity-free particlelike solutions.

L. INTRODUCTION

ONSIDERABLE recent interest has been at-

tached to particlelike solutions to model Lor-
entz-covariant nonlinear field theories.’® The idea
for such a research program is fostered by the well-
known and serious practical deficiencies of struc-
tureless point-particle representations in classical
and quantum field theory. Further motivation for
the study of particlelike solutions to model non-
linear theories is provided by the still enigmatic
content of unified field theories, where only the
manifold of properly bounded and singularity-free
solutions is postulated to be of physical significance,*
an essentially recondite manifold of solutions.

It is the purpose of the present paper to consider
the more general question of existence for singularity-
free and spatially localized time-independent solu-
tions. Our main result appears as a necessary condi-
tion for the existence of any particlelike solution
of finite energy, applicable to all field theories as-
soeiated with an action principle and presented here
as a corollary to a pseudovirial theorem. This pseudo-
virial theorem and its corollary are global relation-
ships, like the laws of conservation of total field
energy or momentum, but unlike the other more
venerable global relationships, the pseudovirial the-
orem and corollary express nontrivial conditions
which must be satisfied by a time-independent solu-
tion. The corollary is in fact sufficient to preclude

1. Enz,” Phys. Rev. 131, 1392 (1963), and works cited
therein, ¥ s

2 3, H. Derrick, J. Math. Phys. 5, 1252 (1064).

3 G. Rosen, J. Math, Phys. 6, 1269 (1965). .

1 A. Einstein, The Meaning of Relativity (Princeton Uni-
versity Press, Princeton, New Jersey, 1955), pp. 164-165.

existence of any well-localized particlelike solufion
for all but certain special field theories with the more
common forms of algebraic interaction.

In the subsequent section of this paper, we consider
a restrieted class of Lorentz-covariant model theories
obtained by satisfying the pseudovirial theorem’s
corollary in the strongest possible (local) way for
a real scalar field in interaction with a two-com-
ponent complex Weyl spinor field. Rigorous closed-
form singularity-free particlelike solutions are ob-
tainable for this restricted class of model theories.
Also noteworthy is the fact that some of the particle-
like solutions to the Lorentz-covariant scalar-spinor
theories are energetically stable with respect to
spatial dilatations, and so it is possible to conjecture
their complete dynamical stability.

In the final section of the paper, we consider a
related class of theories which feature a real scalar
field in interaction with a four-component complex
Dirae spinor field. For a restricted class of the latter
theories, it is demonstrated that strong satisfaction
of the pseudovirial theorem’s eorollary is insufficient
to admit any singularity-free particlelike solution.
Thus, we see by example that the strong satisfac-
tion condition is not always sufficient to guarantee
such localized solutions.

II. THE PSEUDOVIRIAL THEOREM AND
ITS COROLLARY

Time-independent solutions to field theories ag-
sociated with an action principle satisfy equations
of the form

3E/8f(x) = 0, )
where the energy functional £ = E[f(x)] depends
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on (real and/or complex) fields represented in (1)
by the generic quantity f(x). Let us make a linear
decomposition of E,

E= 2 E, @

{w)

in which E®’ is a functional of ‘“weight” w with
respect to changes in the form of f(x) due to spatial
dilatations,

B = BUU@] = \TECHD] ()
for all real A > 0. Then the pseudovirial theorem

2 wEf(®)] = 0 4)
(w}

follows immediately from (2) and (3), because the
equation

{3‘% EU(M)]}X_I =0 ®)

is a direct consequence of the Eqs. (1).°

Each of the quantities E“”[f(x)] must be finite
in order for (4) to be meaningful, and hence the
pseudovirial theorem applies to spatially localized
time-independent solutions with no serious sin-
gularities. For such “particlelike’” solutions, it is
generally possible to eliminate all spatial derivatives
of the fields which appear in the E“’[f(x)] by
evoking the equations (1). A useful corollary to the
pseudovirial theorem is thereby obtained in the form

[ sty ex =0, ®)

where F(f(x)) is a purely algebraic function of f(x).
Hence, we use the local Egs. (1) first to establish
the global pseudovirial theorem and then again to
eliminate spatial derivatives in the global relation
provided by the theorem, and in this way an impor-
tant property of the particlelike solutions to Egs.
(1) is obtained.

It is remarkable that Eq. (6), a necessary condi-
tion for the existence of a particlelike solution, is
in fact sufficient to preclude existence of such solu-
tions for all but special field theories which feature
the common form of algebraic interaction, as il-
lustrated by the following examples.

Example 1: Static particlelike solutions for a self-
interacting real scalar field.

E = E(—l) + E(_a),

where

E(—l) = f (va)z d"’x, E(—a) = _gf lolv d3x

5 The well-known virial theorems for periodic particle
motion in classical mechanics and stationary particle states in
guantum mechanics can also be established by the spatial

ilatation invariance argument used in our proof.
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(¢ and p positive constant parameters). Equation
(1) takes the form

V*6 + dgp |0 0 =0,

and we can bring the statement of the pseudovirial
theorem (4),

[ 1=vor + 3¢ loP1@°x =0,
into the form of Eq. (6),
-6 [ lorax=o,

which implies that a nontrivial particlelike solution
can exist only if p = 6, a special case studied pre-
viously and shown to admit rigorous singularity-
free particlelike solutions.’ In order to make the
manipulations meaningful, we require a 6(x) of
function class C* for all x and such that

lim [|z[** 6(x)] =0,

|x| =

s = min {p, 6}.
Example 2: Stationary particlelike solutions for
a self-interacting complex scalar field.
E — E(z) + E(O)
where
f Vi*-Vydx -9 f O
E(0)=_.

E(z)E =
f vy d’x

’

[ vy

(g and p positive constant parameters). Since the
pseudovirial theorem gives E = 0, we conclude
immediately that the nonlinear eigenvalue equa-
tion
VY + Gep(P* )P + Ely = 0
has no nontrivial solution ¥(x) of function class C*
for all x and such that
lim [z [Vy[] =0,

[x}—o

lim [|x** |¢[]] =0,

|x| e

t = min {p, 2}.

Ezxample 3: Static particlelike solutions in non-
relativistic quantum electrodynamics.

E = E(—l) + E(—a)

where
-0 — 1 2, B . 3
B = [ [Lvor + Eviv|es,
EC® = —-efdup*\b d’z
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(k, m, e positive physical constants). Equations
(1) take the forms
2

V' +dred*y =0, -V +epy =0,
and so we find that E“" = —3E“® while the
pseudovirial theorem produces E" = —3E“%,
Hence, there is no nontrivial solution with ¢ and ¢
of function class C* for all x, and such that

lim [|x|"¢(®)] =0, Ililm (lx}* [¥v@[ =0,

|x|—ew

lim [|x|} |[Wy®)]] = 0,

[x[—e0

r>3 s>% (r+2)23.

Ezample 4: Static particlelike solutions in rel-
ativistic quantum electrodynamics.

E — E(—l) + E(—2) + E(—z)’

where

- _ [ L1 2 g8
B = [ (e
E? = ——ihf Ve Vy dx,
E“Y = f (my'BY — epy'y) d’x.

Here, ¢ is a four-component complex Dirac spinor
field, y' is its Hermitian adjoint, and e, 8 are
Hermitian Dirac matrices. In this case, Egs. (1) are

V% + dwed'y =0, —iha: V¢ + (mB —ed)¥ =0,

and allow the statement of the pseudovirial theorem
Ji [—Si (Vo) + 2ing'e- V¥
T

+ 3(edy'y — mm] dx =0

to be brought into the general form prescribed by
Eq. (6),

[ Gesy'y — mé'swy a'x = 0.

This physically interesting condition does not pre-
clude the existence of a rigorous particlelike solu-
tion, and whether or not such a solution can be
obtained remains an open question.’

¢ A numerical integration calculation has recently been
applied to the classical Dirac-Maxwell static field equations
by M. Wakano, Progr. Theoret. Phys. (Kyoto) 35, 1117
(1966). This work supports the existence of a rigorous particle-
like solution, but with the total classical field energy E nega-
tive.
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III. STRONG SATISFACTION OF THE
NECESSARY CONDITION: A CLASS OF
SOLVABLE MODEL FIELD THEORIES

Let us turn to a more general class of Lorentz-
covariant field theories associated with a Lagrangian
density of the form’

¢ —~ (VO + iy +iv'eVy+E 7

where 6 is a real scalar field, ¢ is a two-component
complex Weyl spinor field (¢' its Hermitian adjoint,
¢ the Pauli matrices), and the interaction Lagrangian
density is a generic function

£ =20, p),

L =

where

p=v'v. (8

For time-independent solutions, the energy func-
tional is

E = E(-—l) + E(—z) + E(—z)’ (9)

where

ECY = f (Vo)z dax, EC? = _1/‘ ¢td.V1[/ d3x,

B = —f £ d’x
s0 the field equations (1) are given by

V204 4(0£/06) =0, 13-V y+ (3£/9p)¢ =0. (10)

The latter equations can be used to reduce the
statement of the pseudovirial theorem

f [—(V0)? + 2y'6-Vy +38]dx =0  (11)
to the form of Eq. (6) with
F = —10(08/06) — 20(3£/3p) + 3£. (12

Now consider the restricted class of scalar—spinor
theories for which Eq. (6) with (12)—a necessary
condition for the existence of particlelike solutions—
is satisfied in the strongest possible way, namely
by having the quantity § vanish identically, ir-
respective of the fields for all x. Then according
to (12), the “strong satisfaction condition” § = 0
implies that the interaction Lagrangian density takes
the form

£ = 029G7 G = G, k= P/04) (13)

7 Although Lorentz-covariant classical model theories
featuring a Weyl spinor field have not been studied heretofore,
the literature contains several seemingly related (but not
exactly solvable) nonlinear model theories. Interesting work
along these lines was initiated by: N. Rosen, Phys. Rev. 55,
94 (1939); A. C. Menius, Jr., and N. Rosen, Phys. Rev. 62,
436 (1942), and extended by: R. J. Finkelstein, Phys. Rev.
75, 1079 (1949). The pseudovirial theorem actually precludes
the rigorous existence of singularity-free and spatially localized
static or stationary solutions to some of the simpler nonlinear
model theories which have been considered in the literature.
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and Egs. (10) become
V20 + (3G — 2H)y'y6 = 0, 19
16:Vy +HY =0, H = H(l) = G + «(dG/dx).

Note that the arbitrary differentiable real function
G, the related function H, and their common argu-
ment x = YiY/6 all have the dimensions of (en-
ergy) .

Concentrating attention on the restricted class
of scalar-spinor theories with the time-independent
field equations (14), we find that the rigorous sin-
gularity-free spherically symmetric solution is ob-
tainable and expressed in closed form by

9 = £@aH ) (x]* + a*)},

(15)
v = 3alH'(|x|* + o) ¥{é-x + a)u,
provided that the equation
H* 4+ 3@2H — 36) =0 (16)

admits a real positive root x = const for which
H > 0. In (15), the constant Weyl spinor u is
normalized to unity, u'u = 1, and the “size pa-
rameter” a has the same sign as H but is otherwise
a free (nonzero) constant of homology, stemming
from the scale invariance of Egs. (14):

8x) — AMo(x),  Y(x) - M)

for all real A > 0. It is a simple matter to verify
that (15) satisfies (14) with « a constant real positive
root of (16), although there is no systematic pro-
cedure for obtaining this rigorous solution by straight-
forward integration of the nonlinear coupled equa-
tions.

All of the energy terms in (9) are finite and
evaluated easily with (15),

EY =197 |H™'|, EV® = 12W%H ' |H™
E©¥ = —1277%G |H?,

the pseudovirial theorem reproducing the condition
(16). The total energy or “particle rest mass” is
thus

1]7 (17)

E =31+ 3H™) |H, (18)
while the second variation of the energy functional
with respect to spatial dilatations is evaluated as

¥E = {(@/dN)E[6(xx), $(\0)]}r-
-3
= 2 W - wEHX, )]

wem—]

19
— 2E(—1) + 6E(—2) _|_ 12E(—3) ( )

9" -1 -1
= —7(1 + 3«H™) |H™Y,
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the sign of the latter quantity relating the energetic
stability or instability of the ‘“particle” with respect
to changes in the functional form of the solution
(15) induced by infinitesimal spatial dilatations.
It should be noted that in order for both (18) and
(19) to be positive, H evaluated at the root of (16)
must satisfy the bounding relation —3x < H <
—3«, and thus, as a consequence of (16), G evaluated
at the root of (16) must satisfy the bounding relation
-k <@ < -3

Qualitatively speaking, stability or instability in
the dynamical sense is likely to be determined solely
by a spherically symmetric perturbative mode.?
Therefore, we may conjecture that ‘“energetic sta-
bility”” of a particlelike solution, expressed by (19)
as positive, also indicates the dynamical stability
of the solution. Support for this tentative mathe-
matical conjecture is provided by the general sig-
nificance of energy in the dynamics of physical
systems, although a formal proof of this conjecture
(which must certainly involve complicated qualify-
ing conditions for admissible perturbative modes)
is difficult to establish, mainly because admissible
dynamical perturbations of the coupled fields can-
not be wholly independent, but only independent
modulo all conservation laws of the theory implied
by the action principle.

We conclude this section with some examples
for G = G(x) and brief discussions of the salient
properties of the associated particlelike solutions
(15).

Example 1: G = m™', where m is a positive
constant (dimensions of mass). Obviously this is
the simplest admissible form of G. It gives H = m™
and we find that the root of (16) is x = (3m)™".
The particle rest mass (18) is E = (2x°)m, a positive
quantity, while the second variation of the energy
functional (19) is negative, $°E = —9x°m, showing
that the particlelike solution is energetically un-
stable.

2 1

Ezample 2: G = ym %' — m™, y and m( 0)
constants. This is the most general form of G for
which the interaction Lagrangian density is com-
posed entirely of terms in positive integer powers
of § and Yy : & = ym6° — m'Ytye®. In this
case, we have H = —m™" and find that the root
of (16) is k = (3y — )m™", requiring that either
y>%m>0o0ry < § m < 0 for a solution. The
particle rest mass (18) is E = ($r)(1 — 3y)m, a
positive quantity if either y < 3, m > Oory > 3,
m < 0, the latter possibility excluded by the require-
ment that x be positive. For (19) we have 8°E =
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(387)(9y — 2)m, a positive quantity if v > % with
m > 0. Hence, «, E, and 8°E are all positive if
E<y<im>0.

Ezample 3: @ = gk, g a positive constant. This
is the form of G for a self-interacting scalar field
and a free spinor field, a singular case that requires
the special treatment provided elsewhere.® The par-
ticlelike solution, however, can be obtained formally
from Eqs. (15) by putting 3 [H™| = g *and x = 0,
the correct expressions for (18) and (19) also being
given by this substitution. E is positive but §°F is
negative.

Ezample 4: G = g«*, g a positive constant. This
is the form of G for a self-interacting spinor field
and a free scalar field, also a singular case that
requires special treatment. Once again the particle-
like solution can be obtained formally from Eqgs. (15),
in this case by the limiting procedure H™' — 0,
3H™* — 2g77, the correct expressions for (18) and
(19) also being secured by this limiting procedure.
E is positive but §°E is negative.

Ezxample 5: G = —g**', g and p positive con-
stants. Here we have H = —g(p + 2)«*' and the
unique positive root of (16) is

« = [3@2p + 1)/g(p + 2T
The particle rest energy
E = [9°p/A(2p + 1] |H™|
is a positive quantity, while
FE = [92°(1 — p)/2(2p + D] |H|
is a positive quantity provided that p < 1.

Example 6: G = ~x. By virtue of (16), the
particlelike solutions are obtainable only if the di-
mensionless coupling constant v = —3%. In this
case k is a free positive parameter, the total energy
(18) vanishes, and the quantity (19) is positive,
OE = 37°%\.

Example 7: G = 2m %'l — (1 — mo)l] —
3m™', m a positive constant. This seemingly com-
plicated example is of interest because it gives
H = —3m™'[1 — (1 — ms)}], and therefore the
condition (16) is satisfied identically (that is, as a
differential equation). Hence, all positive values of
« < m™ are admissible. The particle rest energy
E = (#*/4)m, a quantity independent of «, and the
second variation of the energy functional 8°E =
@r) |1 — 1 — mx)™Y™" m are both positive for
k< m.
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IV. INSUFFICIENCY OF THE STRONG
SATISFACTION CONDITION FOR A RELATED
CLASS OF THEORIES

Strong satisfaction of the pseudovirial theorem’s
corollary leads to rigorous particlelike solutions for
the class of Lorentz-covariant field theories dis-
cussed in the preceding section, but the strong
satisfaction condition is not always sufficient to
guarantee such localized singularity-free solutions.
To show by example that the strong satisfaction
condition can be insufficient, we consider the Lor-
entz-covariant theories which feature a real scalar
field in interaction with a four-component complex
Dirac spinor field, a class of theories closely related
to those discussed previously with a Weyl spinor
and the generic Lagrangian density (7) with (13).

Time-independent solutions to the class of theories
with a Dirac spinor and the strong satisfaction condi-
tion are derived from an energy functional of the form

E — E(—l) + E(—z) + E(—-a)
where

ECY = f (Vo' d’x, E? = —¢ f npfa-VtP d’x,

B = — [ ¢y'sye dx. (20)
[@ = G{x) is a real differentiable function of x =
v'8¢/6'.] Here, ¢ is a four-component complex
spinor with « and 8 the Hermitian Dirac matrices.
Equations (1) take a form similar to Eqs. (14) in
the case of (20),
V20 + (3G — 2H)Y'BY6 = 0,

VY + HO*8y = 0, H = G + «(dG/dx).

Now let us require the otherwise arbitrary G to
be a function such that H is of definite sign for all
(positive or negative) values of « (e.g., G = m™},
a nonzero constant). Then it follows from the
relation

@1

V-G¥'Bay) + 2HEY'Y = 0 (22)
obtained from the field equations (together with
g° = 1 and o8 = —fe) that no singularity-free
and well-localized nontrivial solution exists for Eqs.
(21) (with « not necessarily constant), because we
have

f HY 'y dx =0 (23)
if

lim [|x[* ¢'¢] = 0. (24)

|x|—o

Hence, the strong satisfaction condition is insufficient
to guarantee particlelike solutions for this class
of field theories with H of definite sign.
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A simple proof is given which precludes the existence of any spatially localized and temporally
periodic singularity-free solution to the ¢c-number field equation for a physically interesting Lorentz-

covariant self-interacting scalar theory.

T has been proved by Jorgens' that the non-
linear c-number field equation
§— o+ mo+igpl0=0 (1)
for a scalar function @ = 6(x, t) (either complex-
valued or real-valued and C* for all x and all ¢ > 0)
has a global solution for suitably smooth prescribed
initial data, if 2 < p < 6 with m® and g nonnegative
constant parameters. Does this global existence the-
orem lend some rigorous mathematical support to
the quantum theory models which feature a self-
interacting complex or real scalar field and a La-
grangian density
L=16"—|Vo'—m’ 6" ~glo (2
of the form associated with Eq. (1)? It is shown
here that the classical field equation (1) has no
global solutions which are localized in space and
periodic in time if p > 2. Hence, there can exist no
stationary state in a quantum field theory based
on a Lagrangian density (2) with p > 2 that would
correspond in the classical limit 4 — 0 to a spatially
localized and temporally periodic solution to Eq. (1).
To prove the nonexistence of any localized periodic
solution to Eq. (1) with ¢ > 0 and p > 2, we first
note that the action principle

831/56 (x,1) = 0,

f:f,edaxdt

for a solution periodic in time, (%, ¢ + T) = 6(x, t),
implies the global condition

(ﬂ%ﬁﬂ)x_l = 0.

©))
I=1I[6x, 1)) =

4

1 K. Jorgens, Z. Math. 77, 295 (1961).

Eq. (4) works out to give

[ [ =108+ 1vor
+ 3m® |6 + 3¢ |6]") d’x.dt = 0, (5)

provided that the x integrations converge over all
space’; an alternative way to derive Eq. (5) is
to multiply Eq. (1) by x-V6* and integrate the
real part of the resulting equation over all x and
over the range 0 to T for {. On the other hand, if
we work out

(dI[se(x, t)])m =0, ()

3

or if Eq. (1) is multiplied by 6* and integrated,swe
obtain

[ [ t= 100+ v
+m* o+ dep 0P dxdt =0, ()

again provided that the x integrations converge
and T is the period of the solution. Finally, by
subtracting ¥ of Eq. (5) from Eq. (7), we get

[ [a1vor+ae-vglenaxa=o, ®

a global relation which implies the necessary condi-
tion p < 2 for existence of a localized periodic
solution with g > 0. Therefore, all such global
solutions are precluded in a classical field theory®
withg > Oand p > 2.

*For time-independent solutions, Eq. (5) holds with
T arbltrar%r and exemplifies the general pseudovirial theorem
Eii%%%s)sed y the present author in J. Nfath. Phys. 7, 2066

3 If the words “such global solutions” are read “rigorous
stationary states,” the conclusion stated here is believed to
produce a valid correspondent in the associated quantum
field theory. For a pertinent result in this regard, see, G.
Rosen, Phys. Rev. Letters 16, 704 (1966).
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In order to provide the particle physicist with useful mathematical tools (and a large number of inter-
esting identities), the enveloping algebras of the noncompact homogeneous O(p, g), U(p, q), and
inhomogeneous I0(p, q), IU(p, ¢) groups are discussed in some detail. The construction of the genera-
tors of O(p, ¢ + 1) and O(p + 1, g) from the enveloping algebra of fO(p, ¢) and the analog result for
the corresponding pseudo-unitary groups are also presented.

1. INTRODUCTION

NE of the most intriguing and promising recent
developments in elementary-particle physics
is the recognition of the importance of noncompact
groups and Lie algebras. Noncompact groups appear
to play various roles, both in the classification of
hadron-supermultiplets and, more generally, in di-
verse attempts to reformulate quantumdynamics.
For a review of these emerging novel ideas we refer
the reader to Refs. 1-3 . Some of the more specific
developments are illustrated in Refs. 4-6.

In addition to the study of the representations
of the noncompact groups and their Lie algebras,
it appears that a thorough knowledge of the envelop-
ing algebras will constitute a most important tool.
For one thing, the Casimir invariants are particular
elements of the enveloping algebra, and, apart from
their direct relation to physical observables, their
knowledge is a necessary requirement when one
seeks the systematic classification of representations.
Furthermore, as pointed out vividly by Sudarshan,’'
every dynamical variable of a quantized system
can be identified with an element of the enveloping
algebra of the noninvariance group.’” Moreover,
the primitive dynamical variables may be defined as

* This research was sponsored by the United States Air
Force under Grant No. AF-AFOSR-385-65.

tOn leave of absence from Tel-Aviv University, from
which a travel grant is gratefully acknowledged.

1E. C. G. Sudarshan, in the Proceedings of the Fourth
Eastern U. 8. Theoretical Physics Conference (Stony Brook,
1965), and Syracuse University Preprint 1206-SU-45.

tY. Ne’eman, in the Proceedings of the Pacific Summer
School in Physics (Honolulu, 1965), and Tel-Aviv University
Preprint TAUP-2-65.

#Y. Neeman and Y. Dothan, in the Proceedings of the
Athens (Ohio) Conference on Resonant Particles (1965).

+Y. Dothan, M. Gell-Mann, and Y. Ne’eman, Phys.
Letters 17, 148 (1965),

§ N. Mukunda, L. O'Raifeartaigh, and E, C. G. Sudarshan,
Phys. Letters 15, 1041 (1965).

¢ A. O. Barut, Phys. Rev. 135, B839 (1964); 139, B1433
gigggg, A. O. Barut and A. Bshm, Phys. Rev. 139, B1107

7 E, C. G. Sudarshan, N. Mukunda, and L. O’Raifeartaigh,
Phys. Letters 19, 322 (1965).

certain suitable elements of this enveloping al-.
gebra.'*®

In view of these remarks, we believe that it would
be useful to work out commutation relations in-
volving some lower-degree elements of the envelop-
ing algebras of the most promising noncompact
groups, i.e., of the homogeneous and inhomogeneous
pseudo-orthogonal and pseudo-unitary groups. A col-
lection of such expressions will be of value for the
physicist applying the new notions related to the
role of noncompact groups in particle physics, and
to provide these formulas is the purpose of the
present paper. When constructing these elements
of the enveloping algebras, we found a number of
interesting identities, and the awareness of such
simplifying relations is bound to shortcut many
computations.

After general remarks in Sec. II, See. III treats
the enveloping algebras of the pseudo-orthogonal
groups O(p, ¢). Section IV discusses the enveloping
algebras of the inhomogeneous pseudo-orthogonal
groups I0(p, ¢) and shows the construction of the
generators of O(p, ¢ + 1) and O(p + 1, ¢) from
elements of the enveloping algebra of IO(p, q).
Sections IV and V treat the enveloping algebras of
the pseudo-unitary groups U(p, ¢) and the inhomo-
geneous pseudo-unitary groups I U(p, g) respectively,
the latter section showing the construction of the
generators of U(p, ¢ -+ 1) and U(p + 1, q) from
elements of the enveloping algebra of IU(p, ¢).

II. DEFINITIONS AND GENERALITIES

Let A be a Lie algebra of order m characterized
by the relation®'*°

8 B, C. Q. Sudarshan, in the Proceedings of the Toronto
Conference on Symmetries (1965).

$ Summation is to be performed over pairs of equal upper
and lower indices.

18 For real forms of Lie algebras, our structure constants
are always real. We fully concur with the view of R. Hermann,
Lie Groups for Physicists (W. A. Benjamin, Inc., New York,
1966), that the introduction of factors of 7 masks the algebraic
structure without offering any real advantage,
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[X:, X;] = ClziXk ¢y

among the elements of a basis X,, --- , X,.. The
enveloping algebra of A, to be denoted by @, con-
sists of all products of all degrees of the elements
of A with themselves. For a basis of @ one can take
the linearly independent set'' X;, X.X;, X.X;X,,

< Gd k=1, ,mandi<j<k< )
G is thus of infinite order. It can be shown by
induction and Eq. (1) that the commutator of two
basis elements of G from the above sequence is
always of the form

ad X ;(gth-degree basis elemnts)
= linear combination of (p + ¢ — 1)th-
2)

If A is represented by complex or real n X n
matrices, the corresponding representation of @ is
not faithful, since it can be at most a representation
of the Lie algebra of the complex or real general
linear group in n dimensions [GL(n, C) or GL(n, R)].
Thus, care must be exercised to distinguish between
those algebraic relations within @ which are true
generally and those which are representation-de-
pendent.

The algebra A as a vector space serves as the
representation space of the adjoint representation
of A, where the basis element X, is represented by
the linear transformation adX; whose action on the
basis vectors of A is

and lower-degree basis elements.

ad X,(X,) = [X,, X;] = ¢};X,. ®3)

Similarly, @ serves as a representation space for
A. This representation is reducible, but in general not
completely reducible, since, according to Eq. (2),
the subspace spanned by all basis elements of a
certain degree and less is invariant under adX;:

adX; (gth-degree basis element)

= linear combination of gth-

(4)

and lower-degree basis elements.

1II. PSEUDO-ORTHOGONAL GROUPS

The n~-dimensional pseudo-orthogonal group
O(p, @), p + ¢ = n, is the real linear group in n
dimensions preserving the pseudo-Euclidean metric

[+1, ---, +1(p times), —1, --- , —1(q times)]. A

11 A pth-degree product of X’s whose factors are not ordered
as indicated can be shown to equal a pth-degree basis element
glus 8 linear combination of lesser-degree basis elements

y use of Eq. (1).
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basis of the corresponding Lie algebra [of order
in(n — 1)] is provided by the elements M,, =
—M,, obeying

[Mm M,,,] = gunMW - gvamr
+ gmer - grvMpm (5)

where all Greek indices run from 1ton, g, = -+ =
gW = '—gr)-l prl1 = = _gvm = 1, a'nd guv = 0
for p # ». Raising and lowering of indices is per-
formed, as usual, with g,, and ¢g*’, where ¢*’g,, = 8.

The second-degree basis elements of the envelop-
ing algebra M,,M,, obey
[Maﬂa MurMpv] = gauMBvMpv - gﬂuMa vMpr

+ ga'MﬂﬁMp' - gﬁanaMM + gapMu'Mﬂv

- gﬁprMaw + gavMuvMpﬂ - gﬂlenMpa- (6)
Certain linear combinations of these are of interest:

(a) The antisymmetric (M, M %—M . M%)/ (n—2)

equals M ,,.
(b) The symmetric

See = $(M,M*, + M,.M?) @
obeys

Moy 850] = gusSe = 9580 + 9uSir — GooSpu (8)
(¢) The scalar
M* = 38.° = M M** ©)
obeys
(M,,, M*] = 0, (10)

and is therefore a second-degree Casimir operator'’
of O(p, 9).

In the defining (n X n) representation of the Lie
algebra of O(p, ¢), the matrix'* M? is (n — 1) times
the unit matrix, and the S',’,, = 28,,/(n — 2) obey
Eq. (8), with S, substituted for §,,, and™

(S, S..]
= —(gupr + guMM - guan - gvapu)' (11)

From Egs. (5), (8), and (11) it then follows that
the matrices M,, and 8!, represent a basis of the
Lie algebra of GL(n, R) (of order »?). This can

2 See E. G. Beltrametti and A. Blasi, Phys. Letters 20,
62 (1966), concerning the number of Casimir operators as-
sociated with any Lie algebra.

18 We use a bar to indicate a matrix representation of a
quantity.

14 This relation does not hold for the algebra elements in
general, but qnlgefor the matrices representing them here.
See comment in See. II.
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perhaps more easily be seen from the commutation
relations of

C., = —1g,.(8., + M,,)(no summation over p):
[Cor, C] = 8,0 — 8,.C,,. (12)

In addition, the matrices M,, and 7S’, represent
a basis of the Lie algebra of the pseudo-unitary
group U(p, q) (to be discussed in Sec. V).

IV. INHOMOGENEOUS PSEUDO-ORTHOGONAL
GROUPS

The n-dimensional inhomogeneous pseudo-orthog-
onal group IO(p, ¢q), p -+ ¢ = n, consists of all
elements of O(p, ¢) (see the preceding section)
together with all translations in the pseudo-Eucli-
dean space.'® A basis of the corresponding Lie
algebra [of order in(n 4+ 1)] is obtained with the
elements M,, = —M,, and P, obeying Eq. (5) and

[Mun Pp] = ginv - gvam (13)
[P, P,] = 0. (14)

The second-degree basis elements of the envelop-
ing algebra, M, M,,, M, P, P,M,,, and P,P,, obey
Eq.! (6) and

(M o, M,,P,] = GasMp, P, — g.Ma.P,
+ gavM»ﬂPp - gﬂvMuaPP

+ gasM Py — gsMPay  (15)
[(Map, PM) = gopPsM iy — 9P oM,
+ gaP My, — gsPM .,
+ 9 PoMup — 9o PoMue,  (16)
(M a5, PP} = gauPsP, — ga.PoP.
+ 9.P.Ps — ga PP,  (17)
(Poy MuM,ol = —guaP Myo + 9,PuM 0
~ @M WP, + 9..M,P,,  (18)
[Pa, M,,P,] = [Pa, P,M,]
= —g..PP, + g,..P.P,, (19
[P, PP,] = 0. (20)

Interesting linear combinations of these, in addi-
tion to those presented in the preceding section, are:

(a) The scalar
P?* = P.P° (21)

15 For a discussion of I0(1, 3), the inhomogeneous Lorentz
(or Poincaré) group, see, e.g., Yu. M. Shirokov, Zh. Eksperim.
i Teor. Fiz. 33, 861 (1957) [English transl.: Soviet Phys.—
JETP 6, 664 (1958)].
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obeys
(M,,, Pz] = [P, Pz] =0, (22)

so that it is a second-degree Casimir operator of
I0(p, q).

(b) The n-vector (P°M,, — M,.P*)/(n — 1)
which, however, equals P,.

(c) The n-vector

Jo = 3P My + M,.P°) (23)
obeys
(Mg, Ju] = gauds — g as (24)
[Po, Ju] = PP, — gauF?, (25)
[Ju, J.] = —P°M,,, (26)
Vo M) = J* M, + M,J°, 27
[P, M*] = 2J,. (28)

Combining second-degree elements to obtain higher-
degree ones, one has:
(d) The scalar P*J, + J, P* is identically zero.
(e) The scalar

J? = J J* = ~[P°P*S,s + in — 1)°P% (29)
obeys
M,,, J*] =0, (30)
[P, J*] = —2P*J,, (31)
[ 1 = —P(J* M, + M. J%). (32
(f) The scalar
Z =PM + J. (33)

By Egs. (10), (22), (28), (30), and (31) this obeys
(M,,, Z] =[P, 2] =0, (34)

making Z a fourth-degree Casimir operator of
I0(p, ¢). In addition, by Egs. (27) and (32) or
just from Eq. (34), it obeys
[J., 2] = 0. (35)
We define now
NM = Mun (36)
JM/<_P2)% for On+1 ner = +1;

JF/(+P2)§ for Ontl nt1 = —1.
(37)

The inverse square root in Eq. (37) is assumed to
be suitably defined through a power series. In any
case, it is clearly meaningful in any irreducible
representation of the Lie algebra, since by Schur’s

N/An+l=—Nn+1u={
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lemma P? is then just a multiple of the unit matrix.
(This is, of course, meaningless in a representa-
tion for which P? = 0.) No ordering problem arises,
as J, and P? commute. One then finds that

[Nab; ch] = gachd
— 04eNai + 9aaNew — 960N o) (38)

where a, b, ¢, d = 1, , n + 1, ie., then N,,
form a basis of the Lie algebra'® of O(p, ¢, +1) or
O(p + 1, ¢). The scalar

N? = {N,N™ (39)

therefore obeys
[Nas, Nz] =0, (40)

since it is the second-degree Casimir operator of
O(p, ¢ + 1) or O(p + 1, ¢g). On the other hand, one
finds

N = M? + J¥/P* = Z/P°, (1)

where a remark similar to the one following Eq.
(37) holds. This demonstrates the consistency of
Eq. (40) with Eqgs. (34) and (35). Equation (41)
also shows the relation between the second-degree
Casimir operator N* of O(p, ¢ + 1) or O(p + 1, ¢)
and the fourth-degree Casimir operator Z of I0(p, q).

V. PSEUDO-UNITARY GROUPS

The n-dimensional pseudo-unitary group U(p, g),
p + q = n, is the complex linear group in # dimen-
sions preserving the pseudo-unitary metric

[+1: Tt +1(p times), _11 )

A basis of the corresponding Lie algebra (of order n®)
is obtained with the elements E,, = —E,, and
F,, = F,, obeying

—1(q times)].

[Eun Eptr] gup gvauv + g:prv - gwEﬂm (42)
[Fuv) Fpa] = ganvc + gvauw gua g VEPIU (43)
[EI“" Fpﬂ] guﬂ - gva/-w + gw oy gvv 113 (44)

where all Greek indices run from 1 to n, and again
gu = - = = fpripar = 0 = = 1,
Jur = O for u % v. Comparing Wlth Egs. (5), (8),
and (11), one justifies the remark following Eq. (12)
at the end of Sec. III. From Eqgs. (43) and (44),
it follows that the contraction F,* obeys

(Eu, Fo*] = [F», Fa"] = 0 (45)

18 This construction was performed in general by A.
Sankaranarayanan, Nuovo Cimento 38, 1441 (1965), and
for O(4.1) by M. Y. Han (preprint, Syracuse University and
University of Pittsburgh, 1965). See also A. Bohm, Phys. Rev.
(145 1)212 (1966), and C. Fronsdal, Rev. Mod. Phys. 37, 211
1965
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and is therefore a first-degree Casimir operator of

Ulp, 0.
The second-degree basis elements of the envelop-

ing algebra are E,E,,, E,F,,, F,E,,, and F,F,,.
Interesting linear combinations of these are:

(a) The antisymmetric (E,.E% — E,.E)/(n — 2),
which, however, equals E,,.
(b) The symmetric

mr = 2(EﬂaEa + EmE‘;): (46)
which obeys [cf. Eq. (44)]
[Eun TIW] = ginW - gvaM + ngM greT (47)

(¢) The antisymmetric (F, F% —
which equals E,,.
(d) The symmetric

F.mF‘,',)/(n + 1)

= 3(F,F + F..F7), (48)
which obeys [cf. Eq. (44)]
[Eun UM] = gl‘PU" - gvaurr + guvUpv - ngpu- (49)

(e) The symmetric
Voo = 3(E,.F; — F,.E% + E,.F5
which obeys [cf. Eq. (44)]
By Vool = 9uVoe = 06 Vie + ucVior = GV in
(f) The antisymmetric

— Fo.E?), (50)

. (51)

W,. = ¥E,.F, + F,.E; — E,.F, — F,.E}), (52)
(g) and the symmetric
D,, = 3U,. — T,2)
= {(F,oF + F..F, — E,.E; — E,.E5), (53)
which obeys
Burs Wool = 0uWoe — 355 Wi
+ 0uWeoo — W (59
[cf. Eq. (42)],
(s Dyo) = gusDse = §2p Do + gueDyy — g5.D, (55)
[cf. Eq. (44)],
Fu, Doed = 9usWo + 9,sWoe
= GuWor — 3:Wo  (56)
[cf. Eq. (43)], and
(Wass Focl = 9uDve — g4pDie
+ 9uDor = gseDpu  (57)

[cf. Eq. (42)].
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(h) The contraction

B = 4T." = }E. 0" (58)
obeys
[E.., '] =0, (59)
[F.,, E’] = 4V,,. (60)
(i) The contraction
F* = iU ,* = iF 4F** (61)
obeys
[E.,, F*] = 0, (62)
(F., F?] = 4V,,. (63)
(3) The quantity
D." = E* — F* = §(BoB*" — Fo ") (64)
therefore obeys
[Ew, Do) = [Fu, D."] =0 (65)

and is a second-degree Casimir operator of U(p, ¢).
(k) The contraction V,° is identically zero.

VI. INHOMOGENEOUS PSEUDO-UNITARY
GROUPS

The n-dimensional inhomogeneous pseudo-unitary
group IU(p, q), p + g = n, consists of all elements
of U(p, q) (see preceding section) together with all
translations in the pseudo-unitary space. A basis
of the corresponding Lie algebra [of order n(n + 2)]
is obtained with the elements F,, = —K,, F,, =
F,., Q., and R, obeying Eqgs. (42)—(44), and

(Bw, Q) = 9.8, — 9,80 (66)
(B, B = 9B, — 9,.R, (67)
(Fu, Q) = —guR, — g.,B,, (68)
[Furs B)] = 9Q0 + 9:,Qu (69)
Q. Q] =[Q,RB]=I[R,R]=0. (70)
Also
[Qu, F.°]1 = 2R, (71)
[R., F."] = —2Q,. (72)

The second-degree basis elements of the envelop-
ing algebra are E,E, ., E,F o0y F B ,o, FuF 0, B,Q,,
Q,E,.,, E“,R,, RpEun Fqup: Q»Fw; Fuva Rprn
Q.Q,, Q.R,, R.R,. Interesting linear combinations
of these, in addition to those presented in the
preceding section, are:

(a) The quantities

Q@ =Q.0°, QR =Q.R", R =R, (73

J. ROSEN AND P. ROMAN

which obey
(E.., @] = [E.,, QR] = [E,,, R"] = 0, (74)
[F.., @1 = —2Q.B, + R.Q)), (75)
[F., @R] = 2(Q.Q, — R,R)), (76)
[F., B*] = 2(Q.R, + R.Q). 0
(b) The quantity
Q" + R* = Q.Q" + R.R" (78)
obeying
(B, @ + B*] = [F,,, Q"+ E*] =0. (79

It also commutes with Q, and R, [Eq. (70)] and is
therefore a second-degree Casimir operator of
IU(p, 9).

(C) The qua‘ntity %(EnaQa - QaEua + F’naRa -
R°F,.) equals @Q,.

(d) The quantity $(E,.R* — R*E,, — F,.. Q" +
Q°F,.) equals R,.

(e) The quantities

A, = 3(E,.Q" + QE,. — F,.R* — R°F,,), (80)
B, = }(E,.R* + R°E,. + F,.Q" + Q°F,.) (8)
obey

(B 4,] = g4, — 9,54, (82)
(Ew, B,] = guB, — g.B., (83)
(F., 4, = —g.,B, — g.,B., (84)
(Furs B)] = gud, + g4, (85)

[cf. Egs. (66)—(69)],
(4., F.°] = 2B, (86)
[B., F.*} = —24, 87

[f. Eqs. (71), (72)],
[Q., 4.l = Q. — R.R. — g..(Q" + R"), (88)
[Q, B.] = [R., A.] = Q.R, + R.Q., (89)
[R., B.] = RR. — Q.Q. — 9..(@° + B, (90
(@, D.°] = 24,, (91)
R., D."] = 2B,, (92)

[Aw Do) = B, A+ A°E, o — F,uB" — B°F,,, (93)
[B., D.*] = E,.B*+B°E,,+F..A"+ A°F.,., (99)
[4,, 4, = [B,,B)] = —(@" + R)E,,, (95)
[4,, B)] = (@ + R)F,, + guA, (96)
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where
A= %(QQBa + B.Q" — R4, — AR (97)
= 2Q°R°E.s + (Q°Q° + R°R)F ..

Taking higher-degree elements, one has:
(f) The quantities

A? = A,A*, AB = AB*, B’ = B,B* (98)
obeying

[B.,, A" = [E,,, AB] = [E,,, B'] =0, (99)

F,,, A’l = —2(4,B, + B,A,), (100)

(F.,, AB] = 2(4,4, — B.B,), (101)
[F,,, B*] = 2(4,B, + B,A,) (102)
[ef, Egs. (74)~-(77)].
(g) The quantity
A+ B = A,A® + BB, (103)
which obeys
[B.,, A* + B’} = [F,,, A’ + B’] = 0, (104)

[Q., A* + B’} = —2(Q" + R)A, + AR, + R,A,
(105)

R,, A> + B*] = —2(Q° + R )B, — AQ, — Q.A,
(106)

[4,, A* + B’] = (@ + R)(F..B* + B°F,.
- E,A* — A°E,.) + AB, + B,A, (107
[B,, A" + B*) = —(Q" + R*)(F,.A* + A°F,.
+ E,.B* + B°E,.) — AA, — A,A. (108)
(h) The quantity A defined in Eq. (97) obeys

(B, Al = [F,,, A] = 0, (109)
[Q., A] = 2(@" + B*R,, (110)
[R., Al = —2(Q" + R")Q,, (111)
[4,, A] = 2(Q" + R")B,, (112)

{Bm A] = _2(Q2 -+ Rz)A’.
(i) The quantity
Q= Q"+ RHF,* — A

(113)

(114)
obeys
[E;n 9] = [Fm: Q} = [Qm Q] = [Rm Q] = {0, (115)

according to Egs. (45), (70)—(72), (79), (107)-(109),
and is therefore a third-degree Casimir operator of
IU(p, ). It also obeys

[4,, 9] = [B,, 2] =0 (116)
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by Egs. (86), (87), (112), and (113) or by Eq. (115).
(i) The quantity
A = (@ + BYD."
+ (@ + E(4* + B — 34 (117)
obeys
(B, 8] = [Fa, Al = (@4, A] = [R,, A] = 0 (118)

by Eqs. (65), (91), (92), (104)~(106), (109)-(111),
showing that it is a sixth-degree Casimir operator
of IU(p, ¢). In addition, by Eqgs. (93), (94), (107),
(108), (112), (113) or just by Eq. (118) it obeys

[4., 4] = [B,, A] = 0. (119)

Define now
G, =£E,, H,=F,, (120)
Gunnt = =Gy = A,/[-8@ + B}, (121)
H, .1 = Huaw = B/[-6@Q" + RO}, (122)
Hoor o = —A/8Q" + RY), (123)
Grtr nt1 = & = =1, (124)

where a remark similar to the one following Eqg.
(87) holds. One then finds

[Gab’ ch] = gachd - gchmi

+ gulGos — g1sGea, (125)
[Hasy Hotl = g2Gra + 9:Gac

= odGer = G6aGea, (126)
(Gasy Heal = gacHra — go.Hoa

+ guHo — g, (127)

where @, b, ¢, d = 1, -+ , n 4+ 1. Thus, the G,,
and H,, form a basis of the Lie algebraof U(p, ¢ + 1)
or U(p + 1, ¢). The quantity H,* therefore obeys

[Gaby Hcc] = [Haby Hc‘] = (), (128)

since it is a first-degree Casimir operator of
Ulp, ¢ + 1) or U{p + 1, ¢). On the other hand,

H'=TF." - A@Q +R)=9/@ +E&), (129

where a remark similar to the one following Eq. (37)
holds, showing the consistency of Eq. (128) with
Egs. (115) and (116). Eq. (129) also exhibits the
relation between the first-degree Casimir operator
HS of Ulp, g + 1) or U(p + 1, q) and the third-
degree Casimir operator @ of IU(p, ¢). In addition,
the quantity

Gz _ H2 = %(Gabiu —_ abea) (130)
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obeys
(G, G —~ H*] = [Ha, G — H’] = 0, (131)

since it is a second-degree Casimir operator of

Ulp, ¢ + 1) or U(p + 1, ¢). On the other hand,

one finds

G2 — Hz — Daa + (AZ +B2)/(Q2 +R2)
— A2/2(Q2 + R2)2 _ A/(Qz + R2)2,

where a remark similar to the one following Eq. (37)

holds, demonstrating the consistency of Eq. (131)
with Eqs. (118) and (119). Equation (132) shows

(132)

J. ROSEN AND P. ROMAN

the relation between the second-degree Casimir
operator @ — H’ of U(p, ¢ + 1) or U(p + 1, @)
and the sixth-degree Casimir operator A of IU(p, q).

VL. OTHER GROUPS

Other groups, such as the real and complex gen-
eral linear groups, [GL(n, R) and GL(n, C)] and
their inhomogeneous counterparts [IGL(n, R) and
IGL(n, C)], can be treated similarly to the above
procedures, but will not be treated here in detail.
We only note that GL(n, R) is especially analogous
to U(p, 9), p + q¢ = n, since both are real forms of
GL(n, C).
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Analytical properties of the potential obtained by Newton’s method in the inverse scattering
problem at fixed energy are thoroughly investigated. It is found that r V(r) is analytic in the neigh-
borhood of r = 0 and can be continued in the r complex plane as a meromorphic function, the poles
of which are of order at least equal to 2. An explicit formula is given to yield the Jost functions for
any complex value of the angular momentum ». They appear to be meromorphic functions with poles
located at the negative integers on the real axis. The zeros of fo(»), for large |v| and for Re » and Im
» > 0, are located on a curve which is the boundary of a domain previously shown to contain no Regge
pole. The interpolated scattering amplitude is unitary. It behaves for » — —¢ « as e*i”!, An important
result of this paper is that the class of potentials obtained by Newton’s method is much more re-
stricted than one might think. This led the author to look for a more general approach to the inverse
scattering problem, which is the subject of a forthcoming publication. In order to illustrate the method
of this paper, a detailed study of an example previously introduced by R. G. Newton is given. In the
last Appendix, a very remarkable property of the potentials involved in this example is given: the
scattering amplitude corresponding to these potentials can be given an exact closed form. Since the
corresponding potentials are strongly energy-dependent, it is very likely that this is only a mathe-
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matical curiosity.

N a previous paper,’ we studied the asymptotic
behavior of the potentials derived from a given
set of phase shifts in the framework of Newton’s
method.” We showed, in particular, that, if the
phase shifts fulfill a very weak condition,® namely
|8 < CI'*", as | — o, there is one potential,
and only one, which goes to zero faster than r™***
as r — o, All the potentials equivalent fo this one
g0 to zero like r 1 as r — .

The purpose of this paper is to study the class
of potentials which can be found by Newton’s
method. Therefore, we investigate successively the
analytic continuation of these potentials V(r) in
the complex r plane, and the corresponding Jost
functions in the complex [ plane. The results for
the potentials are the following:

(1) The function rV(r) can be continued in the
complex r plane as a meromorphic function,
with poles of order at least equal to 2.

(2) There is no pole in a nonvanishing circle
centered at the origin.

(3) Potentials with poles on the real positive
axis are only special cases.

In a forthcoming paper, we see another partic-
ularity of the potentials obtained by Newton’s

1P, C. Sabatier, J. Math. Phys. 7, 1515 (1966). This
aper is hereafter referred to as I, followed, as the case may
e, by the number of the formula.

2 R. G. Newton, J. Math. Phys. 3, 75 (1962),

8 Throughout this paper, by e we mean a positive number,
which can be made arbitrarily small, but not equal to zero.
We use C as a general constant. Both are not meant to have
the same value every time they are used.

method: they cannot be even analytic functions.
The Jost funetions have the following properties:

(1) They can be continued as meromorphic func-
tions in the complex » plane (» = [), with
simple poles fixed at the negative integers.

(2) They are bounded by C exp |{§mv| on any ray.

(3) In the upper half-plane f,(») has infinite zeros,
which, in general, are distributed for large
[v| on the curve:

Imv = = 'q Log |Re |,

where ¢ is a positive integer. This curve
is the boundary of a domain (deseribed by
Martin*), where Regge poles are excluded.

The analytic continuation of the seattering am-
plitude, while satisfies the unitarity condition, also
exhibits Regge poles in the upper half-plane, Further-
more, it behaves on the ray

Argy =

Therefore the conditions of Carlson’s theorem are
not fulfilled. This is not surprising, since there is
an infinity of equivalent potentials.

Those properties led us to look for a3 method of
approach o the inverse scattering problem at fixed
energy more general than that of Newton. We have
obtained® such a method by taking nonvanishing

3w as  exp |m|.

4+ A. Martin, Progress in Elementary Particle and Cosmic
Ray Physics (North-Holland Publishing Company, Amster-
dam, 1965), Chap. I, p. 54.

¢ This method has been given in the author's Doctoral
dissertation for Faculté des Sciences, Orsay, and is to be
published in J. Math. Phys.
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¢, for arbitrary real values of ! (not necessarily
integers). This, however, is the subject of a forth-
coming paper.

1. ANALYTICAL CONTINUATION OF THE
POTENTIALS DERIVED FROM THE
PHASE SHIFTS IN NEWTON’S METHOD

In Newton’s method, the potential is given by
the formula

V@) = =2 {d[r ' K(r, n))/dr}, .1)

where K(r, r) is a particular value of K(r, '),
which in turn is defined by

K@) = f6,7) = [ K@, (e, ) dpy (12)

where the function f(r, #') can be obtained from the
knowledge of all the phase shifts through its coeffi-

clents ¢;:

fr, ) = gmmu,@'), 13

where
u,0) = Gm)}J,.,0). (14)

The derivation of the coefficients ¢; from the values
of tan &, is studied thoroughly in I, We showed in
particular (Sec. I, 3.2) that, if the phase shifts go
to zero as | tends to infinity faster than I7*°7
the coefficients ¢; are bounded as I — «. We see
in Sec. 2 that a slightly weaker condition is necessary
to legitimate the method used to relate the phase
shifts to the ¢;. However, the analyses of Sec. 1
are submitted only to a much weaker assumption:

Assumplion I:
3p = ll_”c;l < C.

We now introduce the two functions:

e.(r') = olr, ') = () e, 1), (1.5)

K.¢) = (') K, 1), (1.6)
which enable us to write (1.2) more conveniently
in the form

K. (1) = o.(') — fo dr, K, (r)e(r, 7). (1.7)
1.1. Analytic Conﬁnuatioxfx of rV(r) in the Neighborhood
ofr=20

We use the notation z (resp. 2’) in place of r (resp. r')
when we consider these variables in their respective
complex plane. We also speak of the complex plane,
where 2z and 2’ are considered only as points in a
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complex plane. For a given (real) r, Eq. (1.2) is a
Fredholm equation. Its kernel, ¢(r, 7'}, is continued
straightforwardly through (1.3) into ¢(z, 2'). ¢(z, 2°)
is an entire function of z (resp. #’) for any finite
value of 2’ (resp. 2), and therefore is an entire
function of 2z and 2’. This results readily from the
bounds of the functions |u,(z)] (< C |32]”"'/pY)
given for instance in I (Appendix 1), and from the
Assumption I on the coeflicients ¢,. For any couple of
values of 2, and 2, lying inside a circle (0, r,) of the
complex plane, lp(2,, 2;)| can be bounded by a finite
positive function C(ry)

|<P(zn zz)l < C(ro), 1.8

Since C(r,) goes to a finite limit as r, — 0, it is pos-
sible to find r,, for which the following formula holds:

Cry < 1, Vr < ry. (1.9

Now, the Neumann series for (1.7) is

K.)=olr, 1)~ [ " o, e, ) + e (=)

V2,2 <1

LIS " . e ,
X fo fo dr, dr, o(r, ry) o(r,, ). (1.10)

A lower bound for the radius of convergence of the
series (1.10) can be obtained by replacing each
term by its modulus, and ¢ by a majorant. The
general term is bounded by

rC@ICra), (1.11)

where r, is & number larger than r and 7’; hence
the series (1.10) certainly converges for rC'(r) < 1, or

r<ry — € (1.12)

Suppose now that r and 7' are complex and there-
fore denoted by z, 2. Any term of the series (1.10)
is an analytic function of z and 2/, and its value is
independent of the contour (0, 2). Using a well-
known inequality for complex integrals,® and choos-
ing rays issued from the origin as contours of integra-
tion, it is easy to see that the bound (1.11) holds,
with r replaced by |z|, if z and 2’ lie inside the ecirele
(0, 7). Hence the series (1.10) is uniformly con-
vergent, and K,(z) is an analytic function of 2
(and an entire function of 2'), if z lies inside the
circle (0, rar — €). 2V (2) is therefore analytic inside
this circle.

1.2, Analytic Continuation of zV{(z) for Any Finite z

For any finite value of r [except when —1 happens
to be an eigenvalue of (1.7)], it is possible to write

s 1. C. Titchmarsh, Theory of Functions (Oxford University
Press, London, 1932),
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the solution of this equation in terms of Fredholm
determinants’

) = o, 1) + 1901 [ oe, A Do) d,

(1.13)
where
DM =1+ Z{ (m)~
’ . ’ rl,rz.-'rm o
x fo .. fo K(rl,rg ---r,,,) dry -+ drn, (1.14)

3_)r(lz’; ’l"') = = 20 ('m'!)--1
T
, )drl cvedr,, (1.15)

X f' f'K(p’T‘ .-
0 0 A% P
and we recall that the symbol K stands for the
following determinant:

K(xl ...xm> —
Y ** Ym

‘P(xl) yl): ‘P(xly yZ) e ‘P(xl; yﬂ)
ﬂa(xh yl) T

¢(xmy yl); go(x,,., yZ) v ‘P(xma yrn)
(1.16)

From Hadamard’s theorem and (1.8), it follows that

f f K(“ """“) dry - dra
o 'y rl ) T'm
<CErm™r,  (1.17)
[' f K(’,”“ """"') dry -+ dr.,
o o |\,
< [COClo)(m + 1)+, (1.18)

Consequently (and this is a well-known fact), the
series (1.14) and (1.15) converge for any finite value
of r. Suppose now that r and +’ take complex values
z and 2. Any term in the series (1.14) or (1.15) is
an analytic function of z and z’. Choosing rays is-
sued from the origin as contours of integration, and
since Hadamard’s theorem is valid also for deter-
minants with complex elements,® the bounds (1.17)
and (1.18) hold if only r is replaced by |z|, when 2z
and 2’ lie inside the circle (0, r).

The series (1.14) in the complex form is therefore
uniformly convergent for any finite value of z, so
that D(z) is an entire function of z. Let us now define
D(z, 2’) to be

"F. G. Tricomi, Integral Equations (Interscience Pub-
lishers, Ine., New York, 1957).

¢ F. Riesz and B. Sz, Nagy Legons d’analyse fonctionnelle
{Academie des Sciences de Hongrie, 1955).
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26, 2) = [ o6 A Do) (119
D(z, ') is an entire function of z and 2. K,(z)
may therefore be continued in the z complex plane,
and, for any finite value of 2/, as a meromorphic
function of z. Its poles, which are necessarily zeros
of D(2), are independent of z’. Conversely, a clas-
sical argument® which can easily be extended here,
shows that all the zeros of D(z) are poles of K,(2').

1.3. Poles of zV(z)

Equations (1.1) and (1.6) enable us to get the
analytic continuation of V(r)

V@) = —2:7'{d[2K.(2)]/dz} .

Since the only singularities of K,(z) for finite z are
poles, the only singularities of zV(z) are poles of
order at least equal to 2. Since the ¢, are real,
if z; is a pole, 2% is also a pole. Now let z; be a pole
of K.(2') (2 ¢ 2). For z = z;, the homogeneous
integral equation derived from (1.7) has at least a
nontrivial solution:

(1.20)

xle) = = [ dnxledee, ). (120

This solution is an entire function of 2. The existence
of such a nonvanishing solution could lead us to
question the validity of Newton’s method. Indeed,
in this method the following step makes use of the
vanishing of such a solution. Let us retrace the argu-
ment. Dy(r) is the differential operator r*(8%/8r* + 1).

From the partial differential equation verified by
flr, r'):

{[Do(r) — Dl ) =0, (g 99y

f(oy T’) = f(‘l‘, 0) =0,

and from the integral equation (1.2), it is shown
in the above method that the function,

£r, ) = {D@) — Do)} K(r, 7)),  (1.23)

where

D(r) = Do(r) — r*V (), (1.24)

is a solution of the homogeneous form of (1.2),
which is equivalent to (1.21). The proof of this
statement makes use of (1.2) and (1.22), together
with straightforward but tedious differentiations and
integrations by parts. The vanishing of £(r, r')
shows then that K(r, »’) is a solution of a partial
differential equation, from which all the equations
of the method follow. We see therefore that the

» Reference 8, p. 174.
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method is not valid at the points z = z;. However,
this is not a difficulty, since these are isolated points
in the z complex plane. For z = z;, £z, 2) is a
nonvanishing funection, so that the solution (1.21)
is not equal to zero in L.. But in the whole 2z com-~
plex plane (except at these isolated points), £(z, 2')
is zero, so that there is one and only one analytic
solution of (1.2), and the existence of £(z, 2') at
z; 1s only another aspect of the nonanalyticity of
K(z, 2’} at these points. Therefore, all the equations
of Newton’s method hold provided that there is no
pole on the real axis. Besides, it is clear that if such
a pole, which would be of order 2 or more, existed,
the scattering problem might have, strictly speaking,
no physical meaning. It is remarkable that the
formula (1.3) and those relating the ¢; to the §
enable us to define the scattering problem even in
this case, if we choose for all the integrals a contour
which does not cross any pole, and provided that
there is no pole at + «. This may give a way of
studying some special classes of singular potentials.

The absence of a pole at -+ is certainly true
in general, i.e., D(r) can be zero for r = + « only
for particular sets of ¢;. On the other hand, there
are certainly two cases for which there is no pole
at +o.

(1) When all the ¢; are small enough, the Neumann
series converges for the solutions of (1.2) [or (1.7)]
80 that there is no pole on the real axis.

(2) When all the I for which ¢, » 0 are of the
same parity, it is possible to write down the solu-
tion g(r, ') of the equation obtained from (1.2) by
replacing the upper bound r of the integral by 4 .
This is due to the orthogonality of the sets u.; or
Us;+1. One obtains

00,7 = 3 gat st 1.25)
or

glr, 1) = (;i Garatharer(Nzrn (),  (1.26)
where

-1

Co. (1.27)

w
o~ 1+ e

We showed in a previous paper' that the solution
K(r, ') of (1.2) is also a solution of

K, =9, 1)+ [ T o de K, p)gle ). (1.28)

If the coefficients g, are bounded in such a way that
g{r, ') belongs to one of the three classes studied
in I, |g(r, r")] is bounded by
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CorP X [1+ [r — 1™

For large values of r, the Neumann series converges
and defines K (r, ') from g(r, r'). K(r, ') isequivalent
to g(r, ') for large values of r and 7/, so that, in
the same conditions, {K,{r)| is bounded. It follows
that the solution of (1.2) cannot have a pole at + «
in these conditions. As we see in the following ex-
ample, there can be a pole at + « if these conditions
are not fulfilled, for example, if one of the g, is
not finite.

1.4. A Simple Example

Newton has considered a very simple example
where all the phase shifts are easy to calculate
exactly. We investigate the properties of the po-
tentials involved in this case. It is assumed that
only one ¢, is nonvanishing. The following formulas
are straightforwardly derived

1z, 2) = i @ui, ), (1.29)
6. = [1 + chLi‘é(Z)]"uzo(Z), (1.30)
Kz, 2) = c1,¢:,(0u. (&), (1.31)
_ _au @)L, @)
6.2 = u(2) ——"""“"l T c,anj(z) y (1.32)
where
L@ = [ wldu @ do. (13
The potential V{2) is equal to
— o1, A ] [, @)1 }
V) 22 ¢, dz{z 1————»——-—~+ oLt {1.34)

The phase shifts are given exactly by the following
formulas:

tan §, = 0 [T — L

tan 6, = ¢c..(bo — DM+ L+ 1)
X {1 + 3xlei /@2 + DI},

[l — b| odd.

for even

(1.35)

for

Let us pow study the analytic properties of the
potential (1.34). It is analyticfor z = 0 [, > 1.
For I, equal to zero, 2V (2) is analytic in a non-
vanishing circle, with its center at the origin. The
function Li3(r) is odd, increasing monotonously from
—in/2l, + 1) to +3r/(2l, 4+ 1) when r increases
from — @ to -+ .

Therefore, the potential (1.34) has no pole on
the real axis only if

lew| < 20742l + 1). (1.36)
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If ¢,;, 18 not bounded as in (1.36), and according to
its sign, there is one pole either on the negative
or on the positive real axis.

Poles in the Right Upper Half-Plane

We prove now that the potential (1.34) exhibits
an infinity of poles in the first quarter of the z com-
plex plane. For this, let us write the denominator
of (1.34) in the following form:

D=1+44%r

Cio z —2 2
s o [ e o (AT (137
Well-known formulas'® for spherical Bessel func-
tions lead to

%,() = sin (2 — Lin[l + «(@)]
+ e(2) cos (z — lim),

where z¢,(2) and ze;(2) are polynomials of 27
Suppose now that both Re z and Im 2z go to + .
The formula (1.38) is equivalent to

U, (@) = exp [—il — Lim)l[l + «@)],

€(2) is analytic for z = 0, whereas ze(2), 2°¢l(2),
2°¢4’(2) remain bounded as Re z and Im 2z — .
Integrating twice by parts and evaluating the
rest on a parallel to the real axis, we can write D
in the following form:

(1.38)

D=l+-i7&——

e-—ziz(_l)lo
2, +1 ?

[1 + (@],
(1.39)

where ze(z) is analytic, and remains bounded as
both Re z and Im # tend to + «. Let us now call
2, a zero of

1
zCi,

—21iz

c e
2 2l0 _'_ 1 - i_cln(_"]-)l‘I _22—

= a(ed-i»s"y — 2—28-2{:),

(1.40)

where «, B, v are convenient constants. It is easy
to see that D, exhibits an infinity of zeros in the
first quarter, located on the curve:

2Imz = 8 + Log [(Re 2)® + (Im 2)’]
at the points

Imz + k.

= 1l _
Rez v ArctanRez

(1.41)

This curve and these points go asymptotically to
the following ones:

10 Higher Transcendental Functions, A. Erdelyi, Ed. (Mec-
Graw-Hill Book Company, Inc.,, New York, 1953), Eq. 7.11
(1). Hereafter referred to as HTF, followed by the number of
the formula.
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{ImzNLog Rez, (1.42)

Rez~ —3y + kr.

We now show that if &z) and &(z) are bounded
by |e| in a circle [z — zo| < Ce¢, D — Dy(2) has a
zero in this circle. It is sufficient to show that the
property holds for

{z;2e—2|'zo

— 2% [l + €@},
or for
f&) =1 — ™71 + 9z — 2],

where || and |dy/dz| are bounded by e in the circle
|2 — 20| < 2¢, and analytic in this circle. To show
this point, we have only to evaluate the following
integral:

1 1@
el B el

which is equal to the number of zeros of f(z) in
the circle (Jz — 2] ¥ 2¢). Since we have on the
boundary of this circle, up to order ¢,

3e < [fR®)] < Be,
1—2e<3if@)| <14 2,

dz = 2¢ d#,

it is clear that there is one (and only one) zero in
the given circle. Now, it is easy to see that the
properties of €(z) enable us to obtain majorizations
of this kind, so that the zeros of D(z) go asymptoti-
cally to the zeros of Dy(z). Therefore, D(z) exhibits
an infinity of zeros, which go asymptotically to the
points (1.42), and which are poles of the potential.

Asymptotic Behavior of the Potential

The formula (1.34) shows readily that V{(r) de-
creases as r~° when r — o, provided only c¢;, be
different from —2(2l, + 1)/=.

The Case of a Pole at +

If ¢;, is equal to —2(2l, + 1)/=, V(r) behaves
like Cr™* sin 2r for large r, and this is not sufficient
to give sense to the scattering problem. It is not
surprising to see that, in this case, tan & and 4’
are infinite for odd (I — 1.

Other Examples

Similar examples can be found if we take a finite
number of nonvanishing ¢;. These examples lead
to Pincherle-Goursat kernels in the fundamental
Fredholm equation, so that it is easy to obtain an
exact solution of it.
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2. DEFINITION AND ANALYTIC PROPERTIES
OF JOST FUNCTIONS

In this section, we first show that the regular
solutions of the Schrédinger equation for any value
v of ! in the complex half-plane (Re » > —1) can
be obtained from K(r, r’) through a formula which
readily interpolates the formula giving the wu,(r).
We then use the asymptotic form of this relation
to get the Jost functions. These can be continued
in the whole » plane as meromorphie functions with
poles at the negative integers, and the expansions
we obtain are their Mittag-Leffler expansions.’® The
result is used to show the unitarity of the interpola-
tion of the scattering amplitude. We give then
formulas which enable one to study the properties
of Jost functions either from the asymptotic prop-
erties of the coeflicients ¢, or from the asymptotic
behavior of the phase shifts.

These formulas enable us to get at the location
of Regge poles for large values of |v|. We show that,
for large |v], the zeros of f,(v) in the right half-plane
are located on a curve of zero slope in the first
quarter. This curve is on the boundary of a domain
described by Martin,* which cannot contain any
Regge pole. On the other hand, it is known, from
a work of Bessis,'® that, if the potential is holo-
morphic and bounded by a decreasing exponential
in the right r half-plane, there cannot be any pole
in the » plane with Re » — + «. The existence
of poles in the present case shows that the potentials
built through Newton’s method cannot fulfill these
interesting conditions. Besides, the example we
give exhibits an infinity of poles in the right r
half-plane.

2.1. Definition of the Jost Functions

Let us now recall that «,(r) is an eigenfunction
of Dy(r)

Do()u.(r) = »(v + Du,0). @1

From K(r, p), we define, for any value of v such
that Re » > —1, the function

8.0) = w0) — [ K@, duloe” do.

Applying the differential operator D{(z) to (2.2),
performing two integrations by parts, and using
(2.1) and (1.23), show that, for z # z., ¢,(2) is an
eigenfunction of D(z)

D@)¢.@) = v + 1)9,(). 2.3)

1 C. Caratheodory, Theoré/ of Functions of a Complex
Variable (Chelsea Publishing Company, New York, 1958?.
12 D, Bessis, Nuovo Cimento 23, 797 (1964).

2.2)
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Furthermore, it follows from (2.2), (1.2), and the
well-known properties of w,(r) that ¢,(r) is the
regular solution of (2.3) if Re v > —1, since

u, ) ~ 1,
¢,(T) ~ Tr+1 + O(rv-!-Z)-

Let us now recall the expansion of K(r, ') (in
Refs. 1, 2)

(2.9

K@) = 3 ediOmt). @5
Substituting this result in (2.2), we obtain
$.(r) = u,(r) — ; Ly M), (2.6
where
L6 = [ do pu(eun o). @)

In order to obtain the Jost functions, we let r —
+ « in (2.6). Then'®

u,.(T) ~ (2i)-l[ei(r—v§r) _ e—i(rur}t)]’
d’v(f) ~ (2’!:)_x[fl(y)e" — fz(l’)e“"'],

Formula (2.6) is valid for any finite value of 7,
modulo the Assumption I of Sec. 1. To replace the
functions by their asymptotic expansion in (2.6),
it is necessary that the series (2.6) converge for
any real positive value of r, including + .

Now, the well-known results yield

(2.8)

0 0) F @) — 6 )
U4 1) — v+ 1)

We showed in I that |u,;(r)| and |u{(r)| are bounded,
for any real positive value of r, by Cll. If there is
no pole on the real axis, so that K,(»’) is bounded
for any real positive value of r and 1/, it follows
from (2.2) that |¢,(r)| is bounded by C»! for any
real positive value of r, and, with some algebra,
it is easy to get the same bound for |¢/(r)]. Con-
sequently, the series (2.6) and the differentiated
series are convergent for any real positive value of
rif

L) =

2.9

lea] < B (2.10)

Modulo this important condition, we can replace
the functions in (2.6) by their asymptotic behavior
(2.8), and obtain

13 E, J. Squires, Complezr Angular Momenta and Particle
Physics (W. A. Benjamin, Inc., New York, 1963).
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sin (v — U)ir

( o hivr
ho) = e 2 D ST D
X a;-(1 + 4 tan 8, )¢ "

(2.11a)

sin (v — )ir

. iy
O = = S D — )
L X a (1 — ttan §,)e* '™,

(2.11b)

where we put, as in I,
(2.12)

It follows from the bounds of the functions ¢ that
A, is bounded by Ci!. Furthermore, it follows from
the analysis of I [I, (3.2)] that A, approaches 1
as | — «, if, for instance, the phase shifts go to
zero faster than {7®"‘. Since the a; are bounded
in the same conditions, the condition (2.10) is
obviously fulfilled and Newton’s method is self-
consistent.

a: = ¢; 4, cos §;.

2.2. Properties of the Jost Functions and the
Scattering Amplitude

2.2.1. Unatarity
We first remark that the unitarity condition
SES*eM] =1 (2.13)
holds for any value of » in the complex plane, since

¢ 10)

S@) = — , 2.14
0 = S (2.14)
and since it is obvious in (2.11) that

[fl(V*)]* = fz(”)- (2.15)

2.2.2. Analyticity of f, .(v)

We see readily from (2.11) that f,(») and f.(»)
can be continued for any value of » in the complex
v plane, except for negative integers —I — 1, for
which f,(») and f,(») have simple poles, with residues
a;(1 = 7 tan &)(£0)'/(—=2l — 1). f,(») and f,(»)
are therefore meromorphic functions, with fixed
simple poles, and the expansion (2.11) is their
Mittag—Leffler expansion.

2.2.3. Another Expansion of the Jost Functions

Several properties of the functions which we are
to study are related to the asymptotic behavior of
the expansion coefficients in (2.11). Since the phase
shifts §; go to zero as I — =, the asymptotic behavior
of the expansion coefficients in (2.11) is simply
related to that of coefficients ¢, ie., to V(r). It
would be interesting to have a formula similar to
(2.11), where the asymptotic behavior of the ex-
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pansion coefficients would be readily related to
that of the phase shifts. It is not difficult to find
such a formula when |8, is bounded by CI™%°
as [~ o, We show in Appendix AI that it is possible
to obtain in this case the formula

a=v+ M A, (2.16)

where the components of A’ have the same as-
ymptotic behavior as the phase shifts &, i.e., the
ratio of the lth component of A’ to §, is bounded.

Substituting this result in (2.11) and using the
formulas (AII7) and (AII16) from Appendix II,
we obtain for f,(»)

fz(y) — e}itv —a Z L:’vl’e-il’}r
T
+i > LVa; tan 8. 'Y — S CV AL, (2.17)
154 [

where the C; are given by

CP' = —(~14"'2p + 9
% [L(p + T + %—)TLW
I'p+ D@ +0] " ' 2.18)
Cy = —i(—=1)4'(2p + )
n(d ne
x [t
and

Li=[0+4% — («+ 31" sin ¢ — p)ir.
As we see later, the second term in the right-hand
side of (2.17) can be calculated exactly. The ex-
pansion of f,(v) can be obtained from that of f,(v)
through the formula (2.15). It is clear that the
expansion (2.17) is very similar to the expansion
(2.11), but once we have computed the term which
could be done so exactly, the expansion coefficients
of the remainder decrease like §,. We can therefore
study the properties of f,(+) by using either one of
the expansions (2.11) and (2.19). For the sake of
simplicity, we limit ourselves here to (2.11).

(2.19)

2.2.}. Asymptotic Location of Regge Poles

The Regge poles are given by the zeros of f.(»).
We try to find their positions in the » complex
plane for large values of |»|. The coefficients of
L} in (2.11b) are written as follows:

ag,‘(]. b itaﬂ 82») = ar‘Zn + a-2n7 (2.20)
a2n+1(1 — ¢ tan 52n+1) = Bhzns1 + Gan+1,
and the g, are assumed to go to zero as n — « faster

than n™". According to an analysis of I [Sec. I, (3.2)),
this condition is related to a bound CI""/*~* for
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the 8;. Insertion in (2.11b) of the formulas (2.20)
leads us to consider (2.11b) as the sum of five terms,
Ty, Ty ++- , Ts, where T, is e!**’, and the others
are now considered separately. T, and 7, which
contain, respectively, the terms fF.,, and fs,.. of
(2.11), can be calculated exactly, using formulas
for the g, given in I and well-known formulas,

—a T, = Z Lﬁ"’f’ﬁz,‘
= %7"‘/; J+3(0) Z Fan 2P} (—1)"
= (in} f Joes(0)To(0)p t d
1T+ T+
= TG F TGy ¥ 1) B (22D)
S0 that, as IVl — ©, with ]Al‘g Vl <
Ty~ —v'acosvirexp [—3 + L%, (222
In the same way
R
k4
= 17 PG+ DIy .,
I pre + o G

so that, as ] — o, with [Argy] < =
Ty~ —w 'Bsinvirexp [—4 — 77, {2.24)

Let us now study the terms 7', and 7'; which contain
the @,, and which can be put together into the form

2 a e*"h- Sin v — l’)%ﬂ' .

N R R G
In order to avoid possible difficulties coming from
the real axis, we first exclude from our study a
strip |Im »| < &, where ¢, is a fixed number. Let
us write (2.25) in the form

(2.25)

dirx
T - T TP
s 1 al’(—'l) .
D T 7 g vy e v M
Suppose now the @, are bounded in the following way:
|6 < Cn7* & > 1), 2.27)

a well-known identity enables us to write

/7%
o lf — T+ s
- Dokl e+ [HHTT
v+ 5

MR ARl VR (v vy v M
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Let us make p equal to E[3(k + 1 — ¢)], in order
that the following condition should hold:

—1<2p—-k<l—e (2.29)

The condition (2.29) and the results of Appendix
AIIl show readily that the remainder in (2.28)
is of the order of [»|™*7** as |y| — ® (with e — ),
so that the last term in the brace of (2.28) is larger
than the remainder. If the same work is done on
the second term of (2.26), we get for (Ts + T%)
the expansion

r_ . T

G+ T

Ty 4+ Ts = e*i"{ 1)4 e

v+ 3

T-’; —k—1+¢ }
Torpr OV

_ e—}iwr{ Tl— Tz
iy oy T

— + O(X’_k l+e)}’

Tp
e + %

where the coefficients 7] and 7 are linear combina-
tions of the d,. Besides, the terms 7T, and T, can
be combined to give

Ty + To = —p e
X {ei‘ixv[(a + 8 + Ha — B);x_z - 0(};—3)}
+e 7l — 8 + e+ A7+ 067 (231)

If we compare T:(= ¢**™’) to the other terms for
large |»|, we see that T, is larger in the lower half-
plane, so that there cannot be zeros of f,(v) for
large |»] in the lower half-plane. When » lies in the
upper half-plane and |»| is large, it is necessary that
Im » and Log |Re »| be of the same order so that
(Ty + Ts + Ti + T,) is of the same order as T,.
Therefore, we may limit our study to the large
values of Re » and Im ». According to the values
of the §; and «, we may encounter one of the fol-
lowing cases:

(2.30)

(1) a# 8  fs(v) can be put in the form

£O) =& — Pia - BEHTL+ )], (232
2)a=8 {2(») ean be put in the form

Le) = e — ¢+ P 4+ «0)],  (233)

where T is obtained from 7! and the coefficient
of v in the terms T, + T. T may happen to
vanish. This means that the ¢;, or, equivalently, the
phase shifts, are related by a definite constraint,
so that the potential is restricted to a subelass of
the class we study in general. The terms (T, +
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Ty + T, + T;) are then of the order of (a + B)»~?
which is zero if (and only if) 8 = O (since & = 8).
This method is applicable up to terms of the order
of »™*, if we limit ourselves to more and more
restricted subclasses of potentials, or of phase shifts.
If kis », pis + . If we limit our study to the
cases where there is a nonvanishing coefficient of
index ¢ lower than k, the function f,(») can be
studied starting from the form

) = ™ — TV + 60)].  (2.34)
This form is similar to the form (1.40) of Sec. 1,

and can be studied in a similar way. If =¥ =

e*", we find that f.(») has an infinity of zeros in
the upper half-plane, which, for large |v|, approach

the points (Re v = 7 4+ 2k) on the curve

Imy = =" 'q Log |Re »|. (2.35)

This curve is the boundary of a domain described
by Martin which should not contain any Regge
pole. It is not surprising to find Regge poles at +
in the right half-plane. Only in the case of a potential
which is holomorphic and bounded by a decreasing
exponential in the right half of the r complex plane
has Bessts shown that there could be no pole in the
right half of the » complex plane. Their existence
in our problem proves that the conditions imposed
on the potential are not fulfilled. As for the strip
|Im »| < &, which we did not study up to now, it
is easy to show, with the help of Appendix III,
that it does not contain any zero of f,(v) for large
[v] if Re » > 0. It is possible that there are zeros
in this strip for Re » < 0, which are not interesting.

2.2.5. Analytic Properties of the Scattering Amplitude

From the above study and from formula (2.14),
we see that S(») is a meromorphic function of ».
Asy——1i», S(v) behaves as Cv~%**". This behavior,
and the existence of poles for Re v = o, exclude
any possibility of applying the Carlson theorem.
We now show that Newton’s potentials cannot
include “good’’ superpositions of Yukawa potentials.
Indeed, a *“good’ superposition of Yukawa potentials
exhibits two important features

(1) 8, decreases exponentially as | — o.
(2) There is no Regge pole as Re v — + .

Now, in the formula (2.17), if the 8, decrease
exponentially, it is possible to impose to the phase
shifts an infinity of constraints in order to avoid a
behavior of the Jost functions like (2.34). More
precisely, we have to impose the vanishing of all
the linear combinations
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T AC+DE+H =0, (2-36)
4]

whereg =0, 1, - - -, «, and the coefficients A(l + %)
behave asymptotically like the §;. If §; decrease
exponentially, we can write

A+ 3 <CeT. (2.37)

Let us now introduce a generating function g(z)
for A(l 4+ %)

0@ = 7 3 AQ+ 3 cos (L + Ba,
0 (2.38)

sa+9 - " oos (1 + $)z9(@) da.

It1is clear that g(z) is analytic in the strip Im z) < T
Furthermore, g(z) is an even function, and it follows
from (2.36) that all its even-order derivatives are
equal to zero. g(z) is therefore equal to zero and so is
A(l + ). This means that, at least from I = I,
all the &, are equal to zero, and that, even for
lo # 0, f,(») is equal to €¥**’, so that the only po-
tential consistent with these properties is V(r) = 0.

Remark: One can show that if there are several
equivalent potentials, and if S(») cannot increase
faster than e'™”', it is necessary that, for all these
potentials, except maybe one of them, S(») should
have an infinite number of poles and zeros in the
right half-plane. Indeed, suppose that S(») is holo-
morphic and different from zero for Re » > A.
It would then be possible to calculate the function
[SG] in this domain, which would fulfill the ap-
plicability conditions of Carlson’s theorem, and this
can happen for only one of the equivalent potentials.

APPENDIX I

Our aim is to obtain for the asymptotic behavior
of the coefficients @, more precise formulas than
those derived in I. We start with the fundamental
formula

tan Ae = Ma -+ tanA M tanA a, (AIl)

where M is the matrix:
M = {[l'(l' F+ D=1+ Dl — 1 isodd,
0, if ! — [ iseven.
(AI2)
The inverse matrix M~ of M is equal to

M™ = uMy, (AI3)
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where u is a diagonal matrix, whose elements are
equal to

Bansy = 20720 + P[Tl + 3)/Tn + DY
~ 4z 7'n®, for n— o,
fon ~ 227'@n + [T + /T + D

-1
N41r s

(Al4)

for n— o.

In order to transform (AIl), we should first study
the conditions in which the products MM 'x and
M Mx are associative, that is to say, are equal to x.
Using (AI3), (AI4), and bounds given in the Seec. 1.2
of 1, it is easy to show that all the double series in
M (M 'x) are bounded by summable positive series,
and therefore summable, if

(@)
(b)

The Fubini theorem leads us straightforwardly to
the result

Tiyeven < Cl;e; (AIS&)

Tig0dd < Cl;’“‘. (Alsb)

M(M™'s) = MM 'z = x. (AT6)

It should be noticed that the condition (AI5b) is
necessary to allow the application of M~ to x.

It is easy to see in the same way that M~'Mx
is associative if

Lieven < Ci;ex
Liy0dd < CI;“.

(AI7)

Let us now return to Eq. (AIl). The summability
conditions in this equation are

}Q;l < C’l"‘, ka; tan 5;‘ < Cll_.e. (AIS)

If, more precisely, we suppose that |I'**§,| is bounded,
the operator M~' may be applied to all the terms
of (AIl). According to (AI5) and (AI6), recalling
that the vector v is annihilated by M, we deduce
from (AIl) the equation

M 'tanAe + av = (1 + M 'tan A M tan A)a
= (1 + Ra. (A19)

This equation was given by Newton,” and studied
in detail by the author,’ but the validity conditions
had not been fully investigated. If I****§, is bounded,
the analysis given in I shows that it is possible to
get a set of a; which are bounded. We see here that
this analysis is consistent with the above conditions.
It is assumed hereafter that

s, <0 8> 0. (AI10)

SABATIER

Equation (AI9) is equivalent to the following
set of equations:

@) av = (1 4+ R)av + ¢},
(b) M~'tan Ae = (1 + R)b,
(¢) a=b+4+ ¢+ av.

According to (AI10) and the results in (3.66) of I,
and since R connects only components of the same
parity, the following orders hold:

(AI11)

Gz, = aty, + 0(™),
¢ = 00”9, Czrpy = 0, (AI12)
[bo] < CGT),  |baras| < C.
The last two inequalities enable us to write
b = M ™' tan A cot A Mb. (AI13)

Since tan A and cot A are diagonal matrices, it is
clear that the associativity of the produet in (AI13)
is ensured by the associativity of MM~'. Equa-
tion (AIllb) may therefore be written as

M7 tan Ae = M ' tan A(1 + R*) cot A Mb, (All4)
where

R* = M tan A M ' tan A. (AIl5)

If we notice that the vector u'v is annihilated by
M™*, we deduce from (AI14) the equation

e — vy cotA u'v = (1 + E*) cotA Mb. (AI16)

A comparison between the asymptotic behaviors of
the two sides in (AI16) shows that y = 0. Proceeding
carefully as above, we get from (AI16) a formula

forb
b = M 'tan A1 + B*7e. (AI17)

The same technique enables one to derive ¢ through
the following steps:

—Rav = (1 + R)c, (AT18)
¢ = M ‘'tan A cot A Mc, (AIl9)
—aM tan Av = (1 + R*) cot A Mec. (A120)

From (Allla), (AIl17), and (AI20), we derive the
value of a

= av + M 'tan A(1 + R*)"'[e — aM tan A v].
(AI21)
We now have to study the equation

Yo = X0 — R*yo = X, — p 'Ry, (A122)
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or

(AI23)

We see that this problem is equivalent to the
problem of the inversion of (1 4+ R), which has been
treated in I, but that the application of the operator
(1 + R)™! may involve some new difficulties, since
(ux), behaves asymptotically as I’. From I we know
that the solution of

y =x —Ry

uYo = uXo — Ruyo.

(A124)

AP |

where

o =1+ X

X [""(a“ 6 - vl 0’")} d6, --- do,. (AI28)
70(0m7 01) e 'Yo(am’ 0,,,)

All the integrations are taken between 0 and .
The functions v, and v, are bounded for any value
in the domain of integration if 1*?*“5, is bounded.
Varsl is given by (AI27), provided we replace v,
by 71, Yo by 71 everywhere. If © happens to be equal
to zero, either for vy = v, or for y = 1v,, the inversion
of (1 + R) is not possible. As in I, we discard the
particular sets of phase shifts for which this happens.
B, is given by

2p+1
Z Oar41 Z UzriiTape
2p+1 ]
1+ Z O2r 4y Z Uzriifizper

B = (AI29)

where

O2r41 — tan 5‘1r+1 Z M;;+lﬂ21 ta.n 62«- (AI30)
Now, if I**** is bounded, it is clear that V3% or
Vi1 are bounded by Cp'”®. According to (AI25),
(AI26), (AI29), and (AI30), a condition sufficient
to ensure the convergence of all the series is that
p'/*** [tan §,z,] be bounded as p — «. If we return
to (AI22), we see therefore that this equation can
be solved if I'****5, is bounded. If this condition
is valid, then (AI21) holds and we can write this
equation in the equivalent form

[ w@rao) av;

f’YO(eh 0")%,(8") d0’;  vo(Oy, 6y) - -

I f (O @)nn(8) AO';  7o(B, 61) -

2089
is
Yor = T+ 2 ViTtAD G (<1, o0
Yorsr = Z U;ﬁ::(x2r+l Blﬁz"“)’
where
B g4 PEIan bu(=1P.  (AI26)

Var is defined, in function of the operators vy, and
vo defined in I, by

Yo(6) - - v5(0n)
- db., (AI27)
‘ 'YO(om» gm)
a=av+4+M' A/, (AI31)

where A’ is a vector the components of which behave
asymptotically as tan §,:

Al ~tan &1 + O],
APPENDIX 11

The matrices L,” and M~ being defined by (2.7)
and (AI3), we compute the elements of

Cl = X Li'et" '™y,
2.

Forl = 2p + 1, C, is equal, according to (I, 3.27),
(I, 3.28), and (I, 2.3), to

br [ Joa0o 4G dp,  (AT)

l— o,

as (AI32)

(AIID)

C?p+1 o ___(__

where

AR = 2@ + D@ + D [ Taeslo)si” d
X E ﬂszanﬂ(Pl)Jz»ﬂ(P)-

Using for the series in the right-hand side of (AII3)

the form given in I [I, (AII3)], we can write A(p)
as

A(p) = 4pei(e + D + 16

r/2
xf Jo(p sin ) sin « da
0

(AII3)

X [ Juoisin ) op(poit o (AILY)
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Using now the well-known formulas,'* we can com-
pute the integral in (A114) and obtain

A(p) = 41z {—Eﬁ% 3ot

r/2
X f Jolp $in @)Paper(cos o) sin @ dee.  (AIT5)
1]

Inserting this result in (AII2) and performing the
integral over p with the help of the well-known
formulas,'® we obtain

2y (1 )
«_(_1)92(21) + %) P(P + "2‘)_1‘(27’ + 2)

Czp-l-l —
’ Tp+1) TG+ 1)

/2
X f P,,.,(cos a)P,(cos a) sin & da. (AIl6)
0

A well-known formula'® yields then the result
r@+%}@w+%T
T+ 1 T+ 1)
sinirsv — 2p — 1) .
e —2p - Do+ 2p+2)
(AIT)

For | = 2p, C, can be written, with the help of
formulas (3.27), (3.28), and (2.3) of 1, as

dir [ Js(e) do 57'B(R),
0

e = —(~1r2p + 9|

Ccy = (AIIS)

where

B(P) = fo, E Eererq-;t(P)(—l)f
+ 2050 + D1’ [ Tau®)
X E p2r+!J2r+§(p)J2r+§(p,)‘ (AIIQ)

Using for the series in the right-hand side of (AII9)
integral expressions given in I [see (2.8) with & = 3,
and (AII7)], we obtain for B(p) the formula

Bp) = x(2/m) o' i(p) + 40 + D(—1Fpp’

x/2
X f Ji(psin o) sin a d
[+

xf TA(o sin @) oy (o)p' ™ dp.  (ALTI0)
0

We denote, respectively, by B; and B, the first and
the second term in (AII10). The last integral in
B.(p) can be transformed with the help of the well-
known formulas'” and B.(p) takes the form

U HTF 7.7 (29).
1 HTF 7.7 (29) and HTF 3.2 (20).
16 HTFE 3.12 (15).
3 2‘EII;I;I‘F 7.7 (29), HTF 2.11 {10), HTF 2.8 (20), and HTF

SABATIER

Bu(p) = 2Gp)t SRED

Iy + 3
/2
% f J(psin o) sin® & da —3—
0

d cos a Pyy(cos a).

(AII11)

After inserting this result in (AII8), and computing
the integral over p in the same way as above, we
get for the contribution of B,(p) to C3’:

o e Tp+1) Ty
(=1 s, T+ HTE+ D

X fo a-— xz);—xP,(x)g;Ph(x) dz.  (AIT12)

Integrating by parts and using the Legendre dif-
ferential equation readily yields the following for-
mula, in which we have replaced g, by its expression
in {1, (3.28)]:

I'lp+3) T
I'(p)y TGr+ %

X [) ' P()Pu) dz.  (AIII3)

2i(—1yCp + %)

With the help of a well-known formula,'® we get
the result corresponding to B,(p):
IR

I'Gr +3 TG+ 1)

2p2p + 1)
@ —»@2+»r+ 1)
The contribution of B,{p) is much easier to compute:
a known formula' readily yields the result
yip,, T+ D TG
+HTE+H

If we add (AIT14) and (AII15), we find the expression
of C?
o = —i(-1y2ep + |

X (AII14)

sin v,

(AIll5)

sin $mv.

I'(p + 3 T'Gr + 1)]2
T+ DTG+ 3

sin %‘rr(v - 2p) .
XTo—peFopt D (AHO

All the convergence proofs, and, in general, the
validity of the mathematical derivation result readily
from the mathematical studies given in I.

APPENDIX IIT

We study here the asymptotie behavior for large
values of |»| of the series

8=

=0

a>0, (AIIID)

-6+ qta’

18 HTF 3.12 (15).
19 HTF 7.7 (30).
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where the |y,| are bounded by Cq™® (8 > —1) and
where » takes its values in the complex plane, except
the neighborhood of the real axis. For the sake of
simplicity, we more precisely exclude the strip
|Im »| < €, where ¢ is a fixed number. Let A be
the real part and g be the imaginary part of (» + «).
The modulus of S can be bounded as follows:

181 < 3 bl (I + ° = (@ + &F

+ 4’ + o'}t (ATIIR)
or
8] < Eo ol [N + %) = (¢ + &)°]"
+C W™ (AIII3)

where the prime on the sum means that we excluded
from the summation the two values of ¢ nearest
tog+ a= O+ udh

According to a study given in I [I, (AI3)], |S|
is therefore bounded by (C [»|™"™*** + C [|»|™.
From the present study, it is easy to deduce the
asymptotic behavior of the following series for
large values of » in the complex plane (including the
positive real axis)

o had Yen
Sy = sin grm Zo v=2m¢+2n+a)’ (AIII4)
8, = cos bw D, o

SZe—-2n—De+2n+1+a)

Proceeding exactly as above, and excluding from
the sums the terms with index nearest to |}v}, we
find, for example, for S,

[8:] < lsin dor| [C [T + € |7,
[Im »| > e,
18] < € |77 + € p| 7,

[Im»| < .

for (ATIT5)

for
APPENDIX IV

It is remarkable that, for the special example
given in (1.4), the scattering amplitude (and the
cross section) can be given an exact closed form.
To show this point, let us first introduce the fol-
lowing notations:

a = ¢, (1 + 3nc, /20, + 1)7,
b=1[(l+2"—1d]; Reb>0.

We can write the scattering amplitude as

(AIV])
(AIV2)

f(8) = @)™ 2 (21 + 1) + 7 cot 8,) *P(cos 6),
0 (AIV3)
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where, according to (1.35),
cot & = a7'[(l + 3" — (I + §’]
for |l — I, odd, « otherwise.
1. I, odd

From (AIV3), (AIV4), and the well-known re-
sults,® we derive readily the following relation:

[ Jy(@)z ™t dx
0

(AIV4)

—xak ™"
0= 56 -

X 32 @1+ DD ay@Paleos 6) (AIV3)

_ —arak™!
" sin (b — Dir2n)}

X f J(@) cos (z |cos 8))z™? dz. (AIVe)
0

This Weber-Schafheitlein integral can be calculated'*
as

f(0) = “Wak—lr(i‘ + %b)
2rrE + 3b) sin (b — Pir

X oFi(} + 3b, % — 3b; 3; co8® 9).  (AIVY)

It is possible to express the result (AIV7) in terms
of Legendre functions®

f(6) = (2 cos b)) 'wak™ {,F,(3 + b, 3 — b; 1;sin’ 36)
+ oFi(3 + b, % — b; 1; cos® 30)}

or
1(8) = (2 cos br) 'wak ™ {P -3 (cos 6)
+ Pu-pleos (v — 6)]}.

2. lp even

With the help of the well-known formulas,” we
obtain, in the same way as above,

1(8) = —mak™* cos OT(3b + D

IAHTGEb + D sin (b — Pir

X oFy(§ + 3b, § — 3b;%; cos’ 0). (AIV9)
A quadratic transformation®™ enables us to express
this result in terms of the Legendre functions®

f(6) = (2 cos br) 'wak™ {P (-3, (cos 6)
— Py-pleos (r — 9)1}.
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This paper presents an exact solution to the equations of radiative transfer for a generalization of the
Uniform-Picket-Fence model discussed in a previous work. Here the absorption coefficient is allowed
to take N different values over the frequency spectrum. Case’s method is used to construct the normal
mode solutions to the set of N coupled integral equations. Then half-range completeness and orthog-
onality theorems are proved that enable one to solve typical half-space problems. Explicitly, the
asymptotic solution to the Milne problem is developed, including the extrapolated end point, while

implicitly the complete solution is available.

1. INTRODUCTION

N a previous paper' (hereafter referred to as I)

we presented exact solutions for the equations
of radiative transfer with local thermodynamic
equilibrium for a particular model of the absorption
coefficient K, (uniform picket-fence model). In this
model, K, was assumed to take only two values
K, and K,. In the present paper, we generalize
the results of I to the case where K, can take on
N values. The derivation of the basic (matrix)
transport equation follows similar lines of reasoning
as that of I. However, we briefly give the cogent
points in the derivation below with a slight gen-
eralization of the case treated in I; namely, we
include a scattering term in the transport equa-
tion which we neglect in order to obtain an explicit
solution.

We begin, then, with the equation for radiative
transfer

, adz,;.:, B 4 o@D &, + S)e, 1) = p@KBITE)]

+ 008, [ W W@ @) d’. O

Here, as in I, we assume plane symmetry (co-
ordinate 2), where u is the cosine of the angle be-
tween the photon velocity vector and the z axis;
¥, is the angular energy density of frequency v;
p(2) is the material density, and

* This work is based on a Ph.D. thesis submitted by one of
the authors (C.E.8.) to the University of Michigan.

t United States Atomic Energy Commission Pre-doctoral
Fellow with a leave of absence from the Department of
Nuclear Engineering, the University of Michigan. Present
Address: Department of Nuclear Engineering, North Carolina
State University, Raleigh, North Carolina.

1 On Sabbatical leave, academic year, 1964-1965, from the
University of Michigan.

1C. E. Siewert and P. F. Zweifel, Ann. Phys. (N. Y.)
36, 61 (1966).

BIT@)] = 2’ /c")exp b/kT(@) — 1]

is the Planck black body function for the “‘local
temperature” T(z). This equation is identical to
Eq. (1) of I except that here a monochromatic
scattering term is included; S, is the scattering
coefficient, and

f f@-Q) do’ = f j@-ada =1 (2

We now assume that the frequency spectrum can
be divided into ranges Av; in each of which K, and
8, take on the same N different values (K, K, - -,
Ky; 81, S;, - -+, Sy) and that the fractional width
w,(i) of Av, over which K, and S, have the same
values is the same for all Ay;’ Further, we must
assume that B,[T(z)] can be taken independent of
v over the range Ay,;. The meaning of these assump-
tions may be clarified by examining Fig. 1. If these
assumptions are not reasonable in detail (uniform
model) they may be so on the average (random model).
Keeping in mind these assumptions, we integrate
Eq. (1) over the frequency range A, in which K,
and S, have values K, and 8,, respectively (this
includes contributions from all A»,;), to obtain

B2 0G W) + @K, + SV,

= sOKBIT@] + oS, [ vale, )1@"0) dev,
n=12+--,N, 3)

where

Vale, 1) & [ & V(e 1), @)

and B,[T(z)] has a similar definition. The Schwarzs-

2 We have assumed that the steps for K, and S, always
oceur at the same value of ». Also when K, has the value
K., S, has the value S,.

2092
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M
] [ [
{

s _I:H—: gl
L7 1
Ss--" { - - i

n L]
Av| A-l)t

F1a. 1. Generalized picket-fence model, N = 5. We see that
K, (solid lines) and S, (dashed lines) take on 5 different
values in Ap; and that the frequency ranges over which K,
and S, have constant values are the same. Further, the
fractii)nal width w.(2) of Ay; covered by K, and S, is the same
for all <.

child condition,' which states local energy conserva-
tion, is

[ " KBIT@) dv = } [ K, dv [ 11 Vo, ) du.

(52)
In the present model, it takes the form
N N 1
D KBI@) =4 LK. [ ) aw. (D

Our uniformity assumptions (cf. Fig. 1) easily lead
to the result

B,[T@)]

w [ " & BT (6a)

(wno'/ 7r) T4(Z) ’ (Gb)

(¢ is the Stefan—Boltzmann constant) so that Eq.
(5b) can be written in the form

]

4 N N 1
-——-—-—-—GTT(Z) ; Kw, = % "Zl K, /:-l ‘l’u(za “'I) dy’. (7)

We can now eliminate B,[T(z)] among Egs. (3),
(6), and (7), and obtain (dz £ p(2)Kydz; Ky < K|,
1 < N):

a 1
u 5;‘1’(:5, w+ 2w, =C f_l‘l"(x, u) du’

+¢ [ we, wif@-a) i, @
where

(&i; = (o: + 8:/Ky) b4y (9a)

2093
o 2 K,/Ky, (on=1), (9b)
©C)i; = qiow; / 2 i Calla, (10
and
(€)ii = (8:/Ky) 8. 1n

Even for isotropic scattering [f(Q'-Q) = (47)7']
we do not know how to obtain explicit solutions
to this set of equations [det (C 4 C’) = 0]. However,
if the scattering term may be neglected, we obtain
a transport equation of the form

u:—x‘lf‘(x, w + =W, p) =C f_ I‘I“(x, W) d, (12)

where
(®)i; = 0; 84y (13)
We note
detC =0 (14a)
and, in fact,
det M = 0, (14b)

where M is any minor of any rank > 1 of C. Equation
(12) can be solved explicitly by an extension of the
technique described in I. The procedure is described
in the subsequent sections.

II. THE EIGENVALUES AND EIGENSOLUTIONS

As in I, translational invariance suggests we seek
solutions of Eq. (12) in the form®

‘1"(17, T, I‘) = 6~2/’F(11, F‘)- (15)

Substituting this ansatz into Eq. (12), we obtain
an equation for

F(n, ), & — u/2E)F(n,u) = C f_ll F(n, o) dp’,
(16)

where E is the unit matrix. First, we consider the
continuum solutions, i.e., 7 € [—1, 1]. In I it was
necessary to divide this range into two subranges.
Here, as we shall see, there are N such subranges

Region1: € [~1/0y, 1/01]; (17a)

Region2: 7y &€ [—1/0,, —1/0,] and [1/ay, 1/a,]; (17b)

thus, in general,

1€ [—1/0,, —1/0:4]
(1/6;-, 1/5:],t > 1.

" 3 K. M. Case, Ann. Phys. (N. Y.) 9, 1 (1960).

Region i: and

(17¢)
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The eigensolutions for the sth-region take the form

FOn,0) = B+ ANC [ FO0, ) dw,  (8)
where
®yo=oP(=1=)ou o0
and
A = N"(n) 8oin — ) 8. (19b)

Here the \{*(n) are unspecified functions that must
be selected so that Eq. (18) is consistent. We note
that for j < 7 the symbol “P”*, denoting the Cauchy
principal value in Eq. (19a), is superfluous because
the denominator can never vanish. Similarly A{* (1)
may be taken to be zero for j < ¢ since the argument
of the delta function never vanishes. Thus, we see

—— e

—(0'17) - ﬂ)“lﬂcxa
(Giean — )7 9C5m1. 0

-

FO, ) =| -

.

Although the derivation of Eq. (22) is tedious, it is
easy to verify that it is a solution. In doing so, the
relation

Ciaoab =

must be kept in mind.
Next, we consider the discrete spectrum, i.e.,
7 & [—1, 1]. Thus from Eq. (16) we obtain

Ci kC o (23)

R, 0 = DC [ Fn,w)dw, (@)

where
(D)-',' = (0'.'17 - ﬂ)wlﬂ 0i5. (25)

The eigenvalues are obtained by integrating Eq. (24)
and noting that nontrivial solutions exist only if

Q@) £ det (E — «C) = 0, (26)
where
(‘9),«;; == %T(i)&,‘b. (27)

Plon — ) 'nCia — 20C;at(eim)s(oin — )

P(G'a-rl"} - 4“‘)-‘1’)012-{»1.« - 27301-1-1,&7(0«-}-17’ - iu)

C. E. SIEWERT AND P. F. ZWEIFEL

that F*(y, u) contains (N 4+ 1 — 1) unknown
functions A;” (y). In addition, there are N unknown
functions 457 () in Eq. (16), defined by

ai”(n)

L FOU,p) dy = A9(m) = (20)

ay’(n)
Thus the solutions F*“(y, u) are (W 4+ 1 — 9)-
fold degenerate. There are (N 4+ 1 — 1) linearly
independent eigensolutions in region 7, which are
denoted by
fon('qy l‘); a = ?’!?'+ 1, .- ’N' (21)

(For notational convenience we run a from
7 to N rather than from 1to N + ¢ — 1.)

It is a straightforward matter to obtain the explicit
form of the Fi’(n, u). We find [r(z) £ tanh™(2)]

22
- =l 1
P(O'a’? - I‘) 1"7C’ual + [1 - 2770010:7(0'“") - 27’ BZI CﬂﬂT('aTﬂ;)jIB(aaﬂ - #)
To evaluate Eq. (26), we write*
det OE — <C) = \¥ — Tr (zO)\**
+aN"? 4 - tay. (28)

Here, the coefficients of A k = 2,3, --- | N
are defined as the sum of all the & by k minor deter-
minants that can be formed using k of the diagonal
elements of =C (there are NI/kEXN — k)! such
determinants). One easily verifies that all such minor
determinants of «C vanish. Thus, setting » = 1
in Eq. (28), we obtain

o 1
Q(Z) =1 — 22 pz-; CppT(;:;)*

In Appendix A we show that Q(z) has only two
zeros which, from Eqs. (29) and (10), are 9, = £ .
Thus, the discrete eigenvalues are identical with
those obtained in I, The discrete eigensolutions are
similar; we find

4+ J. H. M. Wedderburn, Lectures on Matrices {American
Mathematical Society, New York, 1934), Chap. II.

(29
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W,

w,
W (z, p) = Lo, (30a)
Wk
and
wl(x - I‘/o'l)
woz — p/o2)
w_(z, ) = . (30b)

wy(x ~ p/ow)

As in I, we choose to work mostly with certain
linear combinations of the F$ (5, u) which we call
@, (n, u). These are defined by

i—-1 1 i
{1 — 29 3 Cnpf(‘)}ﬁ’(m 1)
f=1 08"

- PO — g B, @la)
where @« = 4,7+ 1, -+, N — 1. Thus
0 -
0
(e, ) = (C’la)"'_cs(tfan - u
o (=Cras) " 8(0arrn — w) |’
0
0
I -
a=41,--,N—1. (3lb)
Also, taking
@ (0, ») = F3¥'(n, 0), (32)

we see that, in each region, there are (N — 1)
eigensolutions of the form (31b), containing only
two nonzero elements, which involve only delta
functions and one eigensolution of the form (32).

Aside from the simple form taken by the ®% (n, ),
we see that these solutions take the same form in
different regions; thus, we can recombine the

@' (4, u) in the following way. First, for K < N,
o (0, ) = ©(n, w),

i=471+41,.--- K.
This suggests defining®

(33)

& This method of attack was suggested by J. Mika (private
communication),
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j< K <N, (34a)
(34b)

There are (N — 1) eigensolutions of this form; since
there are N of the ®%’(y, u), we are now dealing
with only (2N — 1) different eigensolutions instead
of BN(N + 1)]. If we, in fact, also define

q)(i) , ,
‘DK('”; ”) = { £ (77 M)
0, K <j.

‘I)N(ﬂ: l‘) = Zl d’i’”(ﬂy ”') (‘Bi (77)1 (35)
where
@ () = {1’ n € region 1, (36)

0, otherwise,

we need only consider N eigensolutions, Q,(n, u),
«++ , ®y(n, u). To recapitulate, we have (N — 1)
continuum eigensolutions of the forms

[ (C)o(en — b) |
(=C) " 8(aan — )
@i (n, p) = 0
0

@i (m), (37a)

( 0
(012)—1 5(0'277 e Il-)

(—013)—15(0'3’7 - M)
®,(n, 1) = 0

0

/

X {@1(77) + @2(77)}; (37b)

or, in general,

¢ p

(€17 8(on — )
(—=Crie) " 8(iran — 1)
0
0

d’o‘(ﬂ: I‘) =

| . J

X 3 ®. ).

am]l

(87¢)
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In addition, we have one continuum eigensolution
[Eq. (35)] as well as two discrete eigenmodes [Egs.
(30)].

III. COMPLETENESS

Theorem I: The functions ®;(yg, ),z =1--- N,
n 2 0 and @, are complete for arbitrary N-vector
functions, W'(u), defined on the ‘half-range,” 0 <
v <1

This theorem means that an N-component func-
tion ¥'(u) can be expanded in the form

1/08

LORPR NS f cp(m) Py, 1) dn,

s€0,1], (38

where A, and «s(n) are “scalar” functions.

Proof: We proceed as in I, i.e., we attempt an
expansion in terms of the continuum modes alone:

N-1 1/08
W) = 2 [ an o, ) dn
B=1 Y0

+£wmmmmw.<w

Here, the last term has been split off from the sum
because the first (N — 1) terms have the simple
form given in Eq. (37¢). These integrals can all
be carried out explicitly,

1/08
ﬁ cs(m) ®4(n, ) dn

- 0 .

(05C.) " ap(uz/ o)

—(Uﬁﬂcl.BH)—laﬂ(ﬂ/UﬂH)S(aBH/US — n)

0
0
ﬂ = 1) ;N - 1; (40)
where S(X) is the unit step function
S(X) =1, X 20, (41)
= 0, otherwise.

When these results are substituted into Eq. (39),
we obtain

C. E. SIEWERT AND P. F. ZWEIFEL

'Pa(ﬂ) = "'(Cxio's)—lai—l(#/a'i)S(U-'/O'.'-x )
+ (C“ai)—la,-(p/a‘)

— 2#C;NaN(ﬂ/ai)T(ﬂ)U:2
&P f‘ an(n)n dy
w 0o O T M ’
i=1,2,+--- ,N~1, (428)
and
‘I’N(I-‘) = _Cl_b]}aN—l(u)S(U;Vl—l - F-)
1
0 L/
+ an(w)[l — 2uCrrr(w)]
N-1
- 2[1. E CﬁpT('l_)S(p. — 0';1 . (42b)
B=1 gl

Here ¥,(u) is the 7th component of W' (). [We recall
in obtaining Eq. (42b) that oy = 1]

We note from Egs. (42) that the unknowns «;(z),
=1 .-+, N—1, can be eliminated successively
starting with 7 = 1(as(n) = 0). In this way, Egs.
(42) can be converted into a singular integral equa-
tion for ax(n). To carry this out, we make the change
of variable in Eq. (42a),

uloi — p (43)

and multiply the equation by ¢f. Then we add all
N equations [i.e., including (42b)] to obtain the
simple result

N

D oS/ o — p)

i=1

X {1 — 2u Z_:l Culr(l/ow) 8(u — /o))

+ T(“'i#)s(l/a'i - l‘)]} (49

The various step functions were introduced by the
variable change, since we must require the argument
of Y,(n), for example, to be less than or equal to
unity; thus, under (43),
vilw) = Yiloa) (D) + -+ + D)}, (45)
We note
: 1
2P ) = S(;ﬁ - u)- (46)
am]l €

Equation (44) is now in canonical form, since, we
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note that, from the definition of Q(z) in Eq. (29),

Q) =1— 2 521 Cosr(1/oa) S(u — 1/05)

— 2 3 Culrlond * 3e1S(2 - u)- @D
B=1 T8

[2(z) is analytic in the complex z plane cut from
~1 to +1 along the real line; Q° represents the
boundary values above and below the branch cut.]
Thus, Eq. (44) can be written as

5> otvtens(L - )

i=1

_ MWP [ = tantm an

+ 32w — 2 (W)axk). (48)

This equation is in standard form, (e.f, I) and its
solution is well known in terms of the X-function,
which is analytic in the complex plane cut from 0
to 1 along the real line.

X =Q1-27"

X o (rt [ arg 006 — A7 du). (49)

Once ax(n) is known, the other () may all be
found from Eqs. (42). Also, the discrete mode is
introduced, as in I, by the condition at infinity
on the auxiliary function

NG = @ [ (= 9 mbndn. G0)

Since the details are identical to those in I, we go
no further than to note that the completeness
theorem is hereby proved. The coefficients in the
expansion, Eq. (38), can be found in principal from
the above solution; but it is simpler to use the
orthogonality relations derived in the next section.

IV. ORTHOGONALITY

Theorem II: The continuum functions ®(y, u),
7 € [0, 1] and the discrete mode @, are orthogonal
to the adjoint eigensolutions ®'(y, ), v € [0, 1]
and (DI on the range 0 < p < 1 with weight func-
tion W(u), where

[W(ﬂ)]a‘i = 0;7(#/0'4)541'; (51)
and y(u) is defined as
) = X (w)/Q (). (52)

The proof of this theorem is a generalization of
the one given in I for N = 2. There, we prove
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orthogonality of the Fi(, u) rather than the @®x(n, z).
However, this makes no difference, since the theorem
states that® (the over tilde denotes transpose)

l —
fo &', WD, ) du = 0, 75 o, (538)
and we prove that

1
fo B, OW@WE(M, de =0, =1 (53b)

Clearly, (53a) and (53b) imply each other. Ff(y, u),
obeying the adjoint equation given below, may be
obtained from F(y, z) under the interchange C;; &
Ci:; ®'(n, ) and ®(y, u) are related in the same
way. As in I, we note that care must be taken when
this interchange is made. For example, @, is given
by Eq. (30a). However, this form is a reduction
of the form obtained if Eq. (16) with 7, = £ =
is solved directly; this is to say that C.; no longer
appear. One finds easily, however,

1

1

. 64
1

Equations (22) for Fi(y, u) ,and Egs. (31b) and (32)

for ®,(n, 1) are in the form so that the interchange
C.:; © C;; gives the adjoint solutions.

Proof: We turn now to the proof of Theorem
II, i.e., Eq. (53b). We begin, as in I, with the equa-
tion obeyed by F(y, p) and the adjoint equation
obeyed by F'(y’, u). [To simplify notation, we allow
F(y, u) and F*(y’, u) to denote either discrete or
continuum modes.] Thus,

x ¢t ) 1
== '|F =-F
(p. P = dﬁr (’77 F) 7 ("75 ﬂ) (553)
and
x ¢ ) 1.4
== @ )F(, 8 = =F(, u).
(‘u o), (', w) nF(n,u) (55b)

The method of proof is to multiply Eq. (55a) from
the left by F*(4/, x)W(x) and to multiply the
transpose of Eq. (565b) from the right by W{(u)F(x, u),
integrate both over u from 0 to 1 and subtract.
The right-hand side of the resulting equation be-
comes simply

(ni _ ;11.) [ O, WG, ) du,

¢ The function W'_ is not included in the orthogonal set
because it is not a solution of Eqs. (55) [it satisfies Eq. (12)].
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and thus we wish to prove that the left-hand side
vanishes if 9 £ 4. By following a procedure identical
to that outlined in I the proof can be reduced to
showing that a quantity J, is a constant, where

J2 = X(0) — w(n)n y(n) +§ Caal(m)n y(n), (56)

with
o(n) = 32 () — W] (67

The proof of the theorem hinges on proving that
J, is independent of % and symmetric in 2, j. We
showed this in I by direct substitution of the A*(y)
(see note added in proof). Here, we prove it
in general. We should clarify what is meant by the
symbol A*(y). We note from Eq. (16) that any
of the components f.(», u) of F(y, u) can be written
in the form

foln, ) = {Pylo.n — u)™' + N (n)d(oan — )}
X 321‘-51 C apas(n), o.n < 1, (58a)

or
fi(n, ) = (o — W)™

X 3 Cuml),  om21, 68
where

1

astn) = [ falo, w) . (59)
[Thus the A*(n) are the unknown coefficients in
Eq. (19b) which one must find for explicit evaluation
of the eigensolutions; thus they should be denoted
by Mi(n) in order to distinguish the region and the
degeneracy. However, we do not have to use
their explicit form. The symbol A*(y) thus denotes
any of the \i(7).] Multiply Eq. (58a) by Cy. and
sum over all « for which o¢,n < 1; then multiply
Eq. (58b) by Cy; and sum over all j for which
om > 1. We integrate the resulting two equations
over p from ~1 to 1 and add them to obtain

Z. Crata(n) + Z“ Crii(n)
= > Cyal207(can) + 2 (] X ?_d: C as0s(n)
+ 2 Cune() 2 Cntalo). (60

Here the superscripts s and ns indicate that the
sums are to be taken only over the singular [Eq.

C. E. SIEWERT AND P. F. ZWEIFEL

(582)] and the nonsingular [Eq. (58b)] sets respec-
tively. Using C.sCyva = C.ulus in the right-hand
side of Eq. (60), the sums separate and a factor
> -1 CsAp(n) can therefore be canceled to give

1= 24 22" Caurloam) — 20 2770;;7(;—_15)
= 22" Coa(n).

The left-hand side of Eq. (61) is exactly w(y), thus
22" Caa(n) = w(n). (62)

(61)

Substituting this result into Eq. (56) [remembering
that A*(5) appears only when f.(y, u) is singular]
we find

Ja
the theorem is thus proved.
V. NORMALIZATION

The results of the previous two sections can be
used to expand functions ¥*(u) for 4 € [0, 1] and
to obtain the expansion coefficients if

I

L (63)

(i) the pormalization integrals are known, and
(ii) the degenerate eigenfunctions are orthog-
onalized.

Asin I, we introduce a new set of functions xx(n, ),
constructed so as to be orthogonal to all of the
@(n, ). We define our scalar produet as

1 —
@V & [0, DWW e 64
Abbreviating
(o, d’:’) = (1, ))é(n — ),
we easily calculate

(il j) = -7(")[(01,64-10!'4-1.1)—151;'1-1 + (Clicil)_lai:—l
= [C1:Ci)™" + (CrinCrar))7181}, 4, § < N. (66)

(65)

Also, keeping Theorem II in mind, we have

%
(@i, @) = 3 (@, 7). (67)
The product (®;, ®5’) is also easily calculated,
and is seen to be independent of «. Thus the sum
in Eq. (67) merely introduces a factor 7, and we find

@@, N)

- z‘%‘f:zﬂv(n){r(amn) — (o)),

it <N ~—1, (683)
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N, 1) = (, N)Civ' =34 {<N-—1, (68b)
('ll CIN
= wy/w(t, N}, 1< N —1. (68¢)
Also,

WN—-1N) = —v(n)[(N -7 C”" "an(ay-m)

1 N-—-1

tor 2 (1 — 29 ,Z_; Cesr(1/ogm) — 2"0”"77("))]'

a=1

(69)

(N, N — 1) may be found from (N — 1, N) under
the interchange C;; — C;,. Finally we need

- ($) (i)
2 (of, o),

t=1

(®x, ®n) = (70)

where (@5, ®5’) may be calculated from the
explicit form, Eq. (22), by making use of the X-
function identities of Appendix B. We quote the
result,

0=N;"(1, ) + N;°@2,1) + N;°@3, 1) + 0 + -
71, 2) + N7, 2) + N;°(3,2) + 0 + -
0 =0+ N, 3) + N3, 3) + N{°(4,3) + 0 + -

0=

1=0+ -

0 = N{°UL, N) + NP°@, N) + ---

We see that the first and the (N — 1)th equations
have only three nonvanishing coefficients, all the
rest have four such coeflicients except the N th, which
has N. The set of equations (74) is easily solved for
the N°.

We note that we have set (Xg, ®x) = §(n — %').
Also (X, ®.) = 0. The discrete (asymptotic) coeffi-
cient is found from the relation

(®., ®,) = f wioy(u/o) du.

$=1

(75)

Changing variables, this can be written

N 1 . 1/0¢
Z/ ’wio'.'f v(u) du,
i=1 Jo 0

N N 1/04
=2 E Wgok E Cn‘j; ‘Y(I-‘) du. (76)

K=1 i=1

((I)_,, (I)+) =

This integral can be evaluated from Eq. (B1) (in
Appendix B) in the limit z — =,

NSGE— 1,9 + NG D+ NYIE+1,49) +0+ ---
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~ »
(N’ N) = Zl {Zl CNN4172041 aTz(aan)
+ [1 — 2y ; Cpar(1/ogm) — 2nC~NT(n)]
+ Z CNNCcz 412172}')’(11)- (71)

Equations (66), (68), (69), and (71) give all the
necessary normalization integrals for the construc-
tion of the xx. We write, in general,

N
Z NS:)(I),,(‘)), l‘)’

x(n 0 = 2 72
where N are to be choosen such that
(x:, ®;) = 6,5 6(n — 7). (73)

The N are readily found from Eqgs. (72) and (73).
We take the scalar product of Eq. (72) from the
right successively with the ®3(y, u), 8 = 1, --- N.
This yields the following equations for the N&’:

-+ 0 + N“)(N: 1)1
-+ 0+ NPW, 2),
-4+ 0+ NPW, 3),

74
Ny, 9),

NN, N).

—lmZ X @) =

£~

> W . (1)

But from Eq. (49), we see that the limit is —1. Thus

N
(@, ®,) =2 Z oW;.

t=]

(78)

In applying this result to obtain expansion coeffi-
cients, one might have an expansion of the form

N 1/0¢
‘F(ﬂ) = A+(I)+ + Zl‘/; a-’(ﬂ)q)i(’h l‘) dn)
pE0,1]. (79
Then, from Eq. (78), we find
A= @, w2 Zow), @0

while

ai(n) = (xi, ¥(u). (81
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VI. THE MILNE PROBLEM

We seek the angular density, Wy(z, u), in the
source-free half-space under the boundary conditions:

(a) Wy (z, u = 0, u > 0 (zero re-entrant radiation),
(b) Wu(z, u) ~ ¥_(z, ) (for large z).

The second condition specifies that W'y (x, 1) diverges
no more rapidly than the slowest diverging mode
‘F-—(x; ﬂ)-

The solution can be constructed from the normal
modes of the transport equation. Condition (b)
requires that no W(y, z, u) be included for » €
[—1, 0]. Thus, we write

Wy(z, p) = AW.(z, p) + 4.0,

N /04

+ 3 [T wme e wdn @)
=1

The coefficient A_ we leave arbitrary (it depends

upon the normalization). The other coefficients are

obtained from condition (a). Setting « = 0 in Eq.

(82), we have

—Aw_(0,p) = A2,

+12, fo " a(n®(n, u) dn, pE[0,1]. (83)

i=1

Thus, the coefficients are just the half-range ex-
pansion coefficients for the function

w,/oy

W/,
A0, = A - b @

Wy

They are found immediately from the orthogonality
relations once the X,(y, u) are constructed. For the
asymptotic solution (i.e., the part of ¥'y involving
¥ _ and @,), we have

A, _ =[3 D W(WW-0, p) du
A 2 Z?—x oW ’

where the normalization integral, Eq. (78), is used.
Expanding Eq. (85), we obtain

_4: - E{Y-l wi [o v(w/odp dﬂ.
4- 2 Z?r-l oW (86)

Changing variables and noting Eq. (10), (86) be-
comes

(85)

N 1/04
2 Cu fo Y dp. 87)

—A—1=
A

C. E. SIEWERT AND P. F. ZWEIFEL

This expression can be put in terms of the X-
function by use of Identity IV, Appendix B. We find

A+ 3 N 1/ u?
-V =3 C,-.' —'d .
=3 X(—p) *

0

(88)

The continuum expansion coefficients can be found
in just the same manner. [However, since, in general,
one must solve the set of equations (74) and then
use Eq. (72) to construct the x,’s we merely formally
indicate the solution.]

a;(n)/A_ = —[xi; W—(O; I-'-)]

The customary normalization® is to set

(89)

1 «©

~2r [ wau [ d v = o1l GO)
-1 [+]

where T, is the ‘“effective temperature”’ and o is

the Stefan-Boltzmann constant. Equation (90) can

be written as

1
—oT" 1
=1 [ o
L1
or
——é’—fﬁ -/ W, W du. (OID)
Evaluating Eq. (91b), we find
N w. -1
A = 3«T:(41r > —') . (92)
iw] [

The expansion coefficients are now found (in
principle) to solve the problem. We have

Wy(r, p) = [30Tf(47r ZN: ﬂf)—l][w_(x, uw + 4.

i=] ) -

N 1/0¢
X ®, + Z[o g%i’—)e"”"d’.-(n, #) dn:l- (93)

i=1

The energy density,
1 ©
Fa) £ 2r [ du | dv¥.(z,n) (94)
-1 ]
is given by
! ~
F(x) = 27 f_l dp ©. . Wyu(z, u). (95)
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The extrapolated endpoint is defined in terms of the
quantity

l —~
Fuuraol@) = 20 [y BI ez, ). (90)
-1
This, in our model, becomes
N -1
F rermo@) = [&TT:(Z '-"—*) }
=1 i
ud A
X [Z w.-(x + A_+>] 97)
i=1 -

Thus the asymptotic energy density extrapolates
to zero at £ = —x,, where

o = A./A.

which is already given by Eq. (88).
The temperature distribution in this model is
given by

(98)

o~

0y

e _ (22 oo ) i

i=]

1

x [ wulowde. @9

The asymptotic temperature distribution is easily
obtained as

T:.yTn?(x) _ L?I’ (Zv_; ‘!Lf)q}[x + 2]

. =] )

(100)

Just as in I, the law of darkening [for the inte-
grated quantities, ¥y (0, 1), u < 0] can be obtained.
The fact that we restrict u to be negative enables
us to determine ¥y, (for £ = 0) explicitly without
actually knowing any of the continuum expansion
coefficients except awn(y). The coefficient ax(y) is
expressed in terms of the N-function which then
permits the evaluation of integrals involved. The
procedure follows exactly as in 1. We simply state
the result,

. —

W,
X(‘I‘/Ul)

il o

W (0, ~p) = ’—3a’1"’<41r Zw) l] —X—(—L#/;z—) ,

Wy
L X(—w)

w € [0, 1]. (101)
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It is clear how other half-range problems could be
solved. For example, consider the albedo problem.
Here we have a source-free half-space with incident
distribution

o — w)
wa) = ¢ T uz0 a0
o — pw)

Here, the solution must not diverge at infinity,
80 we set

N 1/0¢
Wi, w) = A0+ X [ e e, 1) dn.
f=1 0
(103)
Since
‘I'r.n(ol ”) = \Finc(ﬂ)) 1 _>_ 07 (104-)

the expansion coefficients are found as integrals
of the adjoint functions times delta functions. As
in the Milne problem, the determination of the
solution is quite trivial once the set of z-functions
has been constructed.

The construction of the half-space Green’s func-
tion requires a special technique, this is discussed
in I. The procedure here for the case of general N
follows in exactly the same manner.

Note added in proof: In I we “proved” J, = 1
Actually, J, = X(0) # 1. However, since X(0) =
const, symmetric in 4, j (cf. Identity II, Appendix
B), the proof is still valid.
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APPENDIX A. THE NUMBER OF DISCRETE
EIGENVALUES

The discrete eigenvalues, 7., are defined as the
zeros of the dispersion function Q(z), Eq. (29). Here
we verify that there are only two zeros for any N.

Since (z) is analytic in the cut plane and vanishes
at infinity, the number of zeros is (2r)™" times the
change in the argument of Q(z) as a contour en-
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circling the cut is traversed.” Because Q" (u) =
(@7 (w)]*, and @(z) = Q(—2z), the change in argument
is four times the change in going from 0 - ¢ to
1 + 7e. Call this change A, (0, 1). We have

A0, 1) = 3 A(—‘— 1 )

1
=0 Oi 0Ti4y

(A1)
where we define 1/0, = 0.

From Eq. (47), we can write for the boundary
value in region ¢

. i—1 1
Qi) =1 —2s ) CﬂﬁT(_>
B=1 2

N .

> Cap{T(vn#) + "—;} (42)

From (A2) it is easily verified that
A+(0) 1/0'1) =m, (A-3)
A+(l, 1 ) -0, i=1,2--N—1 (Ad

O¢  Oipp
Thus

A+(0, 1) = T, (A5)

and the total change (for the encircled cut) is 4.
Thus 2(z) has two zeros.
?R. V. Churchill, Complex Variables and Applications

MecGraw-Hill Book Company, Inc., New York, 1960),
hap. 12.

C. E. SIEWERT AND P. F. ZWEIFEL

APPENDIX B. X-FUNCTION IDENTITIES

The derivations of the X-function identities are
trivial generalizations of the corresponding deriva-
tions in I (Appendix A), so we present them without
proof.

Identity I1:

X@) = i C: /;”” ﬁy_)__d:’

i=1 ] (Bl)

Identity I1:

xox(-a = |2(£%) Joe. @

i=l 1

By combining Identities I and IT we get a nonlinear
nonsingular integral equation for the numerical
evaluation of X (z). Thus we find

Identity I111:

SRHGEN

i=1 04

ic 1/0a u dﬂ
X a5 Je X(—wu— 2.

Furthermore, Identity IV is the trivial result ob-
tained by taking boundary values of Eq. (B2).

7@ = [g‘ (i g‘)] Xon

(B3)

(B4)
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It is proved for potentials of the form V(r) = A(r)/r* (n > 3) [with A(r) more singular at r = 0
than r(dA /dr), or apporaching zero less rapidly] that the peratized scattering length can be written
down immediately in known form. The distrinetion between regularization and peratization is made
clear, and a common conjecture about the g (coupling constant) behavior of the peratized scattering
length is disproved by a counter example. Finally, various mistakes in the literature are corrected.

I. INTRODUCTION

N the last few years, extensive effort has gone
into the study of singular potential scattering.'™”

Stimulated by a prescription for handling divergent
field theories (called peratization, developed by Fein-
berg and Pais®'®) many workers have undertaken
to study a similar process for the Schrodinger equa-
tion. The results in the literature are sometimes
inaccurate and even contradictory. In this paper,
we clarify some of these past results and present
a theorem which enables one to peratize a certain
general class of potentials to be specified later.

Briefly, peratization involves replacing a singular
potential, V(r), by a potential U(r, «) such that
lim,., U(r, @) = V(r) and where U(0, a) exists.
The Born series for the scattering length for U(r, «)
is then calculated. Obviously every term diverges
as a — 0. The leading singular term in each order
in g (the coupling constant) is then retained and
this sum is expressed in closed form, if possible,
denoted as a(a). This is not in general the scattering
length for U(r, @), which we denote as a’(a), because
only the most divergent terms in the Born series
are summed, thus neglecting many contributions
to the scattering length for U(r, o).

The hope now is that lim,., a(e) = a(0) exists,
and moreover, that a(0) = a, where a is the scatter-
ing length for V(r). Notice that a is a function of
the coupling constant, and also that it could well

1 G. Tiktopoulos and 8. B. Treiman, Phys. Rev. 134, B844
(1964). Equation (4) of this paper is incorrect; however, the
result, Eq. (5), does follow from the correct infinite series.

+ N. N, Khuri and A. Pais, Rev. Mod. Phys. 36, 590 (1964).

3 H, H. Aly, Riazuddin, and A. H. Zimerman, Phys. Rev.
136, B1174 (1964).

4 H. H. Aly, Riazuddin, and A. H. Zimerman, Nuovo
Cimento 35, 324 (1964).

8 T, T. Wu, Phys. Rev. 136, B1176 (1964).

s F) Calogero and M. Cassandro, Nuovo Cimento 37, 760
1965).

( 7 F. Calogero, Phys. Rev. 139, B602 (1965). This paper
gives further references to work dealing with singular
potentials.

8 . Feinberg and A. Pais, Phys. Rev. 131, 2724 (1963).
? G. Feinberg and A. Pais, Phys. Rev. 133, B477 (1964).

happen that a(0) # a. This is called peratization
of the potential V(r) and is usually done at zero
energy.’

There is another process called regularization
which is not the same as peratization, a fact not
clearly understood by a number of authors. The
distinction has recently been pointed out.® Regu-
larization involves first solving an integral equa-
tion for the wavefunction and then using this in a
certain integral relationship in order to obtain the
scattering length. This process involves the scatter-
ing length a'(a) for U(r, «) which is not a(a) as
defined above. Regularization involves the un-
justified interchange of two limiting processes’ and
is not generally valid. The point here is that the
validity of peratization and of regularization are
two separate questions.

Another point in need of clarification is that, in
the peratization procedure, the summation of leading
singular terms is usually taken in potential theory,
in order to find the exact scattering length for V(r).
In field theory, on the other hand, one only hopes
to find the leading order for small g in the scattering
amplitude. There is one example in potential theory®
where peratization yields only a leading term in g.
However, we will indicate below a counter example
to the often found conjecture that the summation
of leading singular terms in o will yield the leading
term for small g in the scattering amplitude.

II. STATEMENT AND PROOF OF THE THEOREM
Let us assume a potential

Ve = AD/MT,  n >3, @)

where A(r) > 0 in some finite region ¢ > r > 0
so that we have a repulsive potential near the origin.
We also assume the usual conditions

[or|V(@)| dr divergesforany b >0, (2)

57 |V(r)| dr existsforany ¢ > 0. (3)
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Then our theorem follows:

Theorem: If A(r) is more singular at the origin
than r(dA/dr) (or approaches zero less quickly),
then the peratized zero-energy scattering length
(in the sense of Ref. 1 or 3) for the potential

Ul,a) = V) 60r — o), a >0,
is
a(@) = —[A@] tanh (4@} /e), n=4, @

or, in general,

—_ thl Ilwv(n)
%) =~ remm 4@ 1 (0) ©
with
-2, @-= ;%— A4a).

Equation (4) is a special case of Eq. (5) withn = 4,
Proof: The zero-energy wavefunction for the
potential U(r, @) can be written as®

v =r—o [ Ve, o) dr

—o [ rvee aa  ®

and the exact scattering length a’(«) is

a'la) = —g f: VI, o) dr'.

The function a(a) differs from a’(a) in that it con-

tains only the most singular terms in « for each

order of g. The lowest-order term in g of a'(«) is

a'la) = —g f P AG) drf

g A" g
B-mr 2. B—mn

o[

_ g Al g
=B -ma TE=m

[ AF) e ®

where we have integrated by parts. The infinite
limit in the integrated part does not contribute
because of condition (3).

If r(dA/dr) is less singular at r = 0 than A(r),
or even approaches zero more rapidly than A(r),

@
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then we need keep only the integrated term in ex-
pression (8) if we desire only the most singular
term in «. Under such conditions, the integral (7)
will be more singular than the integral term'® in
(8), so that the integrated term in (8) is more singular
than the integral.

To find the second-order term in g of a'{(a), we
need the first-order g term for ¢¥(r, «). In general,
the (m + 1) order in g of a’(a), call it al,,(a), i
evaluated using ¢,,(r, &), the mth order in g of the
wavefunction. We can easily see from Eq. (6) that
¥.(r, o) will contain terms in r, terms in «, and cross
terms involving both r and « of the form j{a)k(r).
When we evaluate al,,,{(a), we obviously need retain
only the most singular r term in ¢,.(r, a), the most
singular « term, and the most singular of each type
of cross term. By this we mean that for the cross
terms of the form j(a)k(r), we retain, for each j(a),
only the term with the most singular k(r). But if
there are two or more identical k(r) terms, we then
keep only the term with the most singular j(a).
All other terms in ¥,,(r, @) will give terms in a/,,,(a)
that are less singular in « than the ones we retain.

The first-order terms in g of ¥(r, «) can be in-
tegrated by parts, and the integrated terms will
be of the forms 8,r "**A(r) and B.a™"**4(a), while
the remaining integrals look like

® r=n+2 (_i_é) ] ""”‘3(dA) !
r[ r (dr . dr’ and f r_r'olr,

which can be discarded if »(dA/dr) again bears the
previously specified relationship to A(r) at r = 0,
Notice that the constants 8, and 8, do not depend
on the form of A(r) in any way but only on n.

In the g* term of a’(a), we now find that an
integration by parts yields integrated terms of the
form v,a* *"A*(a) while the remaining integrals con-
tain A (+"Y(dA/dr),., and r*"(dA/dr),-... To
find only the leading term in «, we apply the same
argument as used before and we keep only
v.a°*"A*(a), where v, depends only on n and not
on A(r).

It is easy to see that the leading terms of the
integral for ¢,._,(r, @) will involve various terms of
the form of a product of some power of r, some
power of e, and A*(@)A"(r) with u + » = m — 1.
When any of these terms is integrated by parts,
the new integral will contain one more power of r,
one less power of A(r), and dA4/dr. Therefore, by
the same reasoning as before, we need keep only

10 It takes only a simple geometrical argument to prove
that if G(z) is more singular at z =0 than H(x) then [.° G(z)dz
is more singular as € — 0 than {* H(z)dz where there are no
troubles at infinity.
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the integrated term. Similarly, to find a)(), we
can see that we need retain only the integrated term
of an integration by parts.

Thus, a summation of the most singular « terms
in the Born series will give the form

a@) = 3 1 A@T, ©

where the v,.(n) do not depend on the form of A(r).
This sum has been evaluated for A(r) = 1 and
n = 4, and is'

a(@) = —g* tanh (¢*/a), (10)
while, for A(r) = —g¢g In r and any » > 3, we have
2y—1
™ ot LD
a(a) = [F(V)]2 sin vr g ( lna) I,_l(ﬂ) ’ (11)
y=(mn—27" Q="' g¢(~a)t

We have corrected formula (E21) of Ref. 5
which makes use of (the incorrect equation)
(E20). The correct formula, as may be easily
checked in Ref. 12, p. 133, is

[ @ or =~ .

T 2sinvr I,_,(2)

The function I,(z) is the commonly defined Bessel
function of the third kind of real argument.'* Since
the form of these results is independent of A(r),
we can immediately conclude that Eqs. (4) and (5)
hold and the theorem is proved.

III. APPLICATIONS AND DISCUSSION

We immediately see that we can get the results
of Ref. 3 for A(r) = g (In)® r correctly as

a(e) = —g* In o tanh (g} In o/a).

This is a useful check on the validity of the theorem.
One powerful result of our theorem is the following
corollary.

Corollary: If A(r) satisfies the condition of the
previous theorem and A(0) does not exist, then
peratization fails—assuming the scattering length
exists—for V(r) = A(r)/r", n > 3.

Proof: The limit as & — 0 of Eq. (5) yields
a(0) = g°’A%(0),

On the other hand, if 4(0) is a nonzero constant,
then a(0) exists but may or may not be the real
scattering length a. It is not possible without other
considerations to say whether peratization works
in this case.

1 G, N. Watson, Theory of Bessel Functions (Cambridge
University Press, London, 1958), 2nd ed.

which does not exist.

OF SINGULAR POTENTIALS
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The three examples of A(r) = g, A(r) = g (In)* r,
and A(r) = —gInrhave all been treated individually
in the literature. However, there are other functions
A(r) that satisfy the requirements of the theorem.
A few of these are™

(@ A@) = g(—W), >0,
(b) A@) = g, A>0, u>0;
(¢) A@) = g cos'r*, p>0.

We see examples here where very different po-
tentials like (b) and (¢) have the same summation
to most singular terms in «, yet their scattering
lengths are surely not the same.

Another important point is that, we see from
Eq. (E23) of Ref. 5, that, for A(r) = —g In 1,
the summation of each singular series (i.e., the most
singular terms, the next most singular, and so on)
yields exactly the same form of ¢* (—In a)}. Here
is a clear counter example to the conjecture that
the summation of leading singularities will give
the leading term in the scatttering length for small g.

It is fairly obvious that this cannot in general
be true because the general form

1@, 0) = 3 Culfig)’

will yield a closed form H,, whose character is
determined by all the C;. A summation of second
most singular terms

Hy(fx(a), ) = g D;{]‘2(a)g}‘

will yield a form, H,, determined only by the D,
which have only a very complex relationship to
the C; as can be seen by working with ¥,_,(r, @)
and a,,(a) for a little while. The limits

lim H, = h(o),  lm H, = k)
a— a—0

depend not only on f,(a) and f,(e), but on H, and
H, as well, ie., on all the C.’s and D,’s. There is,
in general, no possible way to determine k,(g) and
ke(g) without knowing H, and H, (or knowing
every C; and D, exactly).

[A seriescan behighly unstable. Recall thate™/* =
>, C.(1/z)", C. = 1/n!, which is zero as
z — 0. But if we alter just one C, to C, + ¢,
then the sum diverges like ¢/2" as z — 0*.]

#1f p < 0in (a) then A(r) = g(Inr#)*. This case has been
treated by H. Cornille, Nuovo Cimento 38, 1243 (1965); 39,
557 (1965); 43, 786 (1966). In these papers, Cornille in-
vestigates, in great depth, the validity of various limiting
procedures,
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Indeed, one can produce simple examples of infinite
series where h, is the leading g term even though
fi is more singular at @ = 0 than f,.

The fact that one must know every C; exactly
to discern the features of h,(g) is what hinders the
investigation of peratization. We cannot in general
tell if the second and further singular terms con-

tribute to the infinite sum. In the rare case that
ale) = 3 CilBlg)’ 12)
exactly for all terms, we can write
B(a) = Bi(a) + B.(o), (13)

where B,(a) is the most singular term in « and
B.(«) contains everything else. Then, ¢f peratization
works,

a = a(0) = lim H(B(a), 9)

= lim H(B\(a), 9),
a—0

and we could have merely summed

BB, 0) = 3 C(B@), 0}

However, the form (12) would be almost impossible
to achieve due to the complicated equations defining

a(a).
IV. CRITIQUE OF THE LITERATURE

As pointed out by Calogero,’ Khuri and Pais’
and Aly et al.* have not precisely distinguished
between regularization and peratization. This con-
fusion of terms appears again in a more recent work
of Aly et al.”®

In Refs. 4 and 6, the authors treat the potential

V@) = g/t + g1/, (14)

but the Aly group deals only with ¢' = %. There
is some disagreement among the two sets of authors
as to the validity of peratization.

To clear up some of the confusion, we quote the
results for the scattering length for Eq. (14) with
g = %tobe

a=—("+%. (15)

Since the scattering length for 1(1/7*) alone is a =
—@®)?Y = —%, it is assumed by Aly and his co-
workers that the —1 in Eq. (15) comes from the
second term in Eq. (14). The situation is more
complicated than this. The formula given for a’(a)

13 H. H. Aly, Riazuddin, and A. H. Zimerman, J. Math.
Phys. 6, 1115 (1965).
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in Ref. 6 for the potential [Eq. (14)] is™
3 Kolg%"*1u(gY — Llg% " *1K(gY

") = 16,
YO = e — Lk
with ¢ = (¢")!. For ¢’ = 1 we have

a’(0) = —(g* + 2) exactly for all g.
When ¢ = 0, we have, for any ¢’
? —_ 1—-2¢ P(l _ 0-) )'
a’'(0) = (2 A F ) g+ amn
When g >> ¢’ and g is large we have
1 4 -1 _
a(0) = —(g* o *)- (18)

We see from Egs. (17) and (18) that the second
term in Eq. (15) does not come simply from the
second term in the potential (14), and we also see
that the ¢’ part of the potential affects also the
first term of Eq. (15). Though the first term in (17)
is some sort of a cross term between the g and ¢’
terms, we see from (18) that for large g the first
two terms of a(0) are like (15) regardless of the value
of ¢’! Thus Eq. (15) 4s not a linear combination
of the g = % scattering length and a cross term
between ¢ and ¢’.

V. CONCLUSIONS

We have shown how a special class of singular
potentials may be peratized and whether or not
the peratization procedure is finite. To discuss, in
general, whether peratization works or not is a
task impossible without explicit calculation and
comparison with the correct answer. It is difficult
at the moment to state general criteria for the
procedure to be sucecessful, though important pro-
gress has been made by Cornille.”” Significantly,
it fails in many cases.

We have again cautioned against the confusion
between regularization and peratization, and we
have clarified some misconceptions prevalent in the
literature about whether leading singular sums will
yield leading terms in g. Finally, some other mistakes
and misinterpretations in the literature have been
illuminated.
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Based on earlier papers in which a non-Hilbert-space formalism for quantum physics, called the
L-formalism, was proposed, a new formalism for quantum field theory is developed by introducing
the field concept into the £-formalism. The present formalism is then compared with the Wightman
approach and with the Haag~Araki approach to quantum field theory. The necessity of a global
vacuum within the £-framework and the alternative concept of the local vacuum are discussed.

1. INTRODUCTION

N a series of previous papers' (referred to through-

out the present paper as (1], [2], [3], and [4]),
we have formulated an axiomatic approach to the
formalism of quantum mechanics. This formalism
is partially motivated by a new approach to the
theory of measurement in quantum mechanics (see
[1]). However, disregarding the acceptability of the
proposed theory of measurement, our formalism
(called the £-formalism) is of independent interest
as a new tool for formulating quantum theories.

For reasons which soon become clear, it is of
no particular interest to apply this formalism to
ordinary nonrelativistic quantum mechanics. Con-
sequently, our task in this paper is to enrich the
L£-formalism with additional structure so that, out
of this formalism, field theories may be formulated.
Next, we investigate the relation between our axio-
matic formulation of a quantum field theory and
each of the two best known contemporary formula-
tions of this kind [that of Wightman (Sec. 3) and
that of Haag and Araki (Sec. 4)].

In order to understand the basically unique fea-
tures of a quantum field theory formulated in terms
of the £-formalism (we will refer to such a theory as
LQFT) in contradistinction to that of a quantum
field theory formulated in terms of Hilbert-space
concepts (3CQFT), we have to elucidate the relation
between the £-formalism and the Hilbert-space for-
malism (3C-formalism). In [3] and [4] we have proved
that there exists a physical equivalence between
the £-formalism and the 3C-formalism. The formal

1 These papers are: [1] E. Prugovetki, “On a Theory of
Measurement of Incompatible Observables in Quantum
Mechanics” (to be published). [2] E. Prugoveédki, J. Math.
Phys. 7, 1054 (1966); [3] ibid. 7, 1070 (1966); [4] bid. 7, 1680
(1966). Familiarity with (1]-[4] is desirable but not absolutely
essential for reading the present paper. The notation and the
main ideas of the formalism developed in [2]-[4] have been

incorporated in the Appendix, in a form best suited to the
needs of this paper.

nature of this equivalence has been explained in
Sec. 1 of [3] and in Sec. 3 of [4]. Its physical content
is the following: In the £-formalism, the set £ of
basic objects consists of (cf., Appendix) the set © of
all observables (on which no prerequired sturcture is
imposed) and the set @ of all physical states. A phys-
ical state is defined as a mapping attaching to each
n-tuple @ = (a4, - -+ , a,) of observables ay, « -+ , a,
a complex probability measure P in such a way that
certain axioms are fulfilled. If a quantum mechanical
theory is given in terms of the JC-formalism, then
we immediately know the set ©—an observable
being represented by a self-adjoint operator. The
complex probability measures corresponding to any
physical state can also be written immediately [see
Appendix, formula (A18)], and thus the theory is
instantaneously recasted in the £-formalism.

On the other hand, if a theory is given in terms of
the e-formalism, we prove (in [3] and {4]) the exist-
ence of a Hilbert space 3C so that the theory can be
recasted in terms of an JC-formalism associated with
that Hilbert space. We have to stress, however, that
this theorem is essentially an existence theorem. In
other words, the proof of the existence of this Hilbert
space JC does not guarantee the possibility of the
straightforward numerieal construction of any par-
ticular physically interesting object of 3C out of the
given objects in £. This situation parallels the case
of, say, existence theorems of solutions of systems
of differential equations under given initial condi-
tions, when the existence proof does not offer a
really practical way of explicitly obtaining such
solutions.

This suggests the fact that the practical problem
of theoretical formulation and experimental com-
putation in the £-formalism might be quite dif-
ferent from that of the 3¢-formalism. This conjecture
is supported further by the fact that, in any actual
experiment, only a finite number of observables is
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involved. Consequently, in the £-formalism in order
to get information concerning such an experiment,
it is necessary to compute only complex prob-
ability measures related only to the involved ob-
servables. This is possible because the £-formalism
gives the explicit conditions which such measures
have to fulfill in order to belong to a physical state.
This situation is different from that of an 3C-form-
ulated theory, where no finite complete set of ob-
servables exists—such as the case of field theory.

We have to remark that, in a £QFT, only ob-
servable fields can play a role. This is due to the
fact that £ is assumed to contain only observable
quantities, and the £-formalism has been formulated
accordingly. We have shown, however, in a separate
paper [Nuovo Cimento 454, 327 (1966)] that, in
electrodynamics, the unobservable Dirac field can
be replaced with observable tensor fields.

2. THE AXIOMS FOR QUANTUM FIELD THEORY

The axiomatic system presented in [2], {3], and
[4] is meant to characterize the basic framework of
any quantum theory. However, in order to formulate
a framework for quantum field theories, additional
axioms must be supplemented.

The main characteristic of a conventional field
theory is the fact that one observable is assigned
to each point in space-time from each of the kinds
of observables belonging to a certain considered
clags K of categories of observables. For example, each
known field theory contains (as one of the class X
categories of observables) the category called “the
energy or energy density at some point x of space-
time”. Any quantum field theory contains such a
category as “the total angular momentum density
of particles of the kind « at a point of space-time”,
while it is the characteristic of electrodynamics
(classical or quantum) that it contains the category
“the electromagnetic field at some point of space—
time”. Each of these categories of observables is
called a field, and X represents the class of all fields.

Wightman has shown,” however, that there does
not exist a nontrivial local quantum field theory with
a unique global vacuum which could be formulated
in terms of fields defined at points of space-time.
Furthermore, general consideration of Bolhr and
Rosenfeld,® as well as that of Heisenberg,* seem to
indicate that it might be necessary to consider

2 A, 8. Wightman, Ann. Inst. Henri Poincaré 1, 403 (1964).
3N. Bohr and L. Rosenfeld, Kgl. Danske Vid. Sels.
%Vlath—fys. Medd. 12, No. 8 (1933); Phys. Rev. 78, 794
1950).
+ W. Heisenberg, Verh. d. Sachs. Ak, Leipzig 83, 3 (1931);
86, 317 (1934).
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exclusively “smeared’”’ fields. Consequently, we form-
ulate £QFT in terms of fields which are distribu-
tions over some space of test functions defined
at all the points of the Minkowski four-dimensional
space-time 9.

To do this, we choose some adequate space of
test functions. For the sake of being definite, let
us take this space to be the D-space of Schwartz.®
D is the space of all infinitely many times differenti-
able functions f(z) of compact support in the space-
time, in which a suitable topology is introduced. We
can still regard fields as categories of observables
from a class &, but, instead of attaching for each
such category ¢ & X an observable ¢(z) to each
point z, we attach an “observable” ¢(f} to each
real function f = f € D.

Aziom W1: The set © of observables of a LQFT
contains all the fields o(f) taken at all real points
f € D. For a complex f € D,

fl@) = glz) + inlx), ¢,hE D, z €M, (2.1
o(f) is defined by
Pow(!)v-(B) — th(n)n(B) + iP’xw(h)U:{B)‘ (2’2)

The fields o(f) are distribution-valued fields on D in
the sense that

4w
f }\dP“g(a"*bp)“(})\) _ af

-

+ o

Rx dP"“’(”"(Ix,)

+b f N dP" O (I,

f’ g E Q’ a’ b E C" (2'3)
and
4@
f )\” dP"'p(,‘]v’(Ih,,)
+ o
- NPT, fa—f, (24

-

if fy, foy -+, €D is any sequence which converges
to { € D in the topology of D. Any other observable
is a function of some finite number of compatible
field observables and global observables (to be de-
fined later).

In the above relations we have employed the
following notation (which will be used consistently
from now on): For any A = (A, --- , \) € R
the symbol I, or I,,«...x. denotes the direct product
of the sets (— o=, Ay), -+, (— =, A, ie,

5 L. Schwartz, Théorie des distributions (Hermann & Cie.,
Paris, 1957), Vol. 1.
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Li={N=0, N
—o <M< NE=1, - (2.5)

In formulating Axiom W1, we also used the expres-
sion field observable, by which we refer to a field
¢ taken at some f = f € D, or to a function Flp(f)]
of ¢(f), defined by

P.,p[,(!)]-,(B) = P-.v(i)u[F—l(B)], B e (Bl, (2.6)

The definition (2.6) is naturally valid for any Borel
function F(\) on R,

We note that the set of all observables consists
of fields taken at some real f € D, as well as other
observables. Furthermore, in general it is not de-
sirable to impose the condition that, for any Borel
function F(A), the field observables Flo(f)] de-
fine a field for all f = f € D. Namely, this would
require that Fle(f)] obey (2.3), which is too strin-
gent—as is more evident in Sec. 3, where we make
the transition to the Hilbert-space formalism.

In Axiom W1 we required, however, that any
function of compatible ¢,(f,), -++ , ea(fs), and, in

1.

particular, of compatible fields ¢,, :+- , ¢, is an
observable. In this context the fields ¢, --- , ¢n
are compatible if the observables o.(f1), -+ , ¢.(fa)

are compatible (in the sense of Def. 1, Appendix) for
any fy = f, -+, fa = f. € ©. Then for a Borel
function F(A), A € R***"""*** we define Flp, (f,),- - -,
¢n(fa).] a8 the observable for which

Pv.FIv;H-).-“.cp-(!.)lu(B)

= preaeOniB)), P E s,
h=fhe€D k=1, @D

Besides field observables, we also have, in the
present quantum field theories, global observables.
We denote by = = («°, 7', «°, #°) the four one-
dimensional observables determining the total global
4-momentum (the term total refers to all kinds of
considered ‘“particles”, while the term global means
the 4-momentum on the entire space). In the con-
ventional Hilbert-space quantum field theory (to
which we refer by the shorthand 3CQFT), the total
global four momentum is represented by selfad-
joint operators (P° P', P? P®) = P, which are
the generators of a representation of the translation
group in space-time, i.e., for each field operator
®(z), we have

@(x) = eiP'(z—v)Q(y)e—iP'(z—v). (2.8)

We have used here the notation (which is to be
employed throughout) in which

tn =En =89 — £yt —

R

Eq —En (29
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for any two Minkowsky-space 4-vectors £ 5. The
spectrum of P is assumed to lie in the closure V, of
the forward light-cone V.. All these requirements
are inserted in the £QFT by means of the following
axiom:

Aziom W2: The set © contains the total global
4-momentum =, having a spectrum S” lying within
the forward light-cone V..

A representation of the translation group in space—
time is given by the condition that, for any ¢ € X,

an(f(x.:ln(B) — fei(m-—m)-z

X dPV.r:tp(!);rV-(Im X B X Iv-)! P e S. (210)

For a given inhomogeneous Lorentz transforma-
tion

z—>¢ =Az+a, z,a EM, AELL

we define f,.4; by

fro.ni(@) = A7z — @)];

we can easily see that f..x, € Dif f € D.

In 3¢ QFT the existence of a representation of the
restricted Lorentz group LI is also assumed. The
infinitesimal generators M,, are taken to represent
the total global angular momentum u,,. We arrive
at that representation by assuming that the fields
can be grouped together in finite sets

(2.11)

a) __ (1) 1) (1)
e ={er 0, 0 |y

2) __ (2) (2) 2)y.,
14 {‘Plx¢27"'7¢k.})

each element ¢{” of such a set o' can now be called
the Ith-component of ¢‘’. These sets ¢’ then are
such that we have, in terms of the corresponding

field operators, the following representation of L!:

o%(A-2) = 2 Su(WU, 1)%° ()

X U@©, o)™, z € . (2.12)

Here S;.(A) stands for a finite-dimensional irreduci-
ble tensor or spinor representation of LJ.

The case of £QFT is distinct in two respects.
Our concept of a field is in a certain respect more
general, because it refers to any kind of observable
which is attached to each point of space-time. Thus
it includes, e.g., the “field” which represents the
probability that the energy density at each point of
91 lies within [0, 1]. On the other hand, it is more
restrictive, just because it refers only to observables,
and subsequently the spinor representations of L[
have to be ignored.
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Aziom W3: The set © includes the global ob-
servables y,, which stand for the components of the
total angular momentum. There exists a family
F of “relativistic fields” obtained by grouping the
fields of a certain subset ¥, of & into finite sets

@ _ j o L. W @ _ (@ .. @y L.
14 = {‘91 3 » Pry },go2 = {‘Pl s s Pka };

of compatible fields with identical spectrum. These
sets are such that, for any Lorentz rotation A & L!
in any of the two-dimensional coordinate planes
(¢, \),and forany P &€ 8, ¢ € §, B € ®°,

Pa;w(ﬁo.m)u(B)
= 3 8u(®) [ exp litm' — m)A™)
k=1

% dP““’:nU):“”'(Im' X B X Im.,), (213)

where

K, A=0,--,3 2.14)

.7 iy 5 V3

and the matrices S;,(A) belong to a finite-dimen-
sional tensor representation of L!. The family & is
such that all fields within §, are Borel-independent
(Appendix, Definition 7) and any field in & is a
function of a finite set of compatible fields from ,.

From now on we refer to ¢, ¢®, --- as rela-
tivistic fields and to ¢V, ¢5", - - - as the components
of a relativistic field, reserving the word “field”,
as we have done until now, for any element of X.
This is convenient because very often we are not
concerned with the relativistic aspects of the theory.

We note that, since any Lorentz transformation
can be obtained by performing three successive
Lorentz transformations in the coordinate planes,
(2.13) really implies a ‘“‘representation” of the re-
stricted Lorentz group. Furthermore, from (2.9)
and (2.13), we can immediately deduce the form of
any transformation corresponding to an element of
the inhomogeneous Lorentz group.

Another of the basic assumptions of 3QFT is
local commutativity (sometimes referred to as micro-
causality) which requires that

[e:(®), 2] = O,

for any two fields ¢,, ¢,—where the anticommutator
is for half-integer spin and the commutator for
integral spin. This assumption, based on the rela-
tivistic postulate that no signal spreads with a
speed greater than that of light, is in fact completely
ad hoc for unobservable fields. However, in £QFT
it can be justified from the point of view of bounded
signal velocity, and it is expressed in the following
axiom.

—9'<o0 (2.15)
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Aziom Wi: If ¢, 0. € K are any two fields, and
the supports of the real test-functions f, g, € D are
spacelike separated with respect to one another,
then the observables ¢, (f) and ¢.(g) are compatible.

3. COMPARISON WITH WIGHTMAN’S
FORMULATION OF QUANTUM FIELD THEORY

When we compare the formulation of quantum
field theory given in the preceding section with
other formulations, one point should be obvious:
we have to consider such versions of these formula-
tions in which only observable fields are treated.
Consequently, the theorem which will be formulated
now should be understood accordingly.

Theorem 1: An £QFT obeying Axioms W1-W4
is physically equivalent to a quantum field theory
formulated in terms of the Wightman axioms®’
on a Hilbert-space, which is not necessarily separ-
able, and which does not necessarily contain a global
vacuum, if and only if the following axiom is ful-
filled.

Aziom W5: For any ¢ € X and for any real
f=r€9

f MIP*N(I) < +o, PES (31

el

In addition, the total global and angular momentum
are such that

EX-]
f }\2 dP"'.(I)\) < +CD , ¥ = O’ ey, 3,
- (3.2)

f N APYI) < 4o, af=0,--,3.

We demonstrate now that an £LQFT obeying
Axioms W1-W5 can be formulated in such terms
as to satisfly the Wightman axioms {with the excep-
tion of the separability of the Hilbert space and the
existence of a (unique) global vacuum]. In other
words, we prove the “sufficiency part” of the above-
stated theorem. The necessity of introducing Axiom
W5 becomes obvious in the course of the proof.

From the theorems in [3] and [4] on the existence
of a Hilbert-space representation® of the £-formal-
ism, we extract the following: There exists a Hilbert

8 A. S. Wightman, Quelgues Problémes Mathématique de la
théorié quantique relativisie in Les problémes mathémalique de
la théorie quantique des champes (Centre Nationale de la
Recherche Scientifique, Lille, 1959).

7R, F. Streater and A. S. Wightman, PCT, Spin and
Statistics and All That (W. A. Benjamin, Inc., New York,

1964),
& Cf. [3], Sec. 1.
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space 3¢ and an injective mapping of the set 8, of
all pure physical states into a subset of all rays

{a¥,a €C'}, ¥ €5, (3.3)

defined on XK. If we denote by H, the subset of all
vectors ¥ in 4¢ belonging to all the rays which are
images of pure physical states, then the linear mani-
fold D spanned by H, is everywhere dense in 3 (in
the norm topology).

There exists also an injective mapping of the set
0, of all bounded observables (i.e., observable with a
bounded spectrum) into the C*-algebra B(3) of
all bounded linear operators on 3. This mapping
is such that, given any observables oy, --- , a,
and Borel sets B, € &8**, --+, B, € ®**,° we can
attach to them projection operators E,,(B,), «-- ,
E..(B,) in a manner such that

Pu“”':a‘(Bl X e X B,,)
= (‘I,PI me(Bl) et Ean(Bn) I‘I’P>)
P E s, ¥, € H,. 3.4)

In (3.4) ¥p is any normalized vector, (¥p, ¥,) = 1,
belonging to the ray which is the image of the pure
physical state P.

If « is a bounded observable, the set

{E«(B), B € 8} (3.5)
of projection operators on 3 can be regarded as the
spectral decomposition of a bounded self-adjoint
operator

A, = f_ N BT, 3.6)

In fact, the mapping of O, into 3C is such that 4. is
just the image of a.
On the basis of (3.4), we have

(‘I’P‘ Aa; e Aa- i\I,P>

= f)\; e M AP, X - XOD),
P 6 @o, ¥r G Ho; (\I’P I\I’P> = 1!

if the observables a,, - -+ , , are bounded.

If o is an unbounded observable, the set (3.5)
of projection operators can still be regarded to
determine an (unbounded) self-adjoint operator, pro-
vided that the set D, of all vectors ¥ & 3 for which

3.7

[ %@ B 1) < 4o 3.8)

% An ordered pair consisting of one observable « and a
B €® defines a special kind of observable called a question. A
question has its spectrum concentrated at the points 0 and
1 (ef. [2], Sec. 3).
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is everywhere dense in 3¢. For the field observables
o), f € D, f = J, the global total momentum =,,
and the angular momentum gu,,, condition (3.8)
is satisfied by all ¥ & H, due to Axiom W5; it is
consequently satisfied also by all ¥ &€ D, Since D
is everywhere dense in 3¢, the operators

Avp = [ B, @), JED, f=7, (39

4w
P.u=fw xdE’:';-(Ik)y ”"":0:"'13: (310)

M, = f }\dEug,(Ik): {71’ =0,---,3 (3.11)
are defined as self-adjoint operators with domains of
definition containing D. For a complex f & D, we

can naturally define 4., as
Aoin = Aoy +idom, @) = glx) + th(2),
9@) = ¢@@), (@ = @)

In order to prove that the Wightman Axiom I
(in chap. 3 of Ref. 7) is fulfilled, we can take our
D to coincide with the set D infroduced in that
axiom. Due to Axiom W1 we can easily see that, for
any ¢ € X, ¥,, ¥, € D, the functionals

(T} () 192 (3.13)

are distributions on . The validity of Wightman’s
Axioms 0 and I'® in our framework would be es-
sentially established (with the exception of the
existence of a global vacuum state ¥,) if we prove
that

PDCD, M,DCD,

(3.12)

¢()D C D,
‘Peﬂc) f€®~

Take any ¥, € H, corresponding to a pure
physical state P, and any observable o € 0. If, for
a Borel set B € ®* the vector E,(B)¥; is different
from zero, i.e.,

<‘I’Pl E.(B) l‘I’P> = (¥p I‘I’P>P “B) # 0,

gy =0,:-0,3, (3.14)

(3.15)

then, according to Axiom IV in the Appendix, it
corresponds to a physieal state P; defined by

PiB’) = [P*(B)]'P***(B X B’ X B)
BED, B e,

i.e., we have EQ(B)‘I’P E Ho‘
Due to the same axiom, we can prove that, if

E.(B), - ,B.€E®*, (3.17)

(3.16)

e 1Ea(Bn) ?50; Bh "
10 Cf. Ref. 7, pp. 97-98.
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, A, & C', either
+ MEL(B)Yr € H,

then, for any A, ---
MEL(B) + --- (3.18)
or

(Eo(B) + -+ + ME(B)E, = O.

Assume now that A, is defined as a self-adjoint
operator on 3¢, and that

3.19)

o< N A B ) < 4. (320)

Choose a sequence IT,, II, --- of finer and finer

partitions
o= {--- D%, M), N7, M),
X D‘l(k)) )‘2“‘)): ’ "}; k= 1: 2) tTT (321)

of R' = (— », + ) in which the maximum length
of the finite intervals in the partition tends to zero
when k — «. For sufficiently fine partitions, i.e., for
sufficiently high & > r, we have [due to (3.20)]

0 < 2 PP @ BN, AR 126),  (3:22)

where the summation in j is only over finite intervals.

From the previous considerations we know that,
given a k for which (3.22) is satisfied, there exists
a physical state P, (which is necessarily a pure state)
defined as

PiB) = [ X NV PN, NP
% Z )\gk))\gk)Pa:ﬁ;a([)\gk) \2) X B
X [>‘:('k); )\z('i)l))) g = (.31’ ) ﬂc) & é,
B=B/X--- XBE®"X .- X(B",

where
P*%:%(B, X B X B;) = (¥»|E.(B,)Fs(B)E.(B.) |¥5),

(3.23)

By, B, € ®%, Fy(B) = Ep(B)) --- Ep(BY), (3.24)
having the property that
¥ = 2 NPE(INY, MEDY:  (3.25)

belongs to the image-ray of Py, i.e., ¥, € H,. Now,
from (3.20), A ,¥; is defined and

lim || ¥, — A, %] = 0. (3.26)
k—o

On the other hand, according to Axiom II B in the
Appendix, the set § of all physical states is closed in
the weak topology. This means that if we prove
that P,,,, P,.s --- is a Cauchy sequence in the
weak topology of 8, i.e., if for any ¢ > 0 and any

EDUARD PRUGOVECKI

B E S BE ® ™ we can find an N(¢, 8, B) such
that

|PiB) — PL(B)| < ¢, k,m> N(, 6,B), (327
then there exists a physical state P, such that
PiB) = limP¥B), BES, BEG.  (3.28)

k=

But (3.27) is true for the sequence P2(B) in (3.23).
Namely, the sequence

2 INPPPI®), k=r41,r42,---, (3.29)

where
B __ Py By (R
Ii - [)‘J ) xi‘”l

(3.30)

converges towards
0< f N dP(I)

= ‘/:"m 12 dP(‘I’P‘ Ea(I;) I\I’p> < 4, (331)

©

and the sequence

E )\gk))‘gk)Pa:ﬂ;a(ISk) X B X I:-k)),

k=r+1,r+2 - (332

is also convergent. We establish this last statement
by writing

Z )\S"’xf-”P""”;"(IE"” X B X I,(-k))
.

= Z )\:sk))‘tfk)(En(If'k))\I’P‘ Fﬂ(B) lEa(I:’k))‘I,P>

= (W] Fyg(B) [T). (3.33)
Due to (3.26),
lim (W.| Fo(B) W)
= (A.¥»| Fy(B) |A¥r) < +, (3.34)

and the existence of P, is established.
Thus we have simultaneously established that,
due to (3.34), we can write

Pi::o.-;ﬁ.,.(Bl X R X Bm) = ”Aa\I’P”—z
X (ACWPI Eﬁx<Bl) T Eﬁm(Bm) ‘AQ\I,P>7
ﬁls'"ﬂmeoy Ble&ﬂ‘;“')Bme&ﬂ-;

and consequently A4,¥, belongs to the image ray
of Pm, i.e., Aa\I’P E Ho.

(3.35)

BHB(By ..., B:) = ¢ o, then we prove the statement,
strictly speaking, only for Bq (= (B"lx..o.Xﬁﬁ'. However,
it is trivial to extend this to ®%, because ®f is the Boolean
algebra generated by ®%1X... X ®Ps,
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Finally, if, instead of (3.20), we had

[T ¥ aw B [ =0, (330)

then
AVY, =0¢&D. (3.37)
Thus, we have proved that, to any observable e
for which

fju )‘Z(WIEG(IX) l\I,> < +°°: ¥ e D’

(3.38)

there corresponds a unique, (in general) unbounded,
and self-adjoined operator A, which leaves D in-
variant, i.e., A,D C D. Thus, due to Axiom W5,
(3.14) is proved.

Since the operators P, are self-adjoint, the opera-

tors
Uz, 1) = exptP2" (3.39)

exist, are unitary, and are defined on the entire 3C.
They provide a representation of the translation
group which is continuous in the strong topology
of B(ac):

lim ||(Ux, 1) — Uy, ))¥|| =0, ¥ €. (3.40)

In order to prove that, for any ¢ € X, f € D,
Aw(flz,l))‘ll = eiP.zAv(f)e_iP'z‘I’: ¥ e D; (341)

we make use of Axiom W2. Namely, inserting in
(2.18) for v, an arbitrary a = (a;, +++ , a.) € 0
and B = B} X --- X B! € &“, and for v, any
8=y ,)E6andB”" =By X --- X B’ €
®°, we can write, due to (3.7), for any ¥, € H,:

(\I’PI Fu(B’)Ev(nz,l|)(B)Fﬂ(B”) I\I’P>
= Paw(f(z.l)):ﬂ(Br X B X B")

- fe“”"""" gpeiTiet e
X B XI,,XBXI,. XB"
= [ e aw PG,
X Eycn(BYEL (L YFAB") 1¥5)

= (V5 |F (B")e'" “E,;(B)e T “Fs(B"") |¥5), (3.42)

where for F,(B’) and Fy(B’") we used the notation

introduced in (3.24), while

E,(I, = E,Q(I,o) v E.—x(Ipa),
p= (PO, °

. 9). (343)
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Now, from the way in which the space 3C is con-
structed,? it follows that the linear manifold, span-
ned by all the vectors

F.BYY,, a€d, BEG® (3.44)

is everywhere dense in 3¢” in the norm-topology.
Consequently, (3.42) can be true if and only if

Ewu(,,u)(B) = eiP'zE:p(n(B)e—‘P'z- (3.45)

For arbitrary ¥,, ¥, € D the integrals

[ 2 a Bo @) 1)

= [N BT ) (3.46)

exist. Relation (3.46) is equivalent to (3.41). Thus
the fact is established that all the conditions of
Wightman’s Axiom O (with the exception of the
existence of the global vacuum) are fulfilled; namely,
the last requirement of this axiom that has not
yet been checked is the spectral condition. This
condition is obviously fulfilled because, naturally,
the spectrum S™ of = and the joint spectrum of
P° ..., P? defined as the complement of the set

U(Bo X B, X B, XBa), Bo: ;Bs E(Bly
E,.(Bo) e Erl(Bs) = O (3.47)

are identical, and S* C V, according to Axiom W2,

In the same manner as for the translation group,
we can show that, due to Axiom W3, if any rotation
A € L} in the (g, ») plane is given, then we have'

A"i(,(o-A))‘I, = kz S’k(A) €xp (_%iMn-A‘")

X AP;(!) €xXp (%iMuvA‘")‘I,) v e D’ (3'48)

and, of course, exp (3+M,,A*) D C D.

Due to the fact that any Lorentz transformation
A € L! can be reduced to three consecutive rotations
of the above type, we can define, on the basis of
(3.48), a representation U(0, A) of L] having the
property

U, A) D C D.
Thus Wightman’s Axiom II'* is also fulfilled.

(3.49)

12 Consult the proof of Theorem 3 in [3], Sec. 3.3.

12 We do not have in exp (}iM,, A**) any problems with the
noncommutativity of the M,,, because, for x = u, A »® »,
A% = 8 if Ais a rotation in the (g, ») piane. AsM,,=—-M,,
the sum 4 M,, A# reduces to M,, A** (no summation over
I and v).

14 Cf. Ref. 7, p. 99.
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Finally, we can deduce from Axiom W4 that, if
f@ely) =0, z,yemM, fg€D, (3.50

then, for arbitrary o, 8 €9, B’ € &%, B” € @’ and
arbitrary ¥, & H,,

Wp| Fu(B)E . (B)E s, ) (B)Fs(B"') [¥)
o Pa:m(f):m(n):ﬁ(B; X B1 % B2 X B")
= Pﬂ:w.(v):m(l):S(B; X Bz X Bl X B")
= (¥r| Fo(B)E o, (B)E,, n(B)Fs(B") ¥p),
e €K, B E®”, B, €& (3.51)

From the earlier mentioned fact that (3.44) is every-
where dense in 3¢” in the norm-topology, we conclude
from (3.51) that

Ew:(!)Em(ﬂ = Ee.fle.n (3-52)

and thus

{Am (f}Am(a)

— Ayl n]¥ =0, Y& D, (3.53)

4. COMPARISON WITH THE HAAG-ARAKI
ALGEBRAIC FRAMEWORK

The main concept of the Haag—Araki'® approach
to quantum field theory is an algebra of observables
in which some suitable topology is introduced. We
consider here the case of the algebra of ‘“quasi-
local observables” introduced by Haag and Kastler,®
in which the uniform topology is adopted. We
refer to the six postulates introduced in the Intro-
duction of Ref. 16 as the Axioms H,~H,. We intend
to prove the following theorem.

Theorem 2: In an £QFT obeying Axioms W1-W4,
a B*-algebra generated by local observables can be
associated with any finite region in space-time.
These algebras fulfill the conditions of Axioms
H,—-H; in Ref. 16.

We denote by A open sets with compact (in the
Fuclidean metric) closure in the Minkowski space
9. In the Haag—Araki formalism observables are
attached to each such set A.

If we adopt Axioms WI1-W4, then we denote
by ©(A) the set consisting of all the fields ¢ & K
taken at all f € 9, f = £, with support lying within
A, and of all the observables which are funetions
of any finite number of such compatible field ob-
servables, i.e.,

18 H. Araki, Progr. Theoret. Phys. (Kyoto) 32, 844 (1964).
1% J. R. Haag and D. Kastler, J, Math. Phys. 5, 848 (1964).
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O(A) = {F[‘pl(fl)r e ‘Pn(fn)]:
fi = f-h o f = f-ne D,
Supp fh tet, Supp fu C 4,

{‘Pl(fl)y e ‘pn(fn)} = C: F & f/q}y (41)

where 4 stands for the set of all Borel functions
defined on finite-dimensional Euclidean spaces.

According to Theorem 6 in Sec. 2.5 of [3], and
Theorem 1 in See. 4, of [4], there exists a B*-algebra
() into which the set © of all observables can be
embedded. Denote by A(A) the smallest B*-algebra
containing the image in A(0) of the set (4.1). These
algebras M(A) can be taken to be the algebras in-
troduced by Axiom H,.

Due to the fact that 0(A,) C 0(Ay) if A, C A, 1
follows immediately that the isotony property,

QI(AI) C 9I(A2); Al C A2’ (42)

is satisfied. It is also clear that all the algebras
9(A) contain the unit element—which is the image
of all trivial questions like

Fle(N]l, FO =1, XER".

Therefore Axiom H, is also satisfied.

If A and A, are spacelike with respect to each
other, then, due to Axiom W4, each element of
0(4A,) is compatible with any element of 8(A,).
According to the definition of the concept of embed-
ding'” of the set O into (0), this compatibility is
reflected in the commutativity of the images in
9(0) of the elements of ©(A,) with the images in
9(0) of the elements of ©(A,). This implies the com-
mutativity of the B*-algebras H(A,) and %(A;); we
derive such a statement from the fact that any
element of an algebra %(A) is obtained by taking
finite sums and products (in any order) of a finite
number of images in A(O) of elements from 6(4), or
by taking uniform limits of such. Consequently,
Axiom Hj is fulfilled.

Denote by U the smallest B*-subalgebra of H(9)
containing the image of the set

Oo’ = {F[ﬂol(fl): Tty ‘Pn(fn));F S A T
‘Pﬂesc;f1=fl)' ':fﬂ=fn€5~)}' (4'4)

This algebra does not coincide with the B*-algebra
(), because all the global observables are not
included in (4.4)—corresponding to the fact that
these global quantities do not belong to the category
of “observables” in the sense in which Haag uses
the word.

4.3

17 Cf. [3], Sec. 1, and [4], Sec. 3, Def. 4.
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It is obvious that

0, = Uo(). (4.5)
a
Consequently we have
AD kAJ A4). (4.6)

If we denote by %,(A) and 2, the algebras gen-
erated (in the ordinary algebraic sense) by the images
of ©(A) and 0,, respectively, in (), than it is
easy to prove that

° = \A}%(A). @.7)

In general, however, we cannot extend (4.7) to
transform (4.6) into an identity.

The B*-algebra ¥ is obviously the smallest B*-
sub-algebra of A(©) which contains all the algebras
A(A). It is the algebra of ““ quasi-local observables”
postulated in Axiom H,.

From Axioms W2 and W3 ,we can immediately
infer that, under an inhomogeneous Lorentz trans-
formation (a, A), A € L!, the set ©(A) goes over
into

0|¢_A;(A) = O(a + A'A).
This implies the transformation

A(A) — Ap,,4,(4) = Aa + A-4), (4.9)

and consequently the existence of an automorphism
of %—due to the fact that the set \U, A(A) is
everywhere dense (in the uniform topology) in .
This is precisely what is required in Axiom H,.

Finally, we know that the £-formalism admits a
Hilbert space representation.'® This means that
A(®), and consequently ¥, possess a faithful rep-
resentation in a Hilbert space. We do not know,
however, whether this representation of U is alge-
braically irreducible, i.e., whether A is primitive.

(4.8)

5. THE CONCEPT OF LOCAL VACUUM

In the conventional quantum field theory as well
as in the Wightman axiomatic approach, the ex-
istence of a (unique) ground state, called the vacuum,
is assumed. The introduction of such a state of
the global total energy-momentum is, at once, con-
venient mathematically, and seemingly justified
from the physical point of view. Namely, the ex-
istence of such a mathematical object seems to be
necessitated by the imaginable “physical” situation
in which a physical vacuum is realized in the entire
universe.

However, the existence of such a vacuum state,

18 Cf. Theorem 3 in [3], Sec. 3.3, or Theorem 3 in[4], Sec. 5.
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which we call from now on a global vacuum, seems
much less justified once it is realized that any
actual experiment is and can be carried out only
in a finite region of space~time. If that is the case,
the ad hoc introduction of a global vacuum is not
physically justified and can impose a very serious
restriction on the structure of a theory. Therefore,
the desirable thing would be either to derive the
existence of such a vacuum from more plausible
assumptions (as has been carried out under specific
circumstances by Borchers'®?), or to replace this
stringent requirement of the global vacuum with
some more physical assumption.

We do not know whether a result like Borcher’s
can be derived in the formulated £QFT. Namely,
although (see Sec. 4) the £QFT can be reformulated
in terms of B*-algebras of * quasi-local observables”
and Haag’s concept of physical equivalence applied
to it, we do not know whether the weak additivity
property used by Borchers in his proof is valid for
the resulting von Neumann algebras. On the other
hand, in the £QFT formalism the assumption of the
existence of a global vacuum would introduce no
remarkable computational or formal simplification—
such as in 3CQFT. Furthermore, the transition to a
physically equivalent theory with a vacuum (if such
a theory existed) might be quite difficult in practice.
Therefore, it is desirable to have an alternative to
the global vacuum.

Definition 1: A physical state P, is said to rep-
resent a local vacuum over a space—time domain A,
which is bounded in the Euclidean metrie,

zo + 21 + 23 + 23, (5.1)

if and only if

PFo = [wars @) =0, (6.9
forall f = f €& D, supp f C A, and for all field com-
ponents ¢ € F, from the family ¥ of relativistic
fields (mentioned in Axiom F3, Sec. 2).

In (5.2) the convenient notation of a bar over
an observable in a physical state indicates the fact
that the mean value has been taken over that ob-
servable for that state; i.e., forany 8, y € 0, B’ €
&6’ B" & (B7,

Pﬂ:EW(BI X B")

— f )\dPBiai‘Y(BI X I)‘ X BII)

~c

(5.3

for any observable a.

1% H. J. Borchers, Commun. Math. Phys. 1, 57 (1965).
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It is easy to see that (5.2) is equivalent to the
requirement:

P*"(B) =0, BE®*, {0JN\B=4g. (5.4)
Due to Axiom IV we can prove the following:

Theorem 3:7° If P, € § is a local vacuum over
A, then

P(()p;(f;) . ---.wn(/n)(B) — 0’

BE g™ 0} N\NB =g, (55)

for any ¢, -+ , ¢ € ¥, and any f, = fi € D,
supp f C A(k =1, --- , n).

Proof: Inorder to prove (5.5), we first assume that
@1, *** , ¢q are bounded fields, i.e., that S**, ..., §°*
are bounded sets in R’. Then we can employ the
fundamental theorem of [3] according to which
there exists a Banach *-algebra (0), self-adjoint
indempotent elements E,, ., (By), *-+ , Equiray(Ba)
of A(®) and a positive-definite linear functional
<z >p,z € A®), on A(O), which are such that

F,g,,(f,).---::pn()'..)(B1 X oo X Bn)

= <E¢n(fx)(Bl) ot E#’n(lﬂ)(Bﬂ))PuJ

B,e®”, ---,B.€®”. (5.6

By applying on the positive functional < z >,z &
A(0), the Schwartz—Cauchy inequality, we get

I(E‘p.(h)(Bl) e E(ﬂn(fn)(Bn))Po
SAE oo BIE,, (1 B))e B puisy(Ba) -+
X Eoysn(BEo,s0(Bs) *+* EguisyB))e..  (6.7)

Now, by employing again the results of [3] and
afterwards Axiom IB, we can write

(E(ox(/x)(Bl)Em(/;)(Bl»P-
= P:.(!n):m(h)(Bl X Bl) — P:)"U’)(Bl). (5.8)

According to (5.4), which is equivalent to (5.2),we
have

P"U2(B) =0, {0} \B, =&, B, EG™. (59)

Thus, due to (5.6), (5.7), and (5.8), the proposition
is proved for B &€ ®*** "*#* of the form B, X --- X
B, {0} "B, = &, and ¢, *** , o, bounded.

In the case B, contains the zero point of the spec-
trum of ¢,, (i.e., {0} C B,), we have on the basis of
the above and of Axiom IA that

2

2 Qur main interest in this theorem is due to the possibility
that a physical interpretation of complex probability mea-
sures (as was proposed in [1]) assigned to incompatible
observables might prove feasible and desirable.
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PgrUniend @ s L X B

(6.10)

Hence, we have reduced this case to the previous case,
where we deal with » — 1 fields.
An unbounded field ¢,(f) can be approximated by

a bounded field ¢{* (f), where o{*’ is defined as
the funection of ¢, in the following way:

¢1§N) = FN[‘PI:]’

(5.11)
) = {x, ~N <2< +N,
0, I\|>N.
We then get
Praicieatn(p s L. BY =0,
B, X -+ X B, €@®, (512

0}NB. X - XB)=¢g

for unbounded fields ¢,, *-- , ¢. by going in the
above procedure to the limit N — + =,

The fact that (5.12) is valid not only for Borel
sets of the form B, X --- X B,, but also for arbi-
trary B € ®&°**""*** follows from basic theorems
of measure theory.” Q.E.D.

Naturally, the above theorem implies that
(5.13)
PI;:(!:)]""’:lwn(/»)]’ =0 (5.149)

for arbitrary ¢, ++ , ¢n € 5., fi = Ju € D, supp
fr CA k=1, , n However, due to the fact
that the measures Pg:¢*):"""¢*}(B) do not, in
general, have to be positive definite, the opposite is
not true; (5.5) is a stronger result than (5.13) and
(5.14).

We can now introduce:

Postulate 1: Given any finite (in the Euclidean
metric) region of space—time, there is at least one
local vacuum over that region.

However, due to the fact that one always makes
measurements only with a nonvanishing error, and,
consequently, that one can determine only weak
neighborhoods of physical states (see [1] and the
Appendix), the above postulate is still more strin-
gent then the existence of experimentally realizable
vacuum states would require. Namely, it would be

2 P, R. Halmos, Measure Theory (D. Van Nostrand, Inc.,
zl;ginc%bon, New Jersey, 1950), Sec. 13, Theorem A, and Secs.
and 35.
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sufficient to introduce the following weaker version
of Postulate 1.

Postulate 2: Given any finite region of space-time,
there exists, for any ¢ > 0, and eapproximation
of a local vacuum over that region.

In the above axiom we used the following concept:

Definition 2: Given any finite region A in space-
time, we say that a physical state P, provides an
eapproximation of a local vacuum over A if we have

Prd| <e @I <1, (515
forallp € F.,f = f € D,suppf C A.

From (5.15) we can derive the following estimate

P{”B) <¢ B.=(—w,dUl, +=) (5.16)
for any f of the above type.
In general, we can write that, if f, = fi € D,
supp f C Ak = 1, --- n),
,Pr':(h);-“‘.rpa(fn)(B! X oo X Bc)l S e
@ <1, (6.17)

for any ¢y, * -+, v, € &,.. This inequality might be
considered as a version of the earlier proved theorem
for the local vacuum. We can prove (5.17) by first
taking bounded fields and employing (5.7) [first
on E, .,(B.) and then on E,,,,(B.)], always
remembering that

KEax(BI) ."Ean<Bn)>P! S 1) al! e ,CX,, 669
B,ca®”, -+ ,B,E®", PCSs. (5.18)

Afterwards we can generalize (5.17) to the case of
unbounded fields by the method used in the proof of
Theorem 3.

As for the concept of local vacuum, we note that
there is no guarantee, and no compelling reason, why
a state which is a local vacuum in some region should
be a pure physical state, and consequently repre-
sentable in 3CQFT by a Hilbert vector. Namely,
the concept of loeal vacuum has been introduced in
order to cover the case when a specific field theory
is believed to refer also to the case when an actual
experimental vacuum (i.e., a region of space-time
not containing any systems deseribed by that field
theory) is realizable in some (finite) region of space—
time. As we have argued, in such a case it is not
necessary to introduce a global vacuum. Further-
more, it is not even necessary to adopt Postulate 1.
It would be sufficient, from the physical point of
view, to have Postulate 2 valid.

We would like to remark that, if a specific field
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theory possesses a global vacuum, then it seems to
us that, if the theory has been correctly built and
if that vacuum state is more than a mathematical
convenience, such a global vacuum should be a
local vacuum, in the sense of Definition 1, over any
finite region A of space-time (this is certainly true,
at least in the case of that mathematical abstraction
known as “free fields”). However, we expect that
the converse is not true; there might exist interesting
quantum field theories which satisfy Postulate 2,
or even the more restricted Postulate 1, without
possessing a global vacuum.
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APPENDIX

For the purpose of this paper, it is desirable to
give a short summary of the most important con-
cepts and results of the previous papers [1]-{4].
Some of these concepts and results are somewhat
modified here to suit the needs of this paper.

The general formalism with which we are con-
cerned (and to which we sometimes refer as the
£-formalism) is given in the form of four axioms
(see [4]). The basic concepts in terms of which these
axioms are formulated are the set of observables
© and the set of physical states 8. We do not impose
any artificial @ priori structure on these sets (e.g.,
we do not require that © be an algebra or that all
pure physical states constitute a Hilbert space).
All the required structure is contained in the four
axioms which, with the exception of the last one,
represent a set of requirements which occur in a
natural manner when a certain probabilistic inter-
pretation of the basie concepts of the given formalism
(see [1]) is adopted. The last axiom is introduced
in order to make the formalism physically equivalent
to the Hilbert-space formalism.

The axioms, as we present them here, are es-
sentially those given in [4]. However, we do not
formulate them in the most general form by means
of probability functionals; rather we adopt the more
specialized formalism in terms of complex probability
measures, which intuitively is more transparent and
quite adequate for our present needs.

In order to facilitate the notation, we introduce
the following conventions:

If a set S is given, we denote by 8 the family of all
ordered finite sets of elements belonging to the set
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S. To any n-tuple @ = (a;, -+ a,) € 0 of one-
dimensional observables «,, +++ , «, we assign an
n-dimensional Euclidean space R* and denote with
®* the family of all Borel sets on R”, i.e., the
Boolean o-algebra generated by @ X --- X ®°,
while by 8 we denote the Boolean algebra gen-
erated by ®** X -+ X ®*.*

In the £-formalism, we assign to each n-tuple
o € 0 of observables, and to each physical state
P € 8 a complex probability measure P*(B),
B & ®°, on R”. We define a complex probability
measure P*(B) as a normalized [i.e., P*(R") = 1]
complex measure for which |P*(B)| < ~  for all
B € ®°. ® If we have B, € ®@*X""™**~ B, €
®@PXXBs gy, oo, B, € 0, in order to denote that,
in peseembinfyB s B, B, refers to the first
m observables, we write P+ e BB s B,
In general, in an expression of the form P**#:***(B, X
B, X +-*), a8, -+ € 0, the Ith factor B, in the
direct product B, X B, X --- refers to the Ith
ordered set «; of observables contained between the
(I — 1)th and Ith semicolons.

If a relation is true for all values @« € @ and for
all B &€ ®°, it is very useful to replace o with the
“variable” symbol ». For example, the so abbreviated
relation (A2) below stands for the following more
detailed written expression

P "(B, X R* X B,) = P*"(B, X By)
8,y €S, B,E®", B,€®”. (Al

Aziom I:** For a given set O of observables, a
physical state P is defined by assigning to each finite
ordered set & € O of observables a complex prob-
ability measure P*(B), B € ®°. Each physical state
P has to satisfy the following relations:

(A). For any observable a € ©
P'l RV’(RG) — P'l'..

(B) If the symbols o, ---
same observable «, then

(A2)

, a, stand for the

=P"**B, N -+ NB,)

for any By, --- , B, € ®°.
(C) For any observable a € 0 and any B €

(A3)

(Ba
P%B) 20, P*R") = 1.

22 Cf. [2], Sec. 2. 1, and [3], See. 2. 5, Lemma 10.

3 Note the differences between the present definition and
that in [2], Sec. 2.2, where it was required that [P%(B)] <
<4 o for all B € ® =, We will mention in Ref. 27 the effect of
this change.

24 This axiom can be derived from Axiom IV and Axiom IB.

(A4)
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Definitton 1: A finite set {ay, - - , .} of observ-
ables is called a set of compatible observables, sym-
bolically written {a;, -+ , a,} = C, if and only if

PTte(B) > 0, B € GECE
Preiems B s ... X B)
= preniienn(B % ... X B,)
B, €&, -+, B, € &,

for any physical state P and any permutation
ky, +-- , k, of the indices, 1, --- , n.

(A5)

Definition 2: Two physical states P, and P, are
called equal if and only if

P5(B) = P%(B)
foralla €0, B € ®°.

Definition 3: Two observables o and 8 are called
equal if and only if
Pu,a-,(B) — P-,ﬁn(B)
forall B € ®* = &°.
Definition 4: The weak topology®® in the set §
of all physical states is the topology in which the

neighborhood basis of a physical state P, € § con-
sists of all the states

W(Po;a; By, -+, Baj e
= {P: [P*(B)) — PyB)| <, +--
|P(B,) — P3(B.)| < e},
gorresponding to all choicesof « € 9, By, - -
®% > 0.

Aziom I1:
(A) If P, and P, are any two physical states
and 0 < ¢ £ 1, then the family of all complex
probability measures

tPiB) + 1 — 9P3(B), B& &, (A9

corresponding to all « € 9, determines a (unique)
physical state P, i.e., 8 is a convex set.
(B) 8 is closed in the weak topology.

(A6)

(A7)

(A8)
-, B, €

As we can notice from Axiom ITA above, our con-
cept of physical state refers not only to pure states
but also to mixed states—which, in the Hilbert space
formalism, are represented by statistical (density)
operators.

Definition 5: A point A & R” belongs to the spec-

% Note the difference between the present definition in

which only By, ..., B € &« are considered, and that em-
ployed in [2], where By, ..., B, € ®= are considered.
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trum 8° of @ € 0 if and only if, for any interval
I C R” containing A, there can be found at least
one physical state P for which P*(A) = 0.

Axiom I11:
A) If ay, --
1,2, ---), then

Salx...xmn C Scu X e X Sa". (Alo)

(B) If {a} =C(C,a= (al; R a,) € 67 and
B is a Borel set in R* containing a point of the spec-
trum S° of «, then there exists at least one physical
state P for which P*(B) = 1.

-, a, are any n observables (n =

Finally, we have an axiom whose necessity is not
immediately obvious. It is introduced because it
ensures the validity of a generalization of the super-
position principle—valid even when superselection
rules are present. Namely, for pure physical states
it guarantees, as it is shown in [3] (Sec. 2.3) that
(expressed in the Hilbert space language), if the
normalized Hilbert vector ¥ corresponds to a phys-
ical state and A is any element of *-algebra generated
by all the observables whose spectral decompositions
belong to the same coherent subspace, then A¥
corresponds to a physical state for A¥ = O.

Axiom IV: .
Forany P € ®andany 8 = (8, -+ 8.) € 0, the
expression

M= Z a.a;P"**B* X B)),

i,i=1

y B, B* =B, X -+ X B
if B=@®B;X--XB) (Al

.-+, B, € & and
-,a,,(n=1,2,---).

p* = (ﬁm tet

is nonnegative for arbitrary™® B,,
arbitrary complex numbers a,, -
If (A11) is positive for some choice of B,, --- , B, €
&% and a,, -+ -, a, & C', then there exists a physical
state P, for which

PeB) = M™ Zl a.a;P* B X B X B,)) (Al12)

t,i=

for any « € 0, B € ®".
An additional concept, which will prove to be very
useful, is that of a function of an observable.

Definition 6: An cbservable g is said to be a func-
tion of a set {e, + - -, a,} of compatible observables
if and only if there exists such a real valued

# Again, unlike in [2], only B, ..., B, € G instead

of By, ..., B. & ®F are considered.
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Borel function f(A\), A € R**:* "X defined on

R&%: 7 Xan o6 that we have
PF(B) = Prerhen[Y(B)] (AL3)
for all P € 8. We then write 8 = fla;, - , o).

We note that, if the set © of all observables does
not already include all the functions of compatible
observables, we can enlarge it by attaching to it
all such functions defined by means of (A13).

Definition 7: A set of observables is said to be a
set of independant compatible observables if no
observable in that set is a function of a finite num-
ber of observables belonging to that same set.

We have shown in [3] and [4] that the above
formalism is physically equivalent to the Hilbert
space formalism.*” Of course, in order to be able to
speak of physical equivalence we must have in
mind a certain (experimental) interpretation or a
class of interpretations of the above formalism. In
other words, we must have available some corre-
spondence rules relating at least some of the above
introduced theoretical constructs to laboratory pro-
cedures. In [1], after carrying out a thorough anal-
ysis of the theory of measurement in quantum
mechanics we propose a generalization of Born’s
interpretation of quantum mechanics or, as we
prefer to call it, of Born’s correspondence rule.
This generalization is based especially on an analysis
of the concept of “‘simultaneous” measurement of
incompatible observables.

As we show in [1], we can express the outcome of
any measurement or state preparation on an n-tuple
a of observables in terms of a principal histogram
h = [II, p(B)], consisting of a partition II of R, a
set function

0<p® <1, BEm, (A14)

and an experimental error function ¢(B), B &€ IL
We call such a totality of mathematical objects an
empirical state. We propose then the following:

The generalized Born's correspondence rule: To a
given empirical state corresponding to a state prep-
aration or a measurement on o« & 0, and determined
by a principal histogram h = [II, p(B)] and an

27 This phgsical equivalence is not affected by the changes
which have been underlined by Refs. 23-25. The proof in
[3] of this equivalence, however, has to undergo some minor
changes and becomes in its nature more like the case treated
in [4]. These changes include the elimination of the necessity
of Introducing the normed*-algebra ,(0) in [3], Sec. 2.4.
'I‘fh[?]r also solve the difficulties mentioned in Refs. 20 and 21
of [3].
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experimental error function ¢(B), B &€ II, corre-
sponds any physical state P which satisfies the
relations

p(B) — «B) < Re P*(B) < p(B) + «B),
[PYB)| < p(B) + «B),
foral BE I N®".

(A15)
(A16)

This correspondence rule contains as a special
case the conventional Born’s correspondence rule,
which is valid only for measurements or state-
preparations on finite sets of compaizble observables.
Regardless of whether we adopt the original Born’s
correspondence rule or the above generalization,
one feature is worth noticing: when we make meas-
urements or state preparations we do not, generally
speaking, determine a single physical state but
rather weak neighborhoods of such states! This fact
is worth remembering when we are considering the
physical equivalence of different formalisms as well
a8 when we are investigating which features in a
theory have a direct empirical significance.

Now, speaking simply, a theory 3, formulated in
terms of the £-formalism is physically equivalent
to a theory 3, formulated in the Hilbert space lan-
guage in the following sense: Given 3, we can always
construct (as is shown in [3] and [4]) a theory 3.
and, once the above interpretation of the £-formal-
ism (regardless of whether we accept the generalized
Born’s correspondence rule or only the conventional
form) and the conventional (Hilbert space) inter-
pretation of J, are adopted, we can describe any
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realistic experiments equally well in terms of 3, as
well as in terms of J,.

Naturally, given a Hilbert-space theory 3, it is
very easy to construct the £-formalism theory 3,
(see [2]) in the following way:

Once 3, is given, the set 0 of all observables is also
automatically given. These observables are rep-
resented by certain self-adjoint operators.

Take any physical state (pure of mixed) in 73,
generally deseribed by a statistical (density) operator
p. We assign to p and to any n-tuple (a;, * - , a,) of
observables represented by the self-adjoint operators

4= [naED - A= [naED @

E, = E(Ik)x I = (—my }\)1

the complex measure P**'"""**(B), B € ®", which
is such that

P By X oo X By)
= Tr [pE"(B)) --- EV(B.)],
Bl e (de’ e ,Bn E(Ba'.

It is easy to establish that P***"""**(B), B € ®", is
a complex probability measure. The set

P, = (P "(B), (m, -+ o) €6} (A18)

of complex probability measures assigned to the
given p for all n-tuples (a;, -+ , «,) of observables
defines a physical state in the sense of the £-for-
malism. It can be checked (see [2], Sec. 2.3) that
the resulting formalism is an £-formalism.
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